浙师大 机电实验报告 实验1 三相异步电动机的点动控制

合集下载

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告图2-5 按钮联锁的正反转控制线路按图2-5接线,实验操作步骤如下:(1) 按控制屏启动按钮,接通三相交流电源;(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转;(3) 按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转。

实验完毕,按控制屏停止按钮,切断实验线路电源。

实验现象:按正向启动按钮SB1,电机正转,接触器KM1工作,按下SB3电机停止运行;按反向启动按钮SB2,电机反转,接触器KM2X作,按下SB3电机停止运行;2. 接触器和按钮双重联锁的正反转控制线路按图2-6接线,经检查无误后,方可进行通电操作。

实验操作步骤如下:图2-6 接触器和按钮双重联锁的正反转控制线路(1)按控制屏启动按钮,接通三相交流电源。

(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转。

(3)按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转。

(4)按正向(或反向)起动按钮,电动机起动后,再去按反向(或正向)起动按钮,观察有何情况发生?(5)电动机停稳后,同时按正、反向两只起动按钮,观察有何情况发生?(6)失压与欠压保护按起动按钮SB1 (或SB2)电动机起动后,按控制屏停止按钮,断开实验线路三相电源,模拟电动机失压(或零压)状态,观察电动机与接触器的动作情况,随后,再按控制屏上启动按钮,接通三相电源,但不按SB1(或SB2),观察电动机能否自行起动?实验完毕,按控制屏停止按钮,切断实验线路电源。

实验现象:按下SB1,电机正向旋转,KM1正常工作,按下SB3电机停止运行。

按下SB2,电机反向旋转,KM2正常工作,按下SB3电机停止运行。

三相异步电动机的点动控制实验

三相异步电动机的点动控制实验
三相异步电动机的点动控制实验
三相异步电动机的点动控制实验1、实验目的⑴熟悉三相异步电动机的结构和铭牌数据。⑵熟悉电动机常用控制电器的结构与动作原理。⑶学会三相异步电动机的点动控制的接线和操作方法。2、预习内容及要求⑴兆欧表的使用当需测量高值电阻或绝缘电阻(100KΩ~500KΩ或>0.5MΩ)时,一般用兆欧表进行测量。如检测线路、电机绕组、电缆和变压器等电气设备的绝缘电阻时,应采用兆欧表进行。⑵电动机绕组绝缘电阻的测定电动机在安装或投入运行前,应对其绕组进行绝缘电阻的检测,其测量项目包括各绕组的相间绝缘电阻和各绕组对外壳(地)的绝缘电阻。一般情况下,其绝缘电阻应大于0.5兆欧以上,具体测试方法步骤参见“三相异步电动机实验”。⑶三相异步电动机的点动控制线路及电路的组成点动正转控制线路是用按钮、接触器来控制电动机运转的较简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。⑷三相异步电动机的点动控制的控制原理当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。 3、实验器材 代号 名称 型号 规格 数量M三相异步电动机Y-112M-44KW、380V、Δ接法1QS组合开关HZ10-25-3三极额定电流25安1FU1螺旋式熔断器RL1-60/25500V、60安配熔体额定电流25安3FU2螺旋式熔断器RL1-15/2500V、15安配熔体额定电流2安2KM交流接触器CJ10-2020安、线圈电压380V1SB按钮LA10-3H保护式、按钮数31XT端子排JX2-101510安、15节1木板(控制板)650×500×50毫米1万用表14、实验操作步骤⑴实验准备工作①电器的结构及动作原理在连接控制实验线路前,应熟悉按钮开关、交流接触器的结构形式、动作原理及接线方式和方法。②记录实验设备参数将所使用的主要实验电器的型号规格及额定参数记录下来,并理解和体会各参数的实际意义。③电动机的外观检查实验接线前应先检查电动机的外观有无异常。如条件许可,可用手盘动电动机的转子,观察转子转动是否灵活,与定子的间隙是否有磨擦现象等。④电动机的绝缘检查采用“三相异步电动机实验”介绍的方法和步骤,使用兆欧表依次测量电动机绕组与外壳间及各绕组间的绝缘电阻值,并将测量数据记录于表3-1中,同时应检查绝缘电阻值是否符合要求。 表3-1相间绝缘 绝缘电阻(MΩ) 各相对地绝缘 绝缘电阻(MΩ)U相与V相U相对地V相与W相V相对地W相与U相W相对地⑵安装接线①检查电器元件质量 应在不通电的情况下,用万用表检查各触点的分、合情况是否良好。检查接触器时,应拆卸灭弧罩,用手同时按下三副主触点并用力均匀;同时应检查接触器线圈电压与电源电压是否相符。②安装电器元件 在木板上将电器元件摆放均匀、整齐、紧凑、合理,电器布置图如图3-1(b)所示。并用螺丝进行安装。注意组合开关、熔断器的受电端子应安装在控制板的外侧,并使熔断器的受电端为底座的中心端;紧固各元件时应用力均匀,紧固程度适当。③板前明线布线 主电路采用BV1.5毫米2(黑色),控制电路采用BV1毫米2(红色);按钮线采用BVR0.75毫米2(红色),接地线采用BVR1.5毫米2(绿/黄双色线)。布线时要符合电气原理图,先将主电路的导线配完后,再配控制回路的导线;布线时还应符合平直、整齐、紧贴敷设面、走线合理及接点不得松动等要求,具体注意以下几点:a.走线通道应尽可能少,同一通道中的沉底导线,按主、控电路分类集中,单层平行密排,并紧贴敷设面。b.同一平面的导线应高低一致或前后一致,不能交叉。当必须交叉时,该根导线应在接线端子引出时,水平架空跨越,但必须属于走线合理。c.布线应横平竖直,变换走向应垂直。d.导线与接线端子或线桩连接时,应不压绝缘层、不反圈及不露铜过长。并做到同一元件、同一回路的不同接点的导线间距离保持一致。e.一个电器元件接线端子上的连接导线不得超过两根,每节接线端子板上的连接导线一般只允许连接一根。f.布线时,严禁损伤线芯和导线绝缘。g.布线时,不在控制板上的电器元件要从端子排上引出。④按图3-1检验控制板布线正确性。 用万用表进行检查时,应选用电阻档的适当倍率,并进行校零,以防错漏短路故障。a.检查控制电路,可将表棒分别搭在U1、V1线端上,读数应为“∞”,按下时读数应为接触器线圈的直流电阻阻值。b.检查主电路时,可以手动来代替接触器受电线圈励磁吸合时的情况进行检查。⑤接电源、电动机等控制板外部的导线。⑶控制实验 经教师检查后,通电试车。①接通电源。合上电源开关QS。②起停实验。按下启动按钮SB,接触器KM线圈得电,KM主触头闭合,电动机M启动运转,观察线路和电动机运行有无异常现象;松开启动按钮SB,接触器KM线圈失电,KM主触头断开,电动机停转,这就是所谓的点动控制电路。⑷实验结束①实验工作结束后,应切断电动机的三相交流电源。②拆除控制线路、主电路和有关实验电器。③将各电气设备和实验物品按规定位置安放整齐。5、实验报告⑴画出三相异步电动机的点动控制电气原理图。⑵记录仪器和设备的名称、规格和数量。⑶根据实验操作,简要写出实验步骤。⑷总结实验结果。⑸写出本次实验的心得体会。6、实验注意事项①电动机和按钮的金属外壳必须可靠接地。接至电动机的导线必须穿在导线通道内加以保护,或采用坚韧的四芯橡皮线或塑料护套线进行临时通电校验。②电源进线应接在螺旋式熔断器底座的中心端上,出线应接在螺纹外壳上。③按钮内接线时,用力不能过猛,以防螺钉打滑。④接线时一定要认真仔细,不可接错。⑤接电前必须经教师检查无误后,才能通电操作。⑥实验中一定要注意安全操作。

三相异步电动机点动与自锁控制实验报告

三相异步电动机点动与自锁控制实验报告

三相异步电动机点动与自锁控制实验报告三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告专业:姓名:实验报告学号:日期:地点:课程名称:电气原理与应用指导老师:成绩:__________________实验名称:三相异步电动机点动控制和自锁及正反转互锁控制实验类型:____同组学生姓名:______一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1.通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识;2.通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应用。

3.掌握三相异步电动机正反转的原理和方法,加深对电气控制系统各种保护、自锁、互锁等环节的理解;4.掌握接触器联锁正反转、按钮联锁正反转控制线路的不同接法,并熟悉在操作过程中有哪些不同之处;5.通过对三相鼠笼式异步电动机延时正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。

6. 学会分析、排除继电--接触控制线路故障的方法。

二、实验原理1.继电接触控制在各类生产机械中获得广泛的应用,交流电动机继电接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环;(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类;(3) 消弧系统─在切断大电流的触头上装有灭弧罩以迅速切断电弧;(4) 接线端子,反作用弹簧等。

2.在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。

要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。

使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。

实验一 三相异步电动机点动和自锁控制线路

实验一 三相异步电动机点动和自锁控制线路

实验一三相异步电动机点动和自锁控制线路一、实验目的1、通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。

2、通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应用。

二、实验设备三、实验方法实验前要检查控制屏左侧端面上的调压器旋钮须在零位。

开启“电源总开关”,按下启动按钮,旋转调压器旋钮将三相交流电源输出端U、V、W的线电压调到220V。

再按下控制屏上的“关”按钮以切断三相交流电源。

以后在实验接线之前都应如此。

1、三相异步电动机点动控制线路:按图1-1接线。

图中SB1、KM1选用D61-2上元器件,Q1、FU1、FU2 、FU3 、FU4选用D62-2上元器件,电机选用WDJ24(△/220V)。

接线时,先接主电路,它是从220V三相交流电源的输出端U、V、W开始,经三刀开关Q1、熔断器FU1、FU2、FU3、接触器KM1主触点到电动机M的三个线端A、B、C 的电路,用导线按顺序串联起来,有三路。

主电路经检查无误后,再接控制电路,从熔断器FU4插孔V开始,经按钮SB1常开、接触器KM1线圈到插孔W。

线接好,图1-1 点动控制线路经指导老师检查无误后,按下列步骤进行实验:(1)按下控制屏上“开”按钮;(2)先合Q1,接通三相交流220V电源;(3)按下启动按钮SB1,对电动机M进行点动操作,比较按下SB1和松开SB1时电动机M的运转情况。

2、三相异步电动机自锁控制线路:按下控制屏上的“关”按钮以切断三相交流电源。

按图1-2接线,图中SB1、SB2、KM1、FR1选用D61-2挂件,Q1、FU1、FU2 、FU3 、FU4选用D62-2挂件,电机选用WDJ24(△/220V)。

检查无误后,启动电源进行实验:(1) 合上开关Q1,接通三相交流220V电源;(2) 按下启动按钮SB2,松手后观察电动机M运转情况;(3) 按下停止按钮SB1,松手后观察电动机M运转情况。

三相异步电动机点动实验报告

三相异步电动机点动实验报告

三相异步电动机点动实验报告三相异步电动机点动实验报告引言:三相异步电动机是工业生产中最常见的电动机之一,它具有结构简单、可靠性高、运行平稳等优点。

本实验旨在通过对三相异步电动机的点动实验,深入了解其工作原理和性能特点。

一、实验目的本实验的目的是通过点动实验,观察三相异步电动机在不同电压和负载条件下的运行情况,探究其起动特性和负载能力。

二、实验装置和方法1. 实验装置:本实验采用了一台三相异步电动机、电源、电压表、电流表和负载装置。

2. 实验方法:(1)首先,将电动机与电源连接,确保电动机的三个绕组分别与电源的三个相线相连。

(2)然后,将电流表和电压表分别连接到电动机的一个相线上,以测量电流和电压的数值。

(3)在电动机的负载轴上加上适当的负载,以模拟实际工作情况。

(4)通过调节电源电压,逐渐增加电动机的电压,观察电动机的起动状况和运行情况。

(5)记录不同电压和负载下的电流和电压数值。

三、实验结果与分析1. 起动特性:通过实验观察,我们发现三相异步电动机的起动需要较大的起动电流,随着电压的增加,起动电流逐渐减小。

这是因为在起动过程中,电动机需要克服转子的惯性和摩擦力,所以起动时需要更大的电流来提供足够的扭矩。

2. 负载能力:在实验中,我们逐渐增加了电动机的负载,观察到电动机的电流和电压随负载的增加而增加。

这是因为负载的增加会导致电动机需要提供更大的扭矩来克服负载的阻力,从而产生更大的电流。

3. 电流和电压关系:通过实验记录的数据,我们可以绘制电流和电压之间的关系曲线。

从曲线上可以看出,电流和电压之间存在一定的线性关系。

当电压增加时,电流也相应增加,但增加的速度逐渐减缓。

四、实验结论通过本次实验,我们对三相异步电动机的起动特性和负载能力有了更深入的了解。

实验结果表明,三相异步电动机的起动需要较大的起动电流,随着电压的增加,起动电流逐渐减小。

同时,电动机的负载能力与电流和电压呈正相关关系。

这些实验结果对于电动机的设计和使用具有一定的指导意义。

浙师大 机电实验报告 实验1 三相异步电动机的点动控制

浙师大 机电实验报告 实验1 三相异步电动机的点动控制

试验一三相异步电动机的点动控制一、实验目的:1、了解交流接触器、热继电器和按钮的结构及其在控制电路中的应用。

2、学习异步电动机基本控制电路的连接。

3、学习按钮、熔断器、热继电器的使用方法。

4、了解点动与长动的主要区别。

二、实验仪器和设备:1、DT31继电器-接触器1套2、D21三相异步电动机1台3、机电传动试验平台1套4、接线若干三、实验原理:1、继电接触器控制大量应用于对电动机的启动、停止、正反转、调速、制动等控制。

从而使生产机械按规定的要求动作;同时,也能对电动机和生产机械进行保护。

2、图1是异步电动机直接启动的控制电路。

图1-a是点动控制线路,手放开按钮后电动机即停止工作。

电路不能自锁。

图1-b是长动控制线路,手按下按钮后,线圈得电,主触点,辅助触点都闭合,电动机保持运转,控制电路实现自锁。

图1 三相异步电动机点动长动控制线路四、实验内容和步骤:1、在实验板台找到DT31继电器-接触器等,了解其结构及动作原理。

2、通过实验,掌握基本电路的接线方法。

3、按图1-a异步电动机启动线路连接,经老师检查允许后再送电(电动机暂不接入)。

4、1-a的控制电路改接为1-b图,即具有控制电路具有自锁功能。

5、通过点动、长动接线实验,观察实验现象,了解两种接线的不同工作状况及自锁区别。

五、实验总结:1、电路中自锁点起什么作用?电路没有自锁时:按下闭合按钮,接触器线圈得电后,主触点闭合接通回路,电机运转;松开闭合按钮,电路断路,线圈失电,主触点回归常开原位,电机停转。

电路处于点动。

电路有自锁点时:接触器线圈得电后,主触点、常开辅助触点都闭合接通回路,主触点闭合电机运转;常开辅助触点闭合,进行状态保持,此时再松开启动按钮,接触器也不会失电断开。

电路处于长动状况。

自锁点作用就是利用常开辅助触点与通电线圈关系,实现电路长动工作状况。

2、什么叫零压保护,即电路的零压保护是如何实现的?所谓零压(或失压)保护是指当电源断电或电压严重降低时,接触器的线圈失电,电磁铁释放使主触点断开,电动机自动从电源切除停转。

实验一三相异步电动机点动和自锁控制(精)

实验一三相异步电动机点动和自锁控制(精)

实验一三相异步电动机点动和自锁控制一、实验目的了解使用 PLC 代替传统继电器控制回路的方法及编程技巧, 理解并掌握三相异步电动机的点动和自锁控制方式及其实现方法。

二、实验仪器1.THPJW-1A 型高级维修电工实训考核装置一台2. 安装有 GX Developer编程软件的计算机一台3.SC-09下载电缆一根4. 实验导线若干5. 三相异步电动机一台三、实验内容及说明在传统的强电控制系统中, 使用了大量的接触器 . 中间继电器 . 时间继电器等分立元器件。

由于使用的元器件数量和品种多,使得系统接线复杂,给系统调试以及修改接线带来困难。

因其潜在故障点多,故降低了整个系统的安全可靠性。

采用 PLC 对强电系统进行控制, 就可以取代传统的继电接触控制系统, 还可构成复杂的过程控制网络。

在需要大量中间继电器以及时间继电器和计数继电器的场合, PLC 无需增加硬件设备,利用微处理器及存储器的功能,就可以很容易地完成这些逻辑组合和运算, 大大降低了控制成本。

因此用 PLC 作为强电系统的控制器件是一种行之有效的解决方案。

本实验中, PLC 对电机的控制方式分两种:1. 点动控制启动:按启动按钮 SB1, X0的动合触点闭合, Y1线圈得电,即接触器 KM2的线圈得电, 0.1S 后 Y0线圈得电,即接触器 KM1的线圈得电,电动机作星形连接启动。

每按动 SB1一次,电机运转一次。

2. 自锁控制启动:按启动按钮 SB2,X1的动合触点闭合, Y1线圈得电,即接触器 KM2的线圈得电, 0.1S 后 Y0线圈得电,即接触器 KM1的线圈得电,电动机作星形连接启动。

只有按下停止按钮 SB3时电机才停止运转。

★四、实验接线图五、梯形图参考程序★ 1、确定系统的输入、输出设备。

输入 :输出:★ 2、控制系统的梯形图(参考★六、实验验证 Y0 Y1 启动(KM1 启动(KM2 X2 X1 X0 停止(SB3 自锁启动(SB2 点动(SB1。

1.实验一 三相异步电动机的启、点动控制实验

1.实验一    三相异步电动机的启、点动控制实验

4、主电路采用AC380V 供电,控制电路根据所选电器 是380V 或220 V 的线圈电压来确定。本次实验是选3 80 V 供电,如选220 V 供电,则控制回路的一端应接 在三相四线制的零线上。
三、实验内容及步骤
1、三相电动机的起动 ① 将空气开关(QF)手柄位置置于“关”位置。 ② 按图6.1.1接线。在连线时通过转动插头将接插件 自行锁紧,使接点牢固、可靠。 ③ 在图6.1.1 和图6.1.2 的两个实验中电动机都 采用星形接法。 ④ 接线完毕后需经指导教师检查线路后,方能接通电源。 ⑤ 合上空气开关QF,按下起动按钮SB1,观察电动机转 动情况。 ⑥ 按下停止按钮SB2,观察电动机是否停止。 ⑦ 先切断电源(拉下空气开关QF),再拆线,主电路仍 保留。
3、实验结束,先切断电源(拉断空气开关QF) ,再拆线, 并将实验器材整理好。
四、实验器材
1、机床电气控制实验台 2、电动机实验台 3、连接导线
一台 一台 若干
五、实验报告要求
1、按照一定的格式书写实验报告。 2、画出实验电路图,叙述实验操作步骤。 3、回答如下问题: ① 为什么在主回路当中没有采用热继电器进行过载保护? ② 在点动控制线路实验中,当SB1 按下,电动机处在运转 状态,此时按下SB3(注意不要按到底)会出现什么状况?
实验一 三相异步电动机的起动、点动控制实验
一、实验目的
1、熟悉一些常用的控制电器和保护电器。 2、学会三相异步电动机的起停和控制线路,加深理解这 些基本控制线路的工作原理。
二、实验原理和电路
1、三相异步电动机的起动有全压起动和降压起动。一般在 小功率情况下采用全压起动,而对于大功率电动机均采用降 压起动方法。这里介绍全压起动的方法,图6.1.1 所示为 三相异步电动机的起停主电路及控制线路,图6.1.2 所示 为三相异步电动机的点动和长动主电路及图6.1.2接线,步骤和以上相同。 ② 接线完毕后需经老师检查后,方能接通电源。 ③ 按下SB1电动机为起动,按下SB2电动机停止,按下SB3 电动机为点动。分别记录电动机转动情况。 ④ 按下SB1电动机运转,此时SB3若按下(注意不要按到 底) ,观察电动机运转情况。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试验一三相异步电动机的点动控制
一、实验目的:
1、了解交流接触器、热继电器和按钮的结构及其在控制电路中的应用。

2、学习异步电动机基本控制电路的连接。

3、学习按钮、熔断器、热继电器的使用方法。

4、了解点动与长动的主要区别。

二、实验仪器和设备:
1、DT31继电器-接触器1套
2、D21三相异步电动机1台
3、机电传动试验平台1套
4、接线若干
三、实验原理:
1、继电接触器控制大量应用于对电动机的启动、停止、正反转、调速、制动等控制。

从而使生产机械按规定的要求动作;同时,也能对电动机和生产机械进行保护。

2、图1是异步电动机直接启动的控制电路。

图1-a是点动控制线路,手放开按钮后电动机即停止工作。

电路不能自锁。

图1-b是长动控制线路,手按下按钮后,线圈得电,主触点,辅助触点都闭合,电动机保持运转,控制电路实现自锁。

图1 三相异步电动机点动长动控制线路
四、实验内容和步骤:
1、在实验板台找到DT31继电器-接触器等,了解其结构及动作原理。

2、通过实验,掌握基本电路的接线方法。

3、按图1-a异步电动机启动线路连接,经老师检查允许后再送电(电动机暂不接入)。

4、1-a的控制电路改接为1-b图,即具有控制电路具有自锁功能。

5、通过点动、长动接线实验,观察实验现象,了解两种接线的不同工作状况及自锁区别。

五、实验总结:
1、电路中自锁点起什么作用?
电路没有自锁时:按下闭合按钮,接触器线圈得电后,主触点闭合接通回路,电机运转;松开闭合按钮,电路断路,线圈失电,主触点回归常开原位,电机停转。

电路处于点动。

电路有自锁点时:接触器线圈得电后,主触点、常开辅助触点都闭合接通回路,主触点闭合电机运转;常开辅助触点闭合,进行状态保持,此时再松开启动按钮,接触器也不会失电断开。

电路处于长动状况。

自锁点作用就是利用常开辅助触点与通电线圈关系,实现电路长动工作状况。

2、什么叫零压保护,即电路的零压保护是如何实现的?
所谓零压(或失压)保护是指当电源断电或电压严重降低时,接触器的线圈失电,电磁铁释放使主触点断开,电动机自动从电源切除停转。

并且当电源重新恢复供电或电源电压恢复正常时,如果不重新按起动按钮,则电动机不能自行起动(因用于自锁的常开触点已断开)。

3、热继电器的整定值调节的原则是什么?
热继电器的整定电流一般是按用电器(如电动机)的额定电流来整定的,在整定电流时,你要考虑环境的温度,如果温度很高,你可以适当的提高一点,反之就降低一点。

在实际使用中也可以根据用电器的负载来定,但是在正常情况下不要超过用电器的额定电流。

否则不起保护作用。

六、个人总结:
通过这次三相异步电动机的实验接线训练,初步了解了试验台和DT31继电器-接触器套组的基本操作。

点动接线的后的实验现象与自锁长动的实验现象对比后,更加清晰的认识了不同控制电路控制实现工作状况的不同。

接线过程,是一次理论与实践的结合。

毕竟是第一次接线实验,过程中电机的接线方式就出现过一点问题,到底采用三角形接法还是绕线式接法?两种接法的适用区别在哪里?两种接法应该怎么接线呢?这些实验中遇到的问题,通过查阅课本资料复习及与学长的沟通学习,最终得到解答并完成接线实验。

课程实验是课程内容的补充训练,非常实用有效。

这次实验让我很深刻的体会到点动与长动的运动状况区别,控制线路图与实物装置连接之间的相关联系。

相关文档
最新文档