高考集合复习应注意的问题

合集下载

高考数学复习备考总结

高考数学复习备考总结

高考数学复习备考总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学复习备考总结高考数学复习备考总结汇总7篇利用各类学习资源,如网课、教辅资料等。

备战高考数学复习考点知识与题型讲解1---集合

备战高考数学复习考点知识与题型讲解1---集合

备战高考数学复习考点知识与题型讲解第1讲集合一、知识梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法A B(或B A )A∪B=A∩B=∁A=常用结论1.空集的性质空集不含任何元素,空集是任意一个集合A的子集,即∅⊆A.2.集合的运算性质(1)A∩A=A,A∩∅=∅.(2)A∪A=A,A∪∅=A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.(4)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.3.集合的子集个数若有限集A中有n个元素,则A的子集有2n个,非空子集有2n-1个,真子集有2n -1个.二、教材衍化1.(人A必修第一册P5习题1.1T1(4)改编)若集合A={x∈N|1≤x≤10},则( )A.8∈AB.9.1∈AC.{8}∈AD.{9.1}⊆A 答案:A2.(人A必修第一册P14习题1.3T4改编)设全集为R,A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________,(∁R A)∩B=________.解析:把集合A,B在数轴上表示如图.由图知,A∪B={x|2<x<10},(A∪B)={x|x≤2或x≥10},所以∁RA={x|x<3或x≥7},因为∁RA)∩B={x|2<x<3或7≤x<10}.所以(∁R答案:{x|x≤2或x≥10}{x|2<x<3或7≤x<10}一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A,B,C表示同一个集合.( )(2){x|x≤1}={t|t≤1}.()(3)若{x2,1}={0,1},则x=0或x=1.( )(4)若A∩B=A∩C,则B=C.( )答案:(1)×(2)√(3)×(4)×二、易错纠偏1.(多选)(混淆元素、集合间的关系致误)已知集合A={x|x2-2x=0},则有( )A.∅⊆AB.-2∈AC.{0,2}⊆AD.A⊆{y|y<3}解析:选ACD.因为A={0,2},所以∅⊆A,{0,2}⊆A,A⊆{y|y<3}均正确,-2∉A,故选ACD.2.(混淆子集与真子集的定义致误)已知集合A={x|x2<2,x∈Z},则A的真子集的个数为( )A.3B.4C.6D.7解析:选D.因为A={x|x2<2,x∈Z}={-1,0,1},所以其真子集的个数为23-1=7.故选D.3.(多选)(忽视空集致误)已知集合A={2,3},B={x|mx-6=0},若B⊆A,则实数m=( )A.3B.2C.1D.0解析:选ABD.当m =0时,可得集合B =∅,此时满足B ⊆A ;当m ≠0时,可得集合B=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫6m , 所以6m =2或6m=3,解得m =3或m =2,综上,实数m 等于0,2或3.考点一 集合的概念(自主练透)复习指导:1.了解集合的含义,体会元素与集合的“属于”关系.2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.1.(2022·常州市前黄高级中学高三适应性考试)设集合A ={1,2,3,4},B ={5,6},C ={x +y |x ∈A ,y ∈B },则C 中元素的个数为( )A.3B.4C.5D.6解析:选C.由题知,当y =5时,x +y 的值有6,7,8,9,当y =6时,x +y 的值有7,8,9,10,于是得C ={6,7,8,9,10},所以C 中元素的个数为5.2.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,b a ,b ,则a 2 023-b 2 023=( )A.1B.-1C.2D.-2解析:选D.由题易得a ≠0,所以a +b =0,则ba=-1,所以a =-1,b =1.所以a 2 023-b 2 023=-2.3.已知集合P ={}x |x =2k ,k ∈Z ,Q ={}x |x =2k +1,k ∈Z ,M ={}x |x =4k +1,k ∈Z ,且a ∈P ,b ∈Q ,则()A.a +b ∈PB.a +b ∈QC.a +b ∈MD.a +b 不属于P ,Q ,M 中的任意一个 解析:选B.因为a ∈P ,所以a =2k 1,k 1∈Z .因为b ∈Q ,所以b =2k 2+1,k 2∈Z .所以a +b =2(k 1+k 2)+1=2k +1∈Q (k 1,k 2,k ∈Z ).4.(多选)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B.98 C.0D.23解析:选BC.若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实数根或有两个相等的实数根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的值为0或98.与集合中元素有关问题的求解步骤步骤一:确定集合的元素是什么,集合是数集还是点集. 步骤二:看这些元素满足什么限制条件.步骤三:根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.考点二 集合间的基本关系(思维发散)复习指导:理解集合之间包含与相等的含义,能识别给定集合的子集,了解全集与空集的含义.(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A.1B.2C.3D.4(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若A ⊆B ,则m 的取值范围是________.【解析】 (1)由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.(2)由题得,A ={x |-1<x <3},若A ⊆B (如图)可得⎩⎨⎧-m ≤-1,m ≥3,所以m ≥3.故m 的取值范围是[3,+∞). 【答案】 (1)D (2)[3,+∞)(链接常用结论1)本例(2)中,若“A ⊆B ”改为“B ⊆A ”,其他条件不变,则m 的取值范围是________.解析:当m ≤0时,B =∅, 显然B ⊆A .当m >0时,因为A ={x |-1<x <3}. 当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎨⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. 答案:(-∞,1](1)判断两集合关系的2种常用方法列举法:根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.数轴法:在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.(2)根据两集合的关系求参数的方法①若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性.②若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.[提醒] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论.|跟踪训练|1.(2022·广州高一期中)已知集合M ={y |y =x -|x |,x ∈R },N ={y |y =x 12,x ≠0},则下列选项正确的是( )A.M =NB.N ⊆MC.M =∁R ND.∁R NM解析:选C.由题意,得集合M ={y |y ≤0},而集合N ={y |y >0},所以∁R N ={y |y ≤0},则M =∁R N ,故C 正确.2.(链接常用结论3)已知集合A ={x |x 2-2x -3≤0,x ∈N *},则集合A 的真子集的个数为( )A.7B.8C.15D.16解析:选A.因为集合A 中有3个元素,所以其真子集的个数为23-1=7(个). 3.(多选)(2022·河南范县高一月考)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪14x +a ≥0,B ={x |x 2≤1},若B ⊆A ,则实数a 的取值可以是( )A.-2B.0C. 2D.4解析:选CD.因为A ={}x |x ≥-4a ,B ={x |-1≤x ≤1},又因为B ⊆A ,则-4a ≤-1,解得a ≥14,故选CD.考点三 集合的基本运算(多维探究)复习指导:1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 2.理解给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.角度1 集合的运算(1)(2021·新高考卷Ⅰ)设集合A ={x |-2<x <4},B ={2,3,4,5},则A ∩B=( )A.{2}B.{2,3}C.{3,4}D.{2,3,4}(2)(2021·高考全国卷乙)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T =( )A.∅B.SC.TD.Z【解析】 (1)由题易知A ∩B ={2,3},故选B.(2)S ={…,-3,-1,1,3,5,…},T ={…,-3,1,5,…},观察可知,T ⊆S ,所以T ∩S =T .【答案】 (1)B (2)C 角度2 利用集合的运算求参数(1)(2020·高考全国卷Ⅰ)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B={x |-2≤x ≤1},则a =( )A.-4B.-2C.2D.4(2)设集合A ={(x ,y )|2x +y =1,x ,y ∈R },集合B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∅,则a 的值为( )A.2B.4C.2或-2D.-2【解析】 (1)易知A ={x |-2≤x ≤2},B ={x |x ≤-a2},因为A ∩B ={x |-2≤x ≤1},所以-a2=1,解得a =-2.(2)由题意可知,集合A ,B 的元素为有序数对,且都代表的是直线上的点.因为A ∩B=∅,所以两条直线没有公共点,所以两条直线平行,所以⎩⎨⎧4-a 2=0,-2a +a 2≠0,解得a =-2. 【答案】 (1)B (2)D本例(1)中,若“A ∩B ={x |-2≤x ≤1}”改成“A ∩B ⊆{x |-2≤x ≤1}”,则实数a 的取值范围是________.解析:A ={x |-2≤x ≤2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x ≤-a 2, 当A ∩B =∅时,即-a2<-2,a >4时,符合题意;当A ∩B ≠∅时,令⎩⎪⎨⎪⎧-a 2≥-2,-a2≤1,得-2≤a ≤4.综上,实数a 的取值范围是a ≥-2. 答案:[-2,+∞) 角度3 集合的新定义问题(1)(2022·南阳一中第十四次考试)定义集合运算:A ⊙B ={Z |Z =xy ,x ∈A ,y∈B },设集合A ={-1,0,1},B ={sin α,cos α},则集合A ⊙B 的所有元素之和为 ( )A.1B.0C.-1D.sin α+cos α(2)(2022·保定一模)设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |1<2x <4},Q ={y |y =2+sin x ,x ∈R },那么P -Q =( )A.{x |0<x ≤1}B.{x |0≤x <2}C.{x |1≤x <2}D.{x |0<x <1}【解析】 (1)因为x ∈A ,所以x 的可能取值为-1,0,1.同理,y 的可能取值为sinα,cos α,所以xy 的所有可能取值为(重复的只列举一次):-sin α,0,sin α,-cos α,cos α,所以所有元素之和为0.(2)由题意得P ={x |0<x <2},Q ={y |1≤y ≤3}, 所以P -Q ={x |0<x <1}. 【答案】 (1)B (2)D(1)集合运算的常用方法①若集合中的元素是离散的,则常用Venn 图求解.②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况. (2)利用集合的运算求参数的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值的取舍.②若集合中的元素能一一列举,则一般先用观察法得到集合中元素之间的关系,再列方程(组)求解.在求出参数后,注意结果的验证(满足集合中元素的互异性). (3)解决以集合为背景的新定义问题,要抓住两点①准确转化.解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆.②方法选取.对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.|跟踪训练|1.(2021·高考全国卷乙)已知全集U ={1,2,3,4,5},集合M ={1,2},N ={3,4},则∁U (M ∪N )=( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}解析:选A.因为集合M ={1,2},N ={3,4},所以M ∪N ={1,2,3,4}. 又全集U ={1,2,3,4,5},所以∁U (M ∪N )={5}. 2.(2021·高考全国卷甲)设集合M ={}x |0<x <4,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x ≤5,则M ∩N =( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x ≤13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x <4 C.{}x |4≤x <5 D.{}x |0<x ≤5解析:选B.M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x <4. 3.(2020·高考全国卷Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A.2B.3C.4D.6解析:选C.由题意得,A ∩B ={(1,7),(2,6),(3,5),(4,4)},所以A ∩B 中元素的个数为4.4.给定集合S={1,2,3,4,5,6,7,8},对于x∈S,如果x+1∉S且x-1∉S,那么x是S的一个“好元素”,由S的3个元素构成的所有集合中,不含“好元素”的集合共有________个.解析:由题意知这3个元素一定是连续的3个整数,故不含“好元素”的集合有{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.答案:6[A 基础达标]0,m,m2-3m+2,且2∈A,1.(2022·湖南师大附中高二入学考试)已知集合A={}则实数m的值为( )A.0B.1C.2D.3解析:选D.若m=2,则m2-3m+2=0,不满足集合中元素的互异性,舍去;若m2-3m+2=2,则m=0或m=3,又m≠0,故m=3.2.(2022·豫北名校联盟4月联考)已知集合A={1,3,5,6},B={x∈N|0<x<8},则图中阴影部分表示的集合的元素个数为( )A.4B.3C.2D.1解析:选B.B={x∈N|0<x<8}={1,2,3,4,5,6,7},图中阴影部分表示的集合为∁B A={2,4,7},共3个元素.3.已知集合A={x∈N*|x2-3x-4<0},则集合A的真子集有( )A.7个B.8个C.15个D.16个解析:选A.因为集合A={1,2,3},所以集合A中共有3个元素,所以真子集有23-1=7(个).x|2x>7,则M∩N=( )4.(2021·高考全国卷甲)设集合M={1,3,5,7,9},N={}A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}解析:选B.由题得集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >72,所以M ∩N ={5,7,9}.故选B.5.设集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x <2,则下列结论中正确的是()A.NM B.M NC.N ∩M =∅D.M ∪N =R解析:选B.由题意得,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x <2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <0或x >12,所以M N .故选B.6.(多选)已知非空集合M 满足:①M ⊆{-2,-1,1,2,3,4},②若x ∈M ,则x 2∈M .则集合M 可能是( )A.{-1,1}B.{-1,1,2,4}C.{1}D.{1,-2,2}解析:选AC.由题意可知3∉M 且4∉M ,而-2或2与4同时出现,所以-2∉M 且2∉M ,所以满足条件的非空集合M 有{-1,1},{1}.7.(2022·福建厦门质量检查)已知集合A ={x |x 2-4x +3>0},B ={x |x -a <0},若B ⊆A ,则实数a 的取值范围为( )A.(3,+∞)B.[3,+∞)C.(-∞,1)D.(-∞,1]解析:选D.集合A ={x |x <1或x >3},B ={x |x <a }.因为B ⊆A ,所以a ≤1.8.设集合A ={-1,1,2},B ={a +1,a 2-2},若A ∩B ={-1,2},则a 的值为________. 解析:由题知⎩⎨⎧a +1=-1,a 2-2=2,或⎩⎨⎧a +1=2,a 2-2=-1,解得a =-2或a =1.经检验,a =-2和a =1均满足题意. 答案:-2或19.(2022·重庆高一月考)若集合M ={x ||x |>2},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -3<0,则N =________;∁R (M ∩N )=________.解析:由题意得N ={x |-1<x <3},M ={x |x <-2或x >2},所以M ∩N ={x |2<x <3},所以∁R (M ∩N )={x |x ≤2或x ≥3}. 答案:{x |-1<x <3}{ |x x ≤2或 }x ≥310.已知集合A ={x |x -a ≤0},B ={1,2,3},若A ∩B ≠∅,则a 的取值范围为________. 解析:集合A ={x |x ≤a },集合B ={1,2,3},若A ∩B ≠∅,则1,2,3这三个元素至少有一个在集合A 中,若2或3在集合A 中,则1一定在集合A 中,因此只要保证1∈A 即可,所以a ≥1.答案:[1,+∞)[B 综合应用]11.对集合{1,5,9,13,17}用描述法来表示,其中正确的是 ( ) A.{x |x 是小于18的正奇数} B.{}x |x =4k +1,k ∈Z 且k <5 C.{}x |x =4s -3,s ∈N 且s ≤5 D.{}x |x =4s -3,s ∈N *且s ≤5解析:选D.对于A :{x |x 是小于18的正奇数}={}1,3,5,7,9,11,13,15,17,故A 错误;对于B :{}x |x =4k +1,k ∈Z 且k <5={}…,-3,1,5,9,13,17,故B 错误;对于C :{}x |x =4s -3,s ∈N 且s ≤5={}-3,1,5,9,13,17,故C 错误;对于D :{}x |x =4s -3,s ∈N *且s ≤5={}1,5,9,13,17,故D 正确.12.某班有46名学生,有围棋爱好者22人,足球爱好者27人,同时爱好这两项的最多人数为x ,最少人数为y ,则x -y =( )A.22B.21C.20D.19解析:选D.如图,设集合A ,B 分别表示围棋爱好者,足球爱好者,全班学生组成全集U ,A ∩B 就是两者都爱好的,要使A ∩B 中人数最多,则A ⊆B ,x =22,要使A ∩B 中人数最少,则A ∪B =U ,即22+27-y =46,解得y =3,所以x -y =22-3=19.13.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解析:A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <2, 则B ={x |m <x <2},画出数轴, 可得m =-1,n =1.答案:-1 114.定义集合P ={p |a ≤p ≤b }的“长度”是b -a ,其中a ,b ∈R .已知集合M =⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫m ≤x ≤m +12,N =⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫n -35≤x ≤n ,且M ,N 都是集合{x |1≤x ≤2}的子集,那么集合M ∩N的“长度”的最小值是________.解析:因为集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m ≤x ≤m +12,所以集合M 的长度为12,因为集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪n -35≤x ≤n ,所以集合N 的长度为35,因为M ,N 都是集合{x |1≤x ≤2}的子集,所以m 最小为1,n 最大为2,此时集合M ∩N 的“长度”最小,为32-75=110.答案:110。

高考数学(理)总复习:集合与常用逻辑用语(解析版)

高考数学(理)总复习:集合与常用逻辑用语(解析版)

高考数学(理)总复习:集合与常用逻辑用语题型一 集合的概念、基本关系与基本运算 【题型要点】解答集合的概念、关系及运算问题的一般思路(1)正确理解各个集合的含义,认清集合元素的属性、代表的意义. (2)根据集合中元素的性质化简集合.(3)依据元素的不同属性采用不同的方法求解,此时常用到以下技巧: ①若已知的集合是不等式的解集,用数轴求解; ②若已知的集合是点集,用数形结合法求解; ③若已知的集合是抽象集合,用Venn 图求解. 易错提醒:注意元素的互异性及空集的特殊性.【例1】已知集合A =⎭⎬⎫⎩⎨⎧≤+-021x x x,B ={x |y =lg(-x 2+4x +5)},则A ∩(∁R B )=( )A .(-2,-1]B .[-2,-1)C .(-1,1)D .[-1,1]【解析】依题意,A =⎭⎬⎫⎩⎨⎧≤+-021x x x={x |-2<x ≤1},B ={x |y =lg(-x 2+4x +5)}={x |-x 2+4x +5>0}={x |-1<x <5},∴∁R B ={x |x ≤-1或x ≥5},A ∩(∁R B )=(-2,-1],选A.【答案】 A【例2】.已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( )A .(0,3)B .(0,1)∪(1,3)C .(0,1)D .(-∞,1)∪(3,+∞)【解析】 因为A ∩B 有4个子集,所以A ∩B 中有2个不同的元素,所以a ∈A ,所以a 2-3a <0,解得0<a <3且a ≠1,即实数a 的取值范围是(0,1)∪(1,3),故选B.【答案】 B【例3】.已知集合A =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛121xx ,B ={x |x 2-2x -8≤0},则A ∩B =( )A .{x |-2≤x ≤0}B .{x |2≤x ≤4}C .{x |0≤x ≤4}D .{x |x ≤-2}【解析】 因为A =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛121x x ={x |x ≥0},B ={x |x 2-2x -8≤0}={x |-2≤x ≤4},所以,A ∩B ={x |0≤x ≤4},故选C.【答案】 C题组训练一 集合的概念、基本关系与基本运算1.若全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是( )【解析】 由题意知,N ={x |x 2+x =0}={-1,0},而M ={-1,0,1},所以N ⊆M ,故选B.【答案】 B2.设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( )A .2B .4C .8D .16【解析】 ∵集合A ={(x ,y )|x 24+y 216=1},∴x 24+y 216=1为椭圆和指数函数y =3x图象,如图,可知其有两个不同交点,记为A 1、A 2,则A ∩B 的子集应为∅,{A 1},{A 2},{A 1,A 2}共四种,故选B.【答案】 B3.若集合A ={x |(a -1)x 2+3x -2=0,x ∈R }有且仅有两个子集,则实数a 的值为________.【解析】 由题意知,方程(a -1)x 2+3x -2=0,x ∈R ,有一个根,∴当a =1时满足题意,当a ≠1时,Δ=0,即9+8(a -1)=0,解得a =-18.【答案】 1或-18题型二 命题真假的判断与否定 【题型要点】 命题真假的判定方法(1)一般命题p 的真假由涉及的相关知识辨别.(2)四种命题真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律.(3)形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定. (4)全称命题与特称(存在性)命题的真假的判定:①全称命题:要判定一个全称命题为真命题,必须对限定集合M 中的每一个元素x 验证p (x )成立,要判定其为假命题时,只需举出一个反例即可;②特称(存在性)命题:要判定一个特称(存在性)命题为真命题,只要在限定集合M 中至少能找到一个元素x 0,使得p (x 0)成立即可;否则,这一特称(存在性)命题就是假命题.【例4】已知命题p :若复数z 满足(z -i)(-i)=5,则z =6i ;命题q :复数1+i1+2i 的虚部为-15i ,则下列为真命题的是( )A .(綈p )∧(綈q )B .(綈p )∧qC .p ∧(綈q )D .p ∧q【解析】 z =5-i +i =6i ,所以命题p 为真;复数1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=3-i 5,虚部为-15,所以命题q 为假.故(綈p )∧(綈q )为假;(綈p )∧q 为假; p ∧(綈q )为真;p ∧q 为假,故选C. 【答案】 C【例5】.下列说法错误的是( )A .对于命题p :∀x ∈R ,x 2+x +1>0,则綈p :∃x 0∈R ,x 20+x 0+1≤0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .若命题p ∧q 为假命题,则p ,q 都是假命题D .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0” 【解析】根据全称命题的否定是特称命题如A 正确;由于x =1可得x 2-3x +2=0,而由x 2-3x +2=0得x =1或x =2,所以“x =1”是“x 2-3x +2=0”的充分不必要条件B 正确;命题p ∧q 为假命题,则p ,q 不一定都是假命题,故C 错;根据逆否命题的定义可知D 正确,故选C.【答案】 C【例6】.已知:命题p :若函数f (x )=x 2+|x -a |是偶函数,则a =0.命题:q ∶∀m ∈(0,+∞),关于x 的方程mx 2-2x +1=0有解.在①p ∨q ;②p ∧q ;③(綈p )∧q ;④(綈p )∨(綈q )中为真命题的是( )A .②③B .②④C .③④D .①④【解析】 函数f (x )=x 2+|x -a |是偶函数x 的方程⇒f (-x )=f (x )⇒a =0⇒p 为真命题;mx 2-2x +1=0有解⇒Δ=4-4m ≥0⇒m ≤1⇒q 为假命题;故①④为真.【答案】 D题组训练二 命题真假的判断与否定1.已知命题p:若a,b是实数,则a>b是a2>b2的充分不必要条件;命题q:“∃x∈R,x2+2>3x” 的否定是“∀x∈R,x2+2<3x”,则下列命题为真命题的是()A.p∧q B.(綈p)∧qC.p∧(綈p) D.(綈p)∧(綈q)【解析】“a>b”是“a2>b2”的既不充分也不必要条件,所以p为假命题;“∃x∈R,x2+2>3x”的否定是“∀x∈R,x2+2≤3x”,所以q为假命题;因此(綈p)∧(綈q)为真命题.故选择D.【答案】 D2.已知命题P:对任意的x∈[1,2],x2-a≥0,命题Q:存在x∈R,x2+2ax+2-a=0,若命题“P且Q”是真命题,则实数a的取值范围是________.【解析】对∀x∈[1,2],x2-a≥0,即a≤(x2)min=1,即命题P:a≤1;∃x∈R,x2+2ax+2-a=0,即x2+2ax+2-a=0有实根,则4a2-4(2-a)≥0,解得a≥1或a≤-2,即命题Q:a≥1或a≤-2;因为命题“P且Q”是真命题,所以a=1或a≤-2,即实数a的取值范围是a=1或a≤-2.【答案】a≤-2或a=1题型三充分必要条件的判断【题型要点】判断充分、必要条件时应关注三点(1)要弄清先后顺序:“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.(2)要善于举出反例:当从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.(3)要注意转化:綈p是綈q的必要不充分条件⇔p是q的充分不必要条件;綈p是綈q 的充要条件⇔p是q的充要条件.【例7】设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”()A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 若y =f (x )的图象关于原点对称,函数为奇函数,f (-x )=-f (x )对于函数y =|f (x )|,有|f (-x )|=|-f (x )|=|f (x )|,说明y =|f (x )|为偶函数,而函数y =|f (x )|,是偶函数,y =f (x )的图象未必关于原点对称,如y =|x 2|是偶函数,而y =x 2的图象并不关于原点对称,所以“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”成立的必要不充分条件,选B.【答案】 B【例8】.“m ≤-12”是“∀x >0,使得x 2+12x -32>m 是真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 若∀x >0,使得x 2+12x -32>m 是真命题,则m <min23212⎪⎭⎫⎝⎛-+x x ,令f (x )=x 2+12x -32, 则f (x )≥2x 2·12x -32=1-32=-12,故m <-12, 故m ≤-12是“m <-12”的必要不充分条件,故选B.【答案】 B【例9】已知e 是自然对数的底数,函数f (x )=e x -e -x +lg(x +x 2+1),a ,b 都是实数,若p :a +b <0,q :f (a )+f (b )<0,则p 是q 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件【解析】 ∵x 2+1>x 2≥-x ,∴∀x ∈R ,x +x 2+1>0,∴f (x )的定义域为(-∞,+∞),关于原点对称,且f (-x )=e -x -e x +lg(-x +x 2+1)=e -x-e x+lg (-x +x 2+1)(x +x 2+1)x +x 2+1=e -x -e x +lg1x +x 2+1=e -x -e x -lg(x +x 2+1)=-[e x -e -x +lg(x +x 2+1)]=-f (x ),∴f (x )为R 上的奇函数,又f (x )为R 上的增函数, ∴p 是q 的充要条件,故选C. 【答案】 C题组训练三 充分必要条件的判断1.设θ∈R ,则“1212ππθ<-”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】 1212ππθ<-⇔0<θ<π6⇒sin θ<12,但θ=0,sin θ<12,不满足 1212ππθ<-,所以是充分不必要条件,选A.【【答案】 A2.给出下列命题:①已知a ,b ∈R ,“a >1且b >1”是“ab >1”的充分条件; ②已知平面向量a ,b ,“|a |>1,|b |>1”是“|a +b |>1”的必要不充分条件; ③已知a ,b ∈R ,“a 2+b 2≥1”是“|a |+|b |≥1”的充分不必要条件;④命题P :“∃x 0∈R ,使e x 0≥x 0+1且ln x 0≤x 0-1”的否定为綈p :“∀x ∈R ,都有e x <x +1且ln x >x -1”.其中正确命题的个数是( )A .0B .1C .2D .3【解析】 ①已知a ,b ∈R ,“a >1且b >1”能够推出“ab >1”,“ab >1”不能推出“ab >1”,本选项正确;②已知平面向量,a ,b ,“|a |>1,|b |>1”不能推出“|a +b |>1”,本选项不正确;③已知a ,b ∈R ,“a 2+b 2≥1”是“|a |+|b |≥1”的充分不必要条件,正确;④命题P :“∃x 0∈R ,使e x 0≥x 0+1且ln x 0≤x 0-1”的否定为綈p :“∀x ∈R ,都有e x <x +1或ln x >x -1”本选项不正确.正确的个数为2.故选:C【答案】 C3.已知a 、b 都是实数,命题p :a +b =2;命题q :直线x +y =0与圆(x -a )2+(y -b )2=2相切,则p 是q 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件【解析】 由直线x +y =0与圆(x -a )2+(y -b )2=2相切,得|a +b |2=2,即a +b =±2,所以p 是q 的充分但不必要条件.【答案】A题型四 全称特称命题的否定 【题型要点】 全(特)称命题的否定全称命题的否定是将全称量词改为存在量词,并把结论否定;特称命题的否定是将存在量词改为全称量词,并把结论否定.【例10】已知命题:p ∶∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0, C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】 C【例11】.命题“存在x 0>1,x 20+(m -3)x 0+3-m <0”为假命题.则m 的取值范围是________.【解析】 由题意知任意的x >1,x 2+(m -3)x +3-m ≥0为真命题,而由x 2+(m -3)x +3-m ≥0变形得(x -1)2-(x -1)+1+(x -1)m ≥0,由于x -1>0则m ≥-()⎥⎦⎤⎢⎣⎡-+-111x x +1对任意x >1恒成立,而-()⎥⎦⎤⎢⎣⎡-+-111x x +1≤-2(x -1)·1x -1+1=-1,当且仅当x -1=1x -1即x =2时取等号,因此m ≥-1.【答案】 [-1,+∞)题组训练四 全称特称命题的否定1.若命题p ∶∀x ∈⎪⎭⎫⎝⎛-2,2ππ,tan x >sin x ,则命题綈p 为( ) A .∃x 0∈⎪⎭⎫⎝⎛-2,2ππ,tan x 0≥sin x 0 B .∃x 0∈⎪⎭⎫⎝⎛-2,2ππ,tan x 0≥sin x 0 C .∃x 0∈⎪⎭⎫⎝⎛-2,2ππ,tan x 0≤sin x 0 D .∃x 0∈⎪⎭⎫⎝⎛-∞-2,π∪⎪⎭⎫⎝⎛+∞,2π,tan x 0>sin x 0 【解析】 ∀x 的否定为∃x 0,>的否定为≤,所以命题綈p 为∃x 0∈⎪⎭⎫⎝⎛-2,2ππ,tan x 0≤sin x 0. 【答案】 C2.命题“存在x 0>-1,x 20+x 0-2019>0”的否定是________.【解析】特称命题的否定是全称命题,故命题“存在x 0>-1,x 20+x 0-2019>0”的否定是“任意x >-1,x 2+x -2019≤0”.【答案】 “任意x >-1,x 2+x -2019≤0”【专题训练】 一、选择题1.设集合A ={1,2,3,4},B ={3,4,5},全集U =A ∪B ,则集合∁U (A ∩B )的元素个数有( ) A .1个 B .2个 C .3个C .4个【解析】 U =A ∪B ={1,2,3,4,5},A ∩B ={3,4}∴∁U (A ∩B )={1,2,5},即集合∁U (A ∩B )的元素个数有3个,故选C. 【答案】 C2.已知集合A ={x |x 2<1},B ={x |2x >2},则A ∩B =( )A.⎪⎭⎫⎝⎛-21,21 B.⎪⎭⎫ ⎝⎛21,0C.⎪⎭⎫ ⎝⎛1,21D.⎪⎭⎫⎝⎛-1,21 【解析】 因为A ={x |-1<x <1},B ={x |x >12},所以A ∩B =⎭⎬⎫⎩⎨⎧<<121x x ,应选答案C.【答案】 C3.给出下列四个结论:①{0}是空集; ②若a ∈N ,则-a ∉N ;③集合A ={x |x 2-2x +1=0}中有两个元素; ④集合B =⎭⎬⎫⎩⎨⎧∈∈N x Qx 6是有限集. 其中正确结论的个数是( ) A .0 B .1 C .2D .3【解析】 对于①,{0}中含有元素0,不是空集,故①错误;对于②,比如0∈N ,-0∈N ,故②错误;对于③,集合A ={x |x 2-2x +1=0}={1}中有一个元素,故③错误;对于④,当x ∈Q 且6x ∈N 时,6x 可以取无数个值,所以集合B =⎭⎬⎫⎩⎨⎧∈∈N xQ x 6是无限集,故④错误.综上可知,正确结论的个数是0.故选A. 【答案】 A4.已知方程(x 2-6x +b 1)(x 2-6x +b 2)(x 2-6x +b 3)=0的所有解都为自然数,其组成的解集为A ={x 1,x 2,x 3,x 4,x 5},则b 1+b 2+b 3的值不可能为( )A .13B .14C .17D .22【解析】 当b 1,b 2,b 3分别取0,5,9时,A ={0,6,1,5,3},b 1+b 2+b 3=14,排除B ,当b 1,b 2,b 3分别取0,8,9时,A ={0,6,2,4,3},b 1+b 2+b 3=17,排除C ,当b 1,b 2,b 3分别取5,8,9时,A ={1,5,2,4,3},b 1+b 2+b 3=22,排除D ,故选A.【答案】 A5.“x >0,y >0”是“y x +xy ≥2”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 “x >0,y >0”⇔“y x +xy ≥2”,反之不成立,例如取x =y =-1.∴x >0,y >0”是“y x +xy ≥2”的充分而不必要条件.故选A. 【答案】A6.已知数列{a n },{b n }满足b n =a n +a n +1,则“数列{a n }为等差数列”是“数列{b n }为等差数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 若数列{a n }为等差数列,设其公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=a n +2-a n =2d 1,所以数列{b n }是等差数列;若数列{b n }为等差数列,设其公差为d 2,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=a n +2-a n =d 2,不能推出数列{a n }为等差数列,所以“数列{a n }为等差数列”是“数列{b n }为等差数列”的充分不必要条件,故选A.【答案】 A7.已知命题p 1:∀x ∈(0,+∞),有3x >2x ,p 2:∃θ∈R ,sin θ+cos θ=32,则在命题q 1:p 1∨p 2;q 2:p 1∧p 2;q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4【解析】 因为y =x⎪⎭⎫ ⎝⎛23在R 上是增函数,即y =x⎪⎭⎫⎝⎛23>1在(0,+∞)上恒成立,所以p 1是真命题;sin θ+cos θ=2sin ⎪⎭⎫⎝⎛+4πθ≤2,所以命题p 2是假命题,綈p 2是真命题,所以命题q 1:p 1∨p 2,q 4:p 1∧(綈p 2)是真命题,选C.【答案】 C8.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A 、B 为两个同高的几何体,p :A 、B 的体积不相等,q :A 、B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 如果A ,B 在等高处的截面积恒相等,则A ,B 的体积相等,因此有p ⇒q ,但q ⇒p 不一定成立,把两个相同锥体放在一个平面上,再把其中一个锥体翻转底向上,顶点在在原底面所在平面,虽然在等高处的截面积不恒相等,但体积相等,故p 是q 的充分不必要条件.故选A.【答案】 A9.对于下列说法正确的是( ) A .若f (x )是奇函数,则f (x )是单调函数B .命题“若x 2-x -2=0,则x =1”的逆否命题是“若x ≠1,则x 2-x -2=0”C .命题p :∀x ∈R,2x >1024,则綈p :∃x 0∈R ,2x 0<1024D .命题“∃x ∈(-∞,0),2x <x 2”是真命题【解析】 对于A ,若f (x )是奇函数,则f (x )是单调函数,不一定,比如y =1x 不是单调函数,在(-∞,0),(0,+∞)递减,故A 错;对于B ,命题“若x 2-x -2=0,则x =1”的逆否命题是“若x ≠1,则x 2-x -2≠0”,故B 错;对于C ,命题p :∀x ∈R,2x >1024,则綈p :∃x 0∈R,2x 0≤1024,故C 错;对于D ,命题“∃x ∈(-∞,0),2x <x 2”是真命题,正确,比如x =-1,2-1=12<1.故选D.【答案】 D10.给出下列五个结论:①回归直线y ∧=b ∧x +a ∧一定过样本中心点(x ,y );②命题“∀x ∈R ,均有x 2-3x -2>0”的否定是“∃x 0∈R ,使得x 20-3x 0-2≤0”; ③将函数y =3cos x +sin x (x ∈R )的图象向右平移π6后,所得到的图象关于y 轴对称;④∃m ∈R ,使f (x )=(m -1)·xm 2-4m +1是幂函数,且在(0,+∞)上递增;⑤函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ·|log 2x |-1,x >0恰好有三个零点.其中正确的结论为( ) A .①②④ B .①②⑤ C .④⑤D .②③⑤【解析】 由回归分析的方法可知,结论①正确;由全称命题的否定方法可知,结论②正确;y =2cos ⎪⎭⎫⎝⎛-6πx ,将其图象向右移动π6后,得到的函数解析式为y =2cos ⎪⎭⎫ ⎝⎛-3πx ,该函数的图象不关于y 轴对称,结论③不正确;m =2时,函数f (x )=x -1是幂函数,但在(0,+∞)上递减,结论④不正确;x +1=0,解得x =-1,为f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ·|log 2x |-1,x >0的一个零点,令23·|log 2x |-1=0,得|log 2x |=12x =x ⎪⎭⎫ ⎝⎛21,画出函数y =|log 2x |,y =x⎪⎭⎫⎝⎛21的图象可知,方程2x ·|log 2x |-1=0有两个实根,所以已知函数f (x )有三个零点,结论⑤正确.【答案】 B11.已知f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,x 2-1,x >0,则“f (f (a ))=1”是“a =1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 当a =1,则f (a )=f (1)=0,则f (0)=0+1=1,则必要性成立. 若x ≤0,若f (x )=1,则2x +1=1,则x =0, 若x >0,若f (x )=1,则x 2-1=1,则x =2, 即若f (f (a ))=1,则f (a )=0或2,若a >0,则由f (a )=0或2得a 2-1=0或a 2-1=2,即a 2=1或a 2=2+1,解得a =1或a =1+2,若a ≤0,则由f (a )=0或2得2a +1=0或2a +1=2,即a =-12,此时充分性不成立,即“f (f (a ))=1”是“a =1”的必要不充分条件.【答案】 B12.关于函数f (x )=x 2(ln x -a )+a ,给出以下4个结论:①∃a >0,∀x >0,f (x )≥0;②∃a >0,∃x >0,f (x )≤0;③∀a >0,∀x >0,f (x )≥0;④∀a >0,∃x >0,f (x )≤0.其中正确结论的个数是( )A .0B .1C .2D .3【解析】 ①当a =12时,f (x )=x 2⎪⎭⎫ ⎝⎛-21ln x +12,其定义域为(0,+∞).由f ′(x )=2x ln x =0,得x =1.当x >1时,f ′(x )>0,f (x )单调递增; 当0<x <1时,f ′(x )<0,f (x )单调递减;∴当x =1时,函数f (x )取得极小值,同时也是最小值f (1)=-12+12=0.∴对∀x >0,f (x )≥f (1)=0,故①正确.②当a =5时,f (x )=x 2(ln x -5)+5,f (e)=e 2(ln e -5)+5=-4e 2+5<0,故②∃a >0,∃x >0,f (x )≤0成立.③由②知,当a =5时,∃x =e ,满足e >0,但f (e)<0,故③∀a >0,∀x >0,f (x )≥0不成立,③错误.④f ′(x )=2x ⎪⎭⎫ ⎝⎛-+a x 21ln ,由f ′(x )=0, 即ln x +12-a =0,得ln x =a -12.∴∀a >0,函数f (x )都存在极值点,即∃x >0,f (x )≤0成立,故④正确,综上①②④正确,故选D.【答案】 D 二、填空题13.已知命题p ∶m ∈R ,且m +1≤0;命题q ∶∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题,则m 的取值范围是__________.【解析】 当命题p 为真命题时,m ≤-1,当命题q 为真命题时,m 2-4<0,-2<m <2,p ∧q 为假命题的否定是p ∧q 为真命题,则p ,q 都为真命题,所以有⎩⎪⎨⎪⎧m ≤-1,-2<m <2,解得-2<m ≤-1,故当若p ∧q 为假命题时,m 的范围是(-∞,-2]∪(-1,+∞).【答案】 (-∞,-2]∪(-1,+∞)14.设有两个命题,p :关于x 的不等式a x >1(a >0,且a ≠1)的解集是{x |x <0};q :函数y =lg(ax 2-x +a )的定义域为R .如果p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围是________.【解析】 p :关于x 的不等式a x >1(a >0,且a ≠1)的解集是{x |x <0},则0<a <1;q :函数y =lg(ax 2-x +a )的定义域为R ,a =0时不成立,a ≠0时,则⎩⎪⎨⎪⎧a >0Δ=1-4a 2<0,解得0<a <12.如果p ∨q 为真命题,p ∧q 为假命题,则命题p 与q 必然一真一假. ∴⎩⎪⎨⎪⎧ 0<a <1a ≤0或a ≥12,或⎩⎪⎨⎪⎧a ≤0或a ≥10<a <12,解得12≤a <1, 则实数a 的取值范围是12≤a <1.【答案】 12≤a <115.将集合M ={1,2,3,...,15}表示为它的5个三元子集(三元集:含三个元素的集合)的并集,并且这些三元子集的元素之和都相等,则每个三元集的元素之和为________;请写出满足上述条件的集合M 的5个三元子集__________(只写出一组)【解析】 因为5个三元子集(三元集:含三个元素的集合)的并集为集合M ={1,2,3,...,15},所以元素总和为:15×(1+15)2=120,又因为这5个三元子集的元素之和都相等,所以每个集合的元素和为1205=24.满足上述条件的集合M 的5个三元子集可以是:{1,8,15},{3,7,14},{5,6,13},{2,10,12},{4,9,11}(答案不唯一).【答案】 24 {1,8,15},{3,7,14},{5,6,13},{2,10,12},{4,9,11}(答案不唯一)。

2022年新高考数学总复习:集合中的新定义问题

2022年新高考数学总复习:集合中的新定义问题

2022
年新高考数学总复习:集合中的新定义问题
例定义集合的商集运算为A
B
=|x=
m
n,m∈A,n∈
,已知集合A={2,4,6},
B
|x=k
2-1,k∈
B中的元素个数为(B)
A.6B.7
C.8D.9
[解析]由题意知,B={0,1,2},B
A

,1
6,
1
4,
1
3,
1
2,

则∪B

,1
6,
1
4,
1
3,
1
2,1,
7个元素.
名师点拨
集合新定义问题的“3定”
(1)定元素:确定已知集合中所含的元素,利用列举法写出所有元素.
(2)定运算:根据要求及新定义运算,将所求解集合的运算问题转化为集合的交集、并集与补集的基本运算问题,或转化为数的有关运算问题.
(3)定结果:根据定义的运算进行求解,利用列举法或描述法写出所求集合中的所有元素.
〔变式训练3〕
(2021·江西九江联)设A,B是非空集合,定义A⊗B={x|x∈(A∪B)且x∉(A∩B)}.已知M ={y|y=-x2+2x,0<x<2},N={y|y=2x-1,x>0},则M⊗N=
[解析]M={y|y=-x2+2x,0<x<2}=(0,1],N={y|y
=2x-1,x>0}
M∪N =
(0,+∞),M∩N
1
,所以M⊗N
,1
2∪(1,+∞).
第1页共1页。

高一数学学习集合要注意哪些

高一数学学习集合要注意哪些

高一数学学习集合要注意哪些集合是近代数学中的一个重要概念,它不仅与高中数学的许多内容有着紧密的联系,而且已经渗透到自然科学的众多领域,应用十分广泛。

下面给大家分享一些关于高一数学学习集合要注意哪些,希望对大家有所帮助。

一、准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题概念抽象、符号术语多是集合单元的一个显著特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。

这些概念、关系和表示方法,都可以作为求解集合问题的依据、出发点甚至是突破口。

因此,要想学好集合的内容,就必须在准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题上下功夫。

二、注意弄清集合元素的性质,学会运用元素分析法审视集合的有关问题众所周知,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素。

集合中的元素具有“三性”:(1)、确定性:集合中的元素应该是确定的,不能模棱两可。

(2)、互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个。

(3)、无序性:集合中的元素是无次序关系的。

集合的关系、集合的运算等等都是从元素的角度予以定义的。

因此,求解集合问题时,抓住元素的特征进行分析,就相当于牵牛抓住了牛鼻子。

三、体会集合问题中蕴含的数学思想方法,掌握解决集合问题的基本规律布鲁纳说过,掌握数学思想可使得数学更容易理解和记忆,领会数学思想是通向迁移大道的“光明之路” 。

集合单元中,含有丰富的数学思想内容,例如数形结合的思想、分类讨论的思想、等价转化的思想、正难则反的思想等等,显得十分活跃。

在学习过程中,注意对这些数学思想进行挖掘、提炼和渗透,不仅可以有效地掌握集合的知识,驾驭集合问题的求解,而且对于开发智力、培养能力、优化思维品质,都具有十分重要的意义。

四、重视空集的特殊性,防止由于忽视空集这一特殊情况导致的解题失误空集是一个十分重要的特殊集合,它具备“空集虽空,但空有所为”的功能。

23年高考数学《集合》知识点复习及考情分析

23年高考数学《集合》知识点复习及考情分析

23年高考数学《集合》知识点复习及考情分析全国卷五年考情图解高考命题规律把握说明:“Ⅰ1”指全国卷Ⅰ第1题,“Ⅱ1”指全国卷Ⅱ第1题,“Ⅲ1”指全国卷Ⅲ第1题.1.考查形式本章在高考中一般考查1或2个小题,主要以选择题为主,很少以填空题的形式出现.2.考查内容从考查内容来看,集合主要考查集合的运算,包含集合的交、并、补集运算;常用逻辑用语主要考查充分必要条件的判断、逻辑联结词“或”“且”“非”以及全称量词与存在量词.3.备考策略(1)熟练掌握解决以下问题的方法和规律①集合的交、并、补集运算问题;②充分条件、必要条件的判断问题;③含有“或”“且”“非”的命题的真假性的判断问题;④含有一个量词的命题的否定问题.(2)重视数形结合、分类讨论、转化与化归思想的应用.第一节集合[最新考纲]1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表达集合间的基本关系及集合的基本运算.1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈和∉表示.(3)集合的表示方法:列举法、描述法、Venn图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R 2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B或(B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B或B A集合相等集合A,B中的元素相同或集合A,B互为子集A=B3.集合的基本运算运算自然语言符号语言Venn图交集由属于集合A且属于集合B的所有元素组成的集合A∩B={x|x∈A且x∈B}并集由所有属于集合A或属于集合B的元素组成的集合A∪B={x|x∈A或x∈B}补集由全集U中不属于集合A的所有元素组成的集合∁U A={x|x∈U且x∉A}[常用结论]1.集合子集的个数对于有限集合A,其元素个数为n,则集合A的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.2.集合的运算性质(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;∁U(A∩B)=(∁UA)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B).一、思考辨析(正确的打“√”,错误的打“×”)(1)任何一个集合都至少有两个子集.()(2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.()(3)若{x2,1}={0,1},则x=0,1.()(4)直线y=x+3与y=-2x+6的交点组成的集合是{1,4}.()[答案] (1)×(2)×(3)×(4)×二、教材改编1.若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( ) A .{a }⊆A B .a ⊆A C .{a }∈AD .a ∉AD [由题意知A ={0,1,2},由a =2,知a ∉A .]2.已知集合M ={0,1,2,3,4},N ={1,3,5},则集合M ∪N 的子集的个数为________.64 [∵M ={0,1,2,3,4},N ={1,3,5}, ∴M ∪N ={0,1,2,3,4,5}, ∴M ∪N 的子集有26=64个.]3.已知U ={α|0°<α<180°},A ={x |x 是锐角},B ={x |x 是钝角},则∁U (A ∪B )=________.[答案] {x |x 是直角}4.方程组⎩⎨⎧x +y =1,2x -y =1的解集为________.⎩⎨⎧⎭⎬⎫23,13 [由⎩⎪⎨⎪⎧x +y =1,2x -y =1,得⎩⎪⎨⎪⎧x =23,y =13,故方程组的解集为⎩⎨⎧⎭⎬⎫23,13.]5.已知集合A ={x |-2<x <3},集合B ={x |x -1<0},则A ∩B =________,A ∪B =________.(-2,1) (-∞,3) [∵A ={x |-2<x <3},B ={x |x -1<0}={x |x <1}, ∴A ∩B ={x |-2<x <1},A ∪B ={x |x <3}.]考点1 集合的概念与集合中的元素有关的问题的求解思路 (1)确定集合的元素是什么,即集合是数集还是点集.(2)看清元素的限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数.1.已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4A [由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为9,故选A .]2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. -32 [由题意得m +2=3或2m 2+m =3, 则m =1或m =-32.当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,符合题意,故m =-32.] 3.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =________. 0或98 [当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.] 4.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 020+b 2 020=________.1 [由已知得a ≠0,则ba =0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 020+b 2 020=(-1)2 020+02 020=1.](1)求解此类问题时,要特别注意集合中元素的互异性,如T 2,T 4.(2)常用分类讨论的思想方法求解集合问题,如T 3.考点2 集合的基本关系判断两集合关系的方法(1)列举法:用列举法表示集合,再从元素中寻求关系.(2)化简集合法:用描述法表示的集合,若代表元素的表达式比较复杂,往往需化简表达式,再寻求两个集合的关系.(1)(2019·唐山模拟)设集合M ={x |x 2-x >0},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x <1,则( )A .MNB .N MC .M =ND .M ∪N =R(2)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(3)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.(1)C (2)D (3)(-∞,3] [(1)集合M ={x |x 2-x >0}={x |x >1或x <0},N=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x <1={x |x >1或x <0},所以M =N .故答案为C .(2)因为A ={1,2},B ={1,2,3,4},A ⊆C ⊆B ,则集合C 可以为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个.(3)因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为(-∞,3].] [母题探究]1.(变问法)本例(3)中,若B A ,求m 的取值范围. [解] 因为BA ,①若B =∅,成立,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,且边界点不能同时取得,解得2≤m ≤3.综合①②,m 的取值范围为(-∞,3].2.(变问法)本例(3)中,若A ⊆B ,求m 的取值范围.[解] 若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3.所以m 的取值范围为∅.3.(变条件)若将本例(3)中的集合A 改为A ={x |x <-2或x >5},试求m 的取值范围.[解] 因为B ⊆A ,所以①当B =∅时,2m -1<m +1,即m <2,符合题意. ②当B ≠∅时,⎩⎪⎨⎪⎧ m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎨⎧m ≥2,m <-12,即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞).(1)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.(2)空集是任何集合的子集,当题目条件中有B⊆A时,应分B=∅和B≠∅两种情况讨论.1.设M为非空的数集,M⊆{1,2,3},且M中至少含有一个奇数元素,则这样的集合M共有()A.6个B.5个C.4个D.3个A[由题意知,M={1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.] 2.若集合A={1,2},B={x|x2+mx+1=0,x∈R},且B⊆A,则实数m的取值范围为________.[-2,2)[①若B=∅,则Δ=m2-4<0,解得-2<m<2,符合题意;②若1∈B,则12+m+1=0,解得m=-2,此时B={1},符合题意;③若2∈B,则22+2m+1=0,解得m=-52,此时B=⎩⎨⎧⎭⎬⎫2,12,不合题意.综上所述,实数m的取值范围为[-2,2).]考点3集合的基本运算集合运算三步骤集合的运算(1)(2019·全国卷Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7} D.{1,6,7}(2)(2019·全国卷Ⅱ)已知集合A={x|x>-1},B={x|x<2},则A∩B=()A.(-1,+∞) B.(-∞,2)C.(-1,2) D.∅(3)(2019·全国卷Ⅲ)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()A.{-1,0,1} B.{0,1}C.{-1,1} D.{0,1,2}(1)C(2)C(3)A[(1)由题意知∁U A={1,6,7},又B={2,3,6,7},∴B∩∁U A ={6,7},故选C.(2)∵A={x|x>-1},B={x|x<2},∴A∩B={x|-1<x<2},即A∩B=(-1,2).故选C.(3)由题意可知B={x|-1≤x≤1},又∵A={-1,0,1,2},∴A∩B={-1,0,1},故选A.][逆向问题]已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A=()A.{1,3}B.{3,7,9}C.{3,5,9} D.{3,9}D[法一:(直接法)因为A∩B={3},所以3∈A,又(∁U B)∩A={9},所以9∈A.若5∈A,则5∉B(否则5∈A∩B),从而5∈∁U B,则(∁U B)∩A={5,9},与题中条件矛盾,故5∉A.同理,1∉A,7∉A,故A={3,9}.法二:(Venn图)如图所示.]集合运算的常用方法(1)若集合中的元素是离散的,常用Venn图求解.(2)若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.利用集合的运算求参数(1)已知集合M={x|0<x<5},N={x|m<x<6},若M∩N={x|3<x <n},则m+n等于()A.9B.8C.7D.6(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0 B.1 C.2 D.4(1)B(2)D[(1)因为M∩N={x|0<x<5}∩{x|m<x<6}={x|3<x<n},所以m=3,n=5,因此m+n=8.故选B.(2)根据并集的概念,可知{a,a2}={4,16},故只能是a=4.]利用集合的运算求参数的值或取值范围的方法(1)若集合中的元素能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.(2)与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到.提醒:在求出参数后,注意结果的验证(满足互异性).[教师备选例题]1.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A B 中元素的个数为()A.77B.49C.45D.30C[如图,集合A表示如图所示的所有圆点“”,集合B表示如图所示的11所有圆点“”+所有圆点“”,集合A B 显然是集合{(x ,y )||x |≤3,|y |≤3,x ,y ∈Z }中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),则集合A B 表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故AB 中元素的个数为45.故选C .]2.设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,34B .⎣⎢⎡⎭⎪⎫34,43C .⎣⎢⎡⎭⎪⎫34,+∞D .(1,+∞)B [A ={x |x 2+2x -3>0}={x |x >1或x <-3},设函数f (x )=x 2-2ax -1,因为函数f (x )=x 2-2ax -1图像的对称轴为直线x =a (a >0),f (0)=-1<0,根据对称性可知若A ∩B 中恰有一个整数,则这个整数为2,所以有⎩⎪⎨⎪⎧ f (2)≤0,f (3)>0,即⎩⎪⎨⎪⎧ 4-4a -1≤0,9-6a -1>0,所以⎩⎪⎨⎪⎧ a ≥34,a <43,即34≤a <43.故选B .]1.(2019·许昌、洛阳三模)已知集合A ={x |y =-x 2+1},B =(0,1),则A ∩B =( )A .(0,1)B .(0,1]C.(-1,1) D.[-1,1]A[由题意得A=[-1,1],又B=(0,1),∴A∩B=(0,1).故选A.]2.(2019·合肥巢湖一模)已知集合A={x|x<3},B={x|x>a},若A∩B≠∅,则实数a的取值范围为()A.[3,+∞) B.(3,+∞)C.(-∞,3) D.(-∞,3]C[因为A∩B≠∅,所以结合数轴(图略)可知实数a的取值范围是a<3,故选C.]3.(2019·安徽宣城八校联考期末)如图,设全集U=N,集合A={1,3,5,7,8},B={1,2,3,4,5},则图中阴影部分表示的集合为()A.{2,4} B.{7,8}C.{1,3,5} D.{1,2,3,4,5}A[由题图可知阴影部分表示的集合为(∁U A)∩B,因为集合A={1,3,5,7,8},B={1,2,3,4,5},U=N,所以(∁U A)∩B={2,4}.故选A.]4.已知A={1,2,3,4},B={a+1,2a}.若A∩B={4},则a=________.3[因为A∩B={4},所以a+1=4或2a=4.若a+1=4,则a=3,此时B={4,6},符合题意;若2a=4,则a=2,此时B={3,4},不符合题意.综上,a=3.]12。

高考数学专题复习 对集合的理解及集合思想应用的问题 试题

高考数学专题复习 对集合的理解及集合思想应用的问题 试题

卜人入州八九几市潮王学校高考数学专题复习对集合的理解及集合思想应用的问题高考要求集合是高中数学的根本知识,为历年必考内容之一,主要考察对集合根本概念的认识和理解,以及作为工具,考察集合语言和集合思想的运用本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用重难点归纳1解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描绘法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题2注意空集∅的特殊性,在解题中,假设未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,那么有A =∅或者A≠∅两种可能,此时应分类讨论典型题例示范讲解例1设A ={(x ,y )|y 2-x -1=0},B ={(x ,y )|4x 2+2x -2y +5=0},C ={(x ,y )|y =kx +b },是否存在k 、b ∈N ,使得(A ∪B )∩C =∅,证明此结论此题主要考察考生对集合及其符号的分析转化才能,即能从集合符号上分辨出所考察的知识点,进而解决问题知识依托解决此题的闪光点是将条件(A ∪B )∩C =∅转化为A ∩C =∅且B ∩C =∅,这样难度就降低了错解分析此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其本质内涵,因此可能感觉无从下手技巧与方法由集合A 与集合B 中的方程联立构成方程组,用判别式对根的情况进展限制,可得到b 、k 的范围,又因b 、k ∈N ,进而可得值解∵(A ∪B )∩C =∅,∴A ∩C =∅且B ∩C =∅∵⎩⎨⎧+=+=bkx y x y 12∴k 2x 2+(2bk -1)x +b 2-1=0 ∵A ∩C =∅∴Δ1=(2bk -1)2-4k 2(b 2-1)<0∴4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1①∵⎩⎨⎧+==+-+b kx y y x x 052242∴4x 2+(2-2k )x +(5+2b )=0∵B ∩C =∅,∴Δ2=(1-k )2-4(5-2b )<0∴k 2-2k +8b -19<0,从而8b <20,即b <25②由①②及b ∈N ,得b =2代入由Δ1<0和Δ2<0组成的不等式组,得 ∴k =1,故存在自然数k =1,b =2,使得(A ∪B )∩C =∅例2向50名学生调查对A 、B 两事件的态度,有如下结果赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人问对A 、B 都赞成的学生和都不赞成的学生各有多少人?在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生实在掌握此题主要强化学生的这种才能知识依托解答此题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来错解分析此题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索技巧与方法画出韦恩图,形象地表示出各数量关系间的联络解赞成A 的人数为50×53=30,赞成B 的人数为30+3=33,如上图,记50名学生组成的集合为U ,赞成事件A 的学生全体为集合A ;赞成事件B 的学生全体为集合BB 都不赞成的学生人数为3x+1,赞设对事件A 、B 都赞成的学生人数为x ,那么对A 、成A 而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x依题意(30-x )+(33-x )+x +(3x+1)=50,解得x =21 所以对A 、B 都赞成的同学有21人,都不赞成的有8人例3集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,且0≤x ≤2},假设A ∩B ≠∅,务实数m 的取值范围解由⎩⎨⎧≤≤=+-=+-+)20(01022x y x y mx x 得x 2+(m -1)x +1=0①∵A ∩B ≠∅∴方程①在区间[0,2]上至少有一个实数解首先,由Δ=(m -1)2-4≥0,得m ≥3或者m ≤-1,当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1>0知,方程①只有负根,不符合要求当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,方程①只有正根,且必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内故所求m 的取值范围是m ≤-1学生稳固练习1集合M ={x |x =42π+kx ,k ∈Z },N ={x |x =42k ππ+,k ∈Z },那么() A M =NB M NC M ND M ∩N =∅2集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,假设A ∪B =A ,那么()A -3≤m ≤4B -3<m <4C 2<m <4D 2<m ≤43集合A ={x ∈R |a x 2-3x +2=0,a ∈R },假设A 中元素至多有1个,那么a 的取值范围是_________4x 、y ∈R ,A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|bya x -=1,a >0,b >0},当A ∩B 只有一个元素时,a ,b 的关系式是_________ 5集合A ={x |x 2-ax +a 2-19=0},B ={x |log 2(x 2-5x +8)=1},C ={x |x 2+2x -8=0},求当a 取什么实数时,A ∩B∅和A ∩C =∅同时成立6{a n }是等差数列,d 为公差且不为0,a 1和d 均为实数,它的前n 项和记作S n ,设集合A ={(a n ,nS n )|n ∈N *},B ={(x ,y )|41x2-y 2=1,x ,y ∈R }试问以下结论是否正确,假设正确,请给予证明;假设不正确,请举例说明(1)假设以集合A 中的元素作为点的坐标,那么这些点都在同一条直线上; (2)A ∩B 至多有一个元素; (3)当a 1≠0时,一定有A ∩B ≠∅7集合A ={z ||z -2|≤2,z ∈C },集合B ={w |w =21zi +b ,b ∈R },当A ∩B =B 时,求b 的值 8设f (x )=x 2+px +q ,A ={x |x =f (x )},B ={x |f [f (x )]=x }(1)求证A ⊆B ;(2)假设A ={-1,3},求B参考答案1解析对M 将k 分成两类k =2n 或者k =2n +1(n ∈Z ),M ={x |x =n π+4π,n ∈Z }∪{x |x =n π+43π,n ∈Z },对N 将k 分成四类,k =4n 或者k =4n +1,k =4n +2,k =4n +3(n ∈Z ),N ={x |x =n π+2π,n ∈Z }∪{x |x =n π+43π,n ∈Z }∪{x |x =n π+π,n ∈Z }∪{x |x =n π+45π,n ∈Z }答案C2解析∵A ∪B =A ,∴B ⊆A,又B ≠∅,∴⎪⎩⎪⎨⎧-<+≤--≥+12171221m m m m 即2<m ≤4 答案D3a =0或者a ≥89 4解析由A ∩B 只有1个交点知,圆x 2+y 2=1与直线b y a x -=1相切,那么1=22b a ab +,即ab =22b a + 答案ab =22b a +5解log 2(x 2-5x +8)=1,由此得x 2-5x +8=2,∴B ={2,3}由x 2+2x -8=0,∴C ={2,-4},又A ∩C =∅,∴2和-4都不是关于x 的方程x 2-ax +a 2-19=0的解,而A ∩B∅,即A ∩B ≠∅,∴3是关于x 的方程x 2-ax +a 2-19=0的解,∴可得a =5或者a =-2当a =5时,得A ={2,3},∴A ∩C ={2},这与A ∩C =∅不符合,所以a =5(舍去);当a =-2时,可以求得A ={3,-5},符合A ∩C =∅,A ∩B∅,∴a =-26解(1)正确在等差数列{a n }中,S n =2)(1n a a n +,那么21=n S n (a 1+a n ),这说明点(a n ,nS n 〕的坐标适宜方程y 21=(x +a 1),于是点(a n ,nS n )均在直线y =21x +21a 1上(2)正确设(x ,y )∈A ∩B ,那么(x ,y )中的坐标x ,y 应是方程组⎪⎪⎩⎪⎪⎨⎧=-+=1412121221y x a x y 的解,由方程组消去y 得2a 1x +a 12=-4(*),当a 1=0时,方程(*)无解,此时A ∩B =∅;当a 1≠0时,方程(*)只有一个解x =12124a a --,此时,方程组也只有一解⎪⎪⎩⎪⎪⎨⎧-=--=1211214424a a y a a y ,故上述方程组至多有一解 ∴A ∩B 至多有一个元素(3〕不正确取a 1=1,d =1,对一切的x ∈N *,有a n =a 1+(n -1)d =n >0,nS n>0,这时集合A 中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a 1=1≠0假设A ∩B ≠∅,那么据(2〕的结论,A ∩B 中至多有一个元素(x 0,y 0〕,而x 0=5224121-=--a a <0,y 0=43201=+x a <0,这样的(x 0,y 0〕∉A ,产生矛盾,故a 1=1,d =1时A ∩B =∅,所以a 1≠0时,一定有A ∩B ≠∅是不正确的7解由w =21zi +b 得z =ib w 22-, ∵z ∈A ,∴|z -2|≤2,代入得|ibw 22--2|≤2,化简得|w -(b +i )|≤1 ∴集合A 、B 在复平面内对应的点的集合是两个圆面,集合A 表示以点(2,0〕为圆心,半径为2的圆面,集合B 表示以点(b ,1)为圆心,半径为1的圆面又A ∩B =B ,即B ⊆A ,∴两圆内含因此22)01()2(-+-b ≤2-1,即(b -2)2≤0,∴b =28(1)证明设x 0是集合A 中的任一元素,即有x 0∈A∵A ={x |x =f (x )},∴x 0=f (x 0)即有f [f (x 0)]=f (x 0)=x 0,∴x 0∈B ,故A ⊆B(2)证明∵A ={-1,3}={x |x 2+px +q =x },∴方程x 2+(p -1)x +q =0有两根-1和3,应用韦达定理,得∴f (x )=x 2-x -3于是集合B 的元素是方程f [f (x )]=x , 也即(x 2-x -3)2-(x 2-x -3)-3=x (*)的根将方程(*)变形,得(x 2-x -3)2-x 2=0解得x =1,3,3,-3故B ={-3,-1,3,3}课前后备注。

高考第一轮复习集合与常用逻辑用语

高考第一轮复习集合与常用逻辑用语

年级高三学科数学版本通用版课程标题高考第一轮复习——集合与常用逻辑用语编稿老师孙丕训一校林卉二校黄楠审核王百玲一、考点突破考纲解读:1. 集合的概念、集合间的关系及运算是高考重点考查的内容,正确理解概念是解决此类问题的关键。

2.对命题及充要条件这部分内容,重点关注两个方面内容:一是命题的四种形式及原命题与逆否命题的等价;二是充要条件的判定。

这些内容大多是以其他数学知识为载体,具有较强的综合性。

3. 常用逻辑用语高考以考查四种命题、逻辑联结词和全称命题、特称命题的否定为主。

命题预测:1. 根据考试大纲的要求,结合近几年高考的命题情况,可以预测集合这部分内容在选择、填空和解答题中都有可能涉及.高考命题热点有以下两个方面:一是对集合的运算、集合的有关陈述语和符号、集合的简单应用等作基础性的考查,题型常以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现. 2. 作为高中数学的基础知识,命题、量词与逻辑联结词、四种命题及充要条件是每年高考的必考内容,题量一般为1~2道,多以选择题或填空题的形式出现,难度不大,重点考查命题真假的判断,全称命题与特称命题的否定, 与函数、直线与平面、圆锥曲线等知识联系很紧密,要求考生理解命题的四种形式、充分条件、必要条件、充要条件的意义,能够判断给定的两个命题的逻辑关系.题目内容和思想方法涉及或渗透到高中数学的各个章节,有一定的综合性.二、重难点提示重点:理解集合的表示,能准确进行集合间的交、并、补的运算;正确地对含有一个量词的命题进行否定。

难点:集合的表示及充分必要条件的判定。

一、知识脉络图二、知识点拨1. 集合与元素(1)集合元素具有三个特征:、、。

(2)元素与集合的关系是属于或不属于的关系,用符号∈或∉表示。

(3)集合的表示法:、、、。

(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R;复数集C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为 空集 时仍 满足 A = . nR
集 合元素 的“ 三性 ” 指确定 性 、 异性 、 序性 , 互 无 它们 是 集合 最 基本 的特征 。要 注 意弄清它 们 的含义 , 才能在 解题 时正确 应用 。 例 J 已知集 合 M ={ , d a+ d , ={ ,q a t且 : a a+ , 2 tN aa ,q ,

错解 : , C, A={ , 所 以 MNN
< 为实 数集 R, 显然 不对 , 实 U={ 其
故 : C , 7 < 0 r A={ ≤ 1}
{ }注意 { }不 是 空 集 , , , 而是 含 有 一 个 空 集 为 元 素 的集 6 注意 数学思 想方 法的渗 透 集 合 问题多 与 函数 、 方程 、 不等 式 、 析 几 何 有关 , 中蕴 藏 解 其
合. 以正 确答案 应为 ( ) 所 B.
以 AnB=t l≥0 . YY } 5 注意 求补集 的前提— —全 集 在求 补集 时 , 能忽略 全集 , 不 因为 同一 个 集合 在 不 同全 集 中 ,
例 2设 nB= , ={ m为 A的子集 }N={ f : M mf , nn为 口的
子集 } 那 么 ( ) , 。 ( ) n N = A 、 ( 、 n N = { } ( ) n N =An B 曰) c 、
故要 分两种 情况 讨论 。
综合 ( ) ( ) a的取值 范 围是 a 、2 得 >一 4
4 要注 意分 清集合 代表 元素
解: 由集合元 素 的互异性 及 M = 得 : N,

。 { : :

根据元 素 的确定 性 , 合 中 的元 素都 有 确 定 的 含 义. 于用 集 对 描述法 给定 的集合 , 弄清 楚 它 的代 表 元 素 有何 属 性 ( 要 如表 示 数 集 , 集等 ) 这是集 合 问题 中解 题 的关 键. 点 ,
【 摘要】 集合是高中数学的基本 知识 , 为历年必考 内容之一 , 主要考查对集 合基本概 念的认识 和理解 , 以及作 为工具 , 考
查集合语言和集 合思想 的运用 。
【 关键词】 高考 ; 集合复习 ; 问题 【 中图号】 G 3 62 【 文献标 示码 】 A 【 文章 编号】 10 17 (0 8 1 — 3 1 0 05— 04 2 0 ) 1 0 0 — 1

正解 :J 当 A= 时 , () 由前面错解 得 。 . ≥D () A= 时 , 2当 即一元 二 次 方程 +( + ) + = a 2 0
中的 △ =( a+2 0—4< 由此解得 一4<a<0 ) 0,
N, q的值 。 求
分析 : 集合 M = 说 明 、 中元 素相 同 , 顺 序可 以不 同 , N, Ⅳ 但
2, x ∈R}求 nB , 。
由( ) J 消去 d 得 a q J = , (— ) 0

由() 2 消去 d 得 a2 一 — ) 0 , (q g J =

例 4 设 集合 A={l = + x J ∈R }B={l = 一 yy 2 + , , yy
由N中元素的互异性知 n ≠D故①式不成立 , 由②式得 q — =一 }。
△ =( 。+2) 4≥D 一
本 章 内容 概念性 强 , 题 大都 为 容 易 的选 择 题 , 考 因此 复 习 中
应注意 : 1 注 意集合 元素 的“ 三性 ”

J +2 =一( + ) , 0 2 ≤0解得 n 0 1 >
【 : > JD 』
分 析 : 解 只注意到 A为非 空 集 合 , 错 丢掉 了 A: 时 的情 况 , A 当
( 、 D) MANqAAB  ̄
补集 的不 相 同的. 例 5 全集 U是 函数 Y=, : / 7 Y一 的定 义 域 , { ≥1 t求 A= I 0 ,
Cv A
错解 : 因为 AnB= , 以集 合 、 所 Ⅳ中不 可 能有公 共 元 素 ,
因而 MAN= , 选 ( ) 故 A 。 分析 : 由于 、 的子集 中均有 , 即
跨 世纪
20 08年 1 1月 第 1 6卷第 1 期 1
CosC nuy N vmbr 0 8 V l1 ,N . 1 rs etr, oe e 2 0 , o 6 o 1
・0 3 1・
高考集合复 习应注意 的问题
梁存 富 李 明宏 ( 吴起 高级 中学 , 陕西 , 延安 ,160 7 70 )
2 要注 意空集 的 两重性
空集 具有 元 素 的性 质 , 也有 集 合 的属 性 , 以空 集 有两 所 重性. 如果从 “ 集是 任何 集 合 的子 集 ” 一角 度 考 虑 , 以得 出 空 这 可 { }如果再 从另一 角度 分析 , 是集 合 { } ; 中的一 个元 素 , 又可得 出 ∈{ t如果 将 { } 成 非空 集 合 , 又可 得 出 ; 看 则 t } 由此 可知 , 素 与集合 是相辅 相成 的两 个概 念 , . 元 在一 定条 件
下可 以互 相 转化 . 一 点在 解 题 时必 须 注意 , 则会 造 成 概念 上 这 否 的错误 。


错: 程 解 方组 解
). t
解方程组 y x + x = 2
j 9 A _一 { A ( r一 { 4 = N B

分析: 上述 解法 错把 A B看 成平 面点集 . 、 事实 上 , 合 A B均 集 、 为一元 二次 函数 的值域 , 有 A={ I >0 , 即 Y Y }B={ I ≥ 一J , 1 YY }所
相关文档
最新文档