高考文科数学专题一集合与常用逻辑用语第二讲常用逻辑用语.doc

合集下载

专题01 集合与常用逻辑用语(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题01 集合与常用逻辑用语(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题01集合与常用逻辑用语考点十年考情(2015-2024)命题趋势考点1集合间的基本关系(10年2考)2023·全国新Ⅱ卷、2020全国新Ⅰ卷一般给两个集合,要求通过解不等式求出集合,然后通过集合的运算得出答案。

考点2交集(10年10考)2024·全国新Ⅰ卷、2024年全国甲卷、2023·北京卷、2023全国新Ⅰ卷、2022·全国新Ⅱ卷、2022年全国乙卷、2022年全国甲卷、2022全国新Ⅰ卷、2021年全国乙卷、2021年全国甲卷、2021年全国甲卷、2021全国新Ⅰ卷考点3并集(10年8考)2024·北京卷、2022·浙江卷、2021·北京卷、2020·山东卷、2019·北京卷、2017·浙江卷、2017·全国卷、2016·山东卷、2016·全国卷、2015·全国卷考点4补集(10年8考)2024年全国甲卷、2023年全国乙卷、2023年全国乙卷、2022·全国乙卷、2022·北京卷、2021全国新Ⅱ卷、2020全国新Ⅰ卷、2018·浙江卷、2018·全国卷、2017·北京卷考点5充分条件与必要条件(10年10考)2024·全国甲卷、2024·天津卷、2024·北京卷、2023·北京卷、2023·全国甲卷、2023·天津卷、2023·全国新Ⅰ卷、2022·浙江卷、2022·北京卷、2021·全国甲卷常以关联的知识点作为命题背景,考查充分条件与必要条件,难度随载体而定。

考点6全称量词与存在量词(10年4考)2024·全国新Ⅱ卷、2020·全国新Ⅰ卷、2016·浙江卷、2015·浙江卷、2015·全国卷、2015·湖北卷全称量词命题和存在量词命题的否定及参数求解是高考复习和考查的重点。

集合与常用逻辑用语高考考点梳理及真题分类解析(2022年高考备考版)

集合与常用逻辑用语高考考点梳理及真题分类解析(2022年高考备考版)

第一章集合与常用逻辑用语(2022年文科数学高考备考版)第一节集合的概念与运算一、高考考点梳理(一)、集合的基本概念1.集合中元素的三个特性:确定性、互异性、无序性.2.元素与集合的关系是属于或不属于,符号分别为∈和∉.3.集合的三种表示方法:列举法、描述法、图示法.4.常用数集的符号:实数集记作R;有理数集记作Q;整数集记作Z;自然数集记作N;正整数集记作*N或N .+A B(四)、集合关系与运算的重要结论1.若有限集A中有n个元素,则A的子集有个,真子集有-1个.n2n22.传递性:A ⊆B ,B ⊆C ,则A ⊆C .3.A ∪B =A ⇔B ⊆A ; A ∩B =A ⇔A ⊆B .4.∁U (A ∪B )=(∁U A )∩(∁U B );∁U (A ∩B )=(∁U A )∪(∁U B ) . 二、历年高考真题题型分类突破题型一 集合的基本概念【例1】(2021全国甲卷) 设集合{}{}1,3,5,7,9,27M N x x ==>,则MN =( )A. {}7,9B. {}5,7,9C. {}3,5,7,9D. {}1,3,5,7,9解析:∵7,2N ⎛⎫=+∞ ⎪⎝⎭,∴MN ={}5,7,9,故选:B .【例2】(2020全国Ⅰ卷)已知合集{}2340A x x x =--<,{}4,1,3,5B =-,则A B =( )A.{}4,1-B. {}1,5C. {}3,5D. {}1,3解析:∵{}2340A x x x =--<={ x |-1< x <4},∴A ∩B ={1,3},故选D . 【例3】(2013全国Ⅰ卷)已知集合A ={1,2,3,4},},|{2A n n x x B ∈==, 则=B A ( ).A .}4,1{B .}3,2{C .}16,9{D .}2,1{ 解析:∵B ={x |x =n 2,n ∈A }={1,4,9,16},∴A ∩B ={1,4},故选A .题型二 集合间的关系【例4】(2021全国乙卷) 已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则∁U (M ∪N ) =( ) A. {}5B. {}1,2C. {}3,4D. {}1,2,3,4解析:由题意可得:{}1,2,3,4MN =,则∁U (M ∪N ) ={}5. 故选:A .【例5】(2020全国Ⅲ卷) 已知集合{}1,2,3,5,7,11A =,{}|315B x x =<<,则A B中元素的个数为( )A. 2B. 3C. 4D. 5解析:根据题意,得A ∩B ={5,7,11},故选B .【例6】(2017全国Ⅰ卷)已知集合A ={}|2x x <,B ={}|320x x ->,则( ).A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R解析:由B ={}|320x x ->,得B 3|2x x ⎧⎫=<⎨⎬⎩⎭,因为A ={}|2x x <,所以A B =3|2x x ⎧⎫<⎨⎬⎩⎭,故选A .题型三 集合的运算【例7】(2020全国Ⅱ卷)已知集合A={}3,x x x Z <∈,B={}1,x x x Z >∈,则A B =( )A. ∅B. {}3,2,2,3--C. {}2,0,2-D. {}2,2-解析:由以知,得A ={x |-3< x <3,x ∈Z},B ={x |x <-1或x >1,x ∈Z}, 所以A ∩B ={-2,2},故选D .【例8】(2019全国Ⅰ卷)已知集合U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7},则B ∩∁U A =( ).A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}解析:∵U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7}, ∴∁U A ={1,6,7},则B ∩∁U A ={6,7},故选C .第二节 命题及其关系、充分条件与必要条件一、高考考点梳理 (一)、命题的定义可以判断真假用文字或符号表述的语句叫做命题。

集合与常用逻辑用语.docx

集合与常用逻辑用语.docx

集合与常用逻辑用语第一节集合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中.(2)集合的三种表示方法:列举法、描述法、图示法.(3)元素与集合的两种关系:属于,记为∈ ;不属于,记为?.(4)五个特定的集合及其关系图:N *或 N +表示正整数集, N 表示自然数集,Z 表示整数集, Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A,B,如果集合 A 中任意一个元素都是集合 B 中的元素,则称 A 是 B 的子集,记作 A? B(或 B? A).(2)真子集:如果集合 A 是集合 B 的子集,但集合 B 中至少有一个元素不属于A,则称A 是B 的真子集,记作 A B 或 B A.A? B,既要说明 A 中任何一个元素都属于B,也要说明 B 中存在一个元素不A B?A≠ B.属于 A.(3)集合相等:如果 A? B,并且 B? A,则 A= B.A? B,A 中任意一个元素都符合B 中元素的特性, B 中任意一两集合相等: A= B?A? B.个元素也符合 A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合 A 的子集,是任何非空集合 B 的真子集.记作 ?.?∈ { ?} ,?? { ?} , 0??, 0?{ ?},0 ∈ {0} ,?? {0} .3.集合间的基本运算(1)交集:一般地,由属于集合 A 且属于集合 B 的所有元素组成的集合,称为 A 与 B 交集,记作A∩ B,即 A∩ B= { x|x∈ A,且 x∈ B} .(2)并集:一般地,由所有属于集合 A 或属于集合 B 的元素组成的集合,称为 A 与 B 并集,记作A∪ B,即 A∪ B= { x|x∈ A,或 x∈ B} .(3)补集:对于一个集合A,由全集U 中不属于集合 A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合 A 的补集,记作?U A,即 ?U A= { x|x∈ U,且 x?A} .求集合 A 的补集的前提是“ A是全集U的子集”,集合A其实是给定的条件.从全集中取出集合 A 的全部元素,剩下的元素构成的集合即为?U A.的的U二、常用结论(1)子集的性质:A? A, ?? A, A∩ B? A, A∩B? B.(2)交集的性质:A∩A= A, A∩?= ?, A∩ B=B∩ A.(3)并集的性质:A∪B= B∪ A,A∪ B? A, A∪ B? B, A∪ A= A, A∪ ?= ?∪A= A.(4)补集的性质:A∪?U A=U, A∩ ?U A= ?,?U(?U A)= A, ?A A= ?, ?A?= A.(5)含有 n 个元素的集合共有2n个子集,其中有2n- 1 个真子集, 2n- 1 个非空子集.(6)等价关系: A∩ B= A? A? B; A∪ B= A? A? B.考点一集合的基本概念[典例 ] (1)(2017全·国卷Ⅲ )已知集合 A= {( x,y)|x2+ y2= 1} ,B= {( x,y)|y= x} ,则 A∩ B 中元素的个数为 ()A . 3B. 2C.1D. 0b2 2 019 2 019(2)已知 a, b∈ R,若 a,a, 1={ a, a+ b,0} ,则 a+b的值为 ()A . 1B. 0C.- 1D.±1[解析 ] (1)因为 A 表示圆 x2+y2=1上的点的集合, B 表示直线 y= x 上的点的集合,直线 y= x 与圆 x2+ y2=1 有两个交点,所以A∩ B 中元素的个数为 2.b= 0,所以 b= 0,于是 a2=1,即 a= 1 或 a=- 1.又根据集合中(2)由已知得 a≠ 0,则a元素的互异性可知a= 1 应舍去,因此 a=- 1,故 a2 019+ b2 019= (- 1)2 019+ 02 019=- 1.[答案 ] (1)B(2)C[ 提醒 ]集合中元素的互异性常常容易忽略,求解问题时要特别注意.[题组训练 ]1.设集合 A ={0,1,2,3} ,B = { x|- x ∈ A,1- x?A} ,则集合 B 中元素的个数为 ()A . 1B . 2C .3D . 4解析: 选 A若 x ∈ B ,则- x ∈ A ,故 x 只可能是 0,- 1,- 2,- 3,当 0∈B 时, 1-0= 1∈ A ;当- 1∈ B 时, 1- (- 1)= 2∈A ;当- 2∈ B 时, 1- (- 2)= 3∈A ;当- 3∈B 时, 1 -( -3) =4?A ,所以 B = { - 3} ,故集合 B 中元素的个数为 1.2.若集合 A ={ x ∈ R|ax 2- 3x + 2= 0} 中只有一个元素,则 a 等于 ()9 9 A. 2B.89C .0D . 0 或8解析:选 D若集合 A 中只有一个元素, 则方程 ax 2- 3x + 2=0 只有一个实根或有两个相等实根.当 a =0 时, x = 2,符合题意.329当 a ≠0 时,由 = (- 3) - 8a = 0,得 a = 8,所以 a 的值为90 或 .83.( 2018·厦门模拟 )已知 P={ x|2<x<k,x ∈N}, 若集合 P 中恰有 3 个元素,则 k 的取值范围为.解析: 因为 P 中恰有 3 个元素,所以 P={ 3, 4,5},故 k 的取值范围为 5<k ≤6.答案:( 5, 6]考点二 集合间的基本关系[典例 ](1)已知集合 A = { x|x 2- 3x + 2= 0,x ∈ R} , B = { x|0<x<5, x ∈ N} ,则 ()A . B? AB . A = BC .ABD . B A(2)(2019 湖·北八校联考 )已知集合 A = * 2- 3x<0} ,则满足条件 B? A 的集合 B 的{ x ∈ N |x 个数为 ()A . 2B . 3C .4D . 8(3)已知集合 A = { x|- 1<x<3} ,B = { x|- m<x<m} ,若 B? A ,则 m 的取值范围为 ________.[解析 ](1)由 x 2- 3x + 2=0 得 x = 1 或 x = 2,∴ A = {1,2} .由题意知 B = {1,2,3,4} ,比较 A , B 中的元素可知 A B ,故选 C.* 2*= {1,2},又 B? A,∴满足条件 B? A 的集合(2)∵ A= { x∈ N |x- 3x<0} = { x∈ N |0<x<3}B 的个数为22= 4,故选 C.(3)当 m≤0 时, B= ?,显然 B? A.当m>0 时,因为 A= { x|- 1<x<3} .若 B? A,在数轴上标出两集合,如图,所以-m≥-1,m≤ 3,所以0<m≤1.- m<m.综上所述, m 的取值范围为(-∞, 1].[答案 ](1)C (2)C(3)( -∞, 1][变透练清 ](变条件 )若本例 (2)中 A 不变, C= { x|0<x<5 , x∈ N} ,则满足条件A? B? C 的集合 B 1.的个数为 ()A . 1B. 2C.3D. 4解析:选 D因为 A= {1,2} ,由题意知 C={1,2,3,4} ,所以满足条件的 B 可为 {1,2} ,{1,2,3} ,{1,2,4} , {1,2,3,4} .(变条件 )若本例 (3)中,把条件“ B? A”变为“ A? B”,其他条件不变,则m 的取值2.范围为 ________.解析:若 A? B,由- m≤ - 1,得 m≥ 3,m≥3∴m 的取值范围为 [3,+∞ ).答案: [3,+∞ )3.已知集合A= {1,2} , B= { x|x2+ mx+ 1= 0, x∈ R} ,若 B? A,则实数m 的取值范围为________.解析:①若 B= ?,则=m2-4<0,解得-2<m<2;②若 1∈ B,则 12+ m+1= 0,解得 m=- 2,此时 B= {1} ,符合题意;2③若 2∈ B,则 2 + 2m+ 1= 0,解得 m=-5,此时 B= 2,1,不合题意.22综上所述,实数m 的取值范围为 [- 2,2).答案: [- 2,2)考点三集合的基本运算考法 (一 )集合的运算[典例 ](1)(2018天·津高考 )设集合A= {1,2,3,4} , B= { - 1,0,2,3} , C= { x∈ R|- 1≤ x<2} ,则 (A∪ B)∩ C= ()A . { - 1,1}B. {0,1}C.{ - 1,0,1}D. {2,3,4}(2)已知全集 U= R,集合 A= { x|x2- 3x-4>0} , B= { x|- 2≤ x≤2} ,则如图所示阴影部分所表示的集合为 ()A . { x|- 2≤x<4}B.{ x|x≤ 2 或 x≥ 4}C.{ x|- 2≤ x≤- 1}D. { x|- 1≤x≤ 2}[解析 ](1)∵ A={1,2,3,4} , B= { -1,0,2,3} ,∴A∪B={ -1,0,1,2,3,4} .又C={ x∈R|- 1≤x<2} ,∴(A∪B)∩ C= { - 1,0,1} .(2)依题意得 A= { x|x<- 1 或 x>4} ,因此 ?R A= { x|- 1≤ x≤ 4} ,题中的阴影部分所表示的集合为(?R A)∩ B= { x|- 1≤ x≤ 2} .[答案 ](1)C(2)D考法 (二 )根据集合运算结果求参数[典例 ](1)已知集合 A= { x|x2-x- 12>0} , B= { x|x≥ m} .若 A∩ B= { x|x>4} ,则实数 m 的取值范围是 ()A . (- 4,3)B. [- 3,4]C.( -3,4)D. (-∞, 4](2)(2019河·南名校联盟联考 )已知 A={1,2,3,4} ,B= { a+ 1,2a} ,若 A∩ B= {4} ,则 a=()A . 3B. 2C.2 或3D. 3 或 1[解析 ](1)集合 A= { x|x<-3或 x>4} ,∵ A∩ B={ x|x>4} ,∴- 3≤m≤ 4,故选 B.(2)∵ A∩ B= {4} ,∴ a+ 1=4或 2a=4.若 a+1= 4,则 a= 3,此时 B= {4,6} ,符合题意;若 2a= 4,则 a= 2,此时 B= {3,4} ,不符合题意.综上,a= 3,故选 A.[答案 ] (1)B(2)A[ 题组训练 ]1.已知集合A . {1}C .{0,1,2,3}解析: 选 CA = {1,2,3}因为集合 , B = { x|(x + 1)(x - 2)<0 , x ∈ Z} ,则B . {1,2}D . { -1,0,1,2,3}B = { x|- 1<x<2, x ∈Z} ={0,1} ,而 A ∪ B = ()A = {1,2,3} ,所以 A ∪B ={0,1,2,3} .2. (2019 ·庆六校联考重 )已知集合 A ={ x|2x 2+ x - 1≤0} , B = { x|lg x<2} ,则 (?R A) ∩B =()1, 1001, 2A. 2B. 2 1, 100D . ?C. 2解析: 选 A由题意得 A = - 1,1, B = (0,100),则 ?R A = (- ∞ ,- 1)∪1,+ ∞ ,2 2 所以 (?R A)∩ B =1, 100 .213.(2019 合·肥质量检测 )已知集合 A = [1,+∞ ),B = x ∈ R 2a ≤ x ≤2a - 1 ,若 A ∩ B ≠?,则实数 a 的取值范围是 ()1A . [1,+∞ )B. 2, 1 2,+∞D . (1,+∞ )C. 3解析: 选 A因为 A ∩ B ≠?,1a , 解得 a ≥ 1.所以 2a - 1≥1,a - 1≥2[ 课时跟踪检测 ]1.(2019 ·州质量检测福 )已知集合 A = { x|x = 2k + 1,k ∈ Z} ,B = { x|- 1<x ≤ 4} ,则集合 A ∩ B中元素的个数为 ()A . 1B . 2C .3D . 4解析: 选 B依题意,集合 A 是由所有的奇数组成的集合,故A ∩B = {1,3} ,所以集合A ∩B 中元素的个数为2.2.设集合U= {1,2,3,4,5,6} , A= {1,3,5} , B= {3,4,5} ,则 ?U(A∪ B)= ()A . {2,6}C.{1,3,4,5}解析:选 A因为A= {1,3,5}B. {3,6}D. {1,2,4,6},B= {3,4,5} ,所以 A∪ B= {1,3,4,5}.又U= {1,2,3,4,5,6},所以 ?U (A∪ B)= {2,6} .3.(2018 ·津高考天 )设全集为R,集合 A = { x|0< x< 2} ,B= { x|x≥1} ,则 A∩ (?R B)= ()A . { x|0< x≤1}B. { x|0<x< 1}C.{ x|1≤ x< 2}D. { x|0<x< 2}解析:选B∵全集为R, B= { x|x≥ 1} ,∴?R B= { x|x< 1} .∵集合 A= { x|0< x< 2} ,∴A∩ (?R B)= { x|0< x< 1} .4.(2018 ·宁毕业班摸底南)设集合 M= { x|x<4} ,集合 N= { x|x2- 2x<0} ,则下列关系中正确的是()A . M∩ N= MC.N∪ (?R M)= R解析:选 D由题意可得,B. M∪ (?R N)= MD. M∪ N= MN= (0,2), M= (-∞,4),所以M∪ N=M.5.设集合 A= x 1≤ 2x< 2, B= { x|ln x≤ 0} ,则 A∩B 为 () 2A.0,1B. [- 1,0) 21, 1D. [- 1,1]C. 21x- 1x1112,∴A= x- 1≤ x<.∵ln x≤0,解析:选 A ∵≤ 2 < 2,即 2 ≤<2 2,∴- 1≤ x<222即 ln x≤ ln 1,∴ 0<x≤1,∴ B= { x|0<x≤1} ,∴ A∩ B= x0<x<1. 26. (2019 郑·州质量测试 )设集合 A= { x|1<x<2} ,B= { x|x<a} ,若 A∩B= A,则 a 的取值范围是 ()A . (-∞, 2]B. (-∞, 1]C.[1,+∞ )D. [2,+∞ )解析:选 D 由 A∩B= A,可得 A? B,又因为 A= { x|1<x<2} ,B= { x|x<a} ,所以 a≥ 2.7.已知全集 U= A∪B 中有 m 个元素,(?U A?U B个元素.若 A∩ B 非空,则)∪ ()中有nA∩ B 的元素个数为 ()A . mn B. m+nC .n - mD . m - n解析: 选 D( )中有 n个元素,如图中阴影部分所示, 因为 (?U A )∪ ?U B又 U = A ∪ B 中有 m 个元素,故 A ∩B 中有 m -n 个元素.8.定义集合的商集运算为A = x x =m, m ∈A , n ∈B ,已知集合A = {2,4,6} ,B =Bnx x = k-1, k ∈ A,则集合 B∪ B 中的元素个数为 ()2AA . 6B . 7C .8D . 9解 析 : 选 B由 题 意 知 , B = {0,1,2} , B =0, 1, 1,1, 1,1, 则 B∪ B =A 2 4 63A1 1 1 10, 2, 4, 6, 1,3, 2 ,共有 7 个元素.9.设集合 A ={ x|x 2- x - 2≤ 0} , B = { x|x<1,且 x ∈ Z} ,则 A ∩ B = ________.解析: 依题意得 A = { x|(x + 1)(x - 2)≤ 0} = { x|- 1≤ x ≤ 2} ,因此A ∩B ={ x|- 1≤x<1, x∈ Z } = { -1,0} .答案: { - 1,0}10.已知集合 U = R ,集合 A = [- 5,2], B = (1,4) ,则下图中阴影部分所表示的集合为________.解析: ∵ A = [- 5,2],B = (1,4) ,∴ ?U B = { x|x ≤1 或 x ≥ 4} ,则题图中阴影部分所表示的集合为 (?U B)∩A = { x|- 5≤ x ≤ 1} .答案 : { x|- 5≤x ≤ 1}11.若集合 A ={( x , y)|y = 3x 2- 3x + 1} ,B = {( x , y)|y = x} ,则集合 A ∩ B 中的元素个数为 ________.解析: 法一: 由集合的意义可知, A ∩ B 表示曲线 y = 3x 2- 3x + 1 与直线 y = x 的交点构成的集合.1y = 3x 2- 3x + 1, x =3,x = 1, 联立得方程组解得或y = x ,1 y = 1,y =31 1故 A ∩ B = 3, 3 , 1, 1 ,所以 A ∩ B 中含有 2 个元素.法二: 由集合的意义可知, A ∩ B 表示曲线 y = 3x 2- 3x + 1 与直线 y =x 的交点构成的集合.因为 3x 2- 3x + 1= x 即 3x 2-4x + 1= 0 的判别式 >0,所以该方程有两个不相等的实根,所以 A∩B 中含有 2 个元素.答案:212.已知集合 A= { x|log2x≤ 2} ,B= { x|x< a} ,若 A? B,则实数 a 的取值范围是__________ .解析:由 log 2x≤ 2,得 0< x≤ 4,即A= { x|0<x≤ 4} ,而 B={ x|x< a} ,由于 A? B,在数轴上标出集合A, B,如图所示,则a> 4.答案: (4,+∞ )13.设全集U= R, A= { x|1≤ x≤ 3} , B= { x|2<x<4} , C= { x|a≤ x≤ a+ 1} .(1)分别求 A∩ B,A∪ (?U B);(2)若 B∪ C= B,求实数 a 的取值范围.解: (1)由题意知, A∩ B= { x|1≤ x≤ 3} ∩ { x|2<x<4} = { x|2<x≤ 3} .易知 ?U B= { x|x≤ 2 或x≥4} ,所以 A∪(?U B)= { x|1≤ x≤ 3} ∪ { x|x≤2 或 x≥ 4} = { x|x≤ 3 或 x≥ 4} .(2)由 B∪ C= B,可知 C? B,画出数轴 (图略 ),易知 2<a<a+ 1<4,解得 2<a<3.故实数 a 的取值范围是(2,3).。

【高考精品复习】第一篇 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件

【高考精品复习】第一篇  集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件

第2讲命题及其关系、充分条件与必要条件【高考会这样考】1.考查四种命题的意义及相互关系.2.考查对充分条件、必要条件、充要条件等概念的理解.3.考查题型主要以选择题、填空题形式出现,常与集合、几何等知识结合命题.【复习指导】复习时一定要紧扣概念,联系具体数学实例,理清命题之间的相互关系,重点解决:(1)命题的概念及命题构成;(2)四种命题及四种命题间的相互关系;(3)充分条件、必要条件、充要条件的概念的理解及判定.基础梳理1.命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系(1)四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若綈p,则綈q逆否命题若綈q,则綈p(2)四种命题间的逆否关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.一个区别否命题与命题的否定是两个不同的概念:①否命题是将原命题的条件否定作为条件,将原命题的结论否定作为结论构造的一个新的命题;②命题的否定只是否定命题的结论,常用于反证法.两条规律(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假.三种方法充分条件、必要条件的判断方法(1)定义法:直接判断“若p则q”、“若q则p”的真假.并注意和图示相结合,例如“p⇒q”为真,则p是q的充分条件.(2)等价法:利用p⇒q与綈q⇒綈p,q⇒p与綈p⇒綈q,p⇔q与綈q⇔綈p的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.双基自测1.(人教A版教材习题改编)以下三个命题:①“a>b”是“a2>b2”的充分条件;②“|a|>|b|”是“a2>b2”的必要条件;③“a>b”是“a+c>b+c”的充要条件.其中真命题的序号是________.解析①由2>-3⇒/ 22>(-3)2知,该命题为假;②a2>b2⇒|a|2>|b|2⇒|a|>|b|,该命题为真;③a>b⇒a+c>b+c,又a+c>b+c⇒a>b;∴“a>b”是“a+c>b+c”的充要条件为真命题.答案②③2.(2011·陕西)设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是().\A.若a≠-b,则|a|≠|b| B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-b D.若|a|=|b|,则a=-b解析“若a=-b,则|a|=|b|”的逆命题是“若|a|=|b|,则a=-b”.答案 D3.(2011·山东)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y =f(x)是奇函数”的().A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析若y=f(x)是奇函数,则f(-x)=-f(x),∴|f(-x)|=|-f(x)|=|f(x)|,∴y=|f(x)|的图象关于y轴对称,但若y=|f(x)|的图象关于y轴对称,如y=f(x)=x2,而它不是奇函数,故选B.答案 B4.(2011·安徽)命题“所有能被2整除的整数都是偶数”的否定是().A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数解析原命题是全称命题,则其否定是特称命题,故选D.答案 D5.命题“若a>b,则2a>2b-1”的否命题为.答案若a≤b,则有2a≤2b-1考向一命题正误的判断【例1】►(2011·海南三亚)设集合A、B,有下列四个命题:①A⃘B⇔对任意x∈A都有x∉B;②A⃘B⇔A∩B=∅;③A⃘B⇔B⃘A;④A⃘B⇔存在x∈A,使得x∉B.其中真命题的序号是______(把符合要求的命题序号都填上).[审题视点] 对于假命题,举出恰当的反例是一难点.解析①不正确,如A={1,2,3},B={2,3,4},有A⃘B但2∈A且2∈B.②不正确,如A={1,2},B={2,3},有A⃘B而A∩B={2}.③不正确,如A={1,2},B={2},有A⃘B但B⊆A.④正确.答案④正确的命题要有充分的依据,不一定正确的命题要举出反例,这是最基本的数学思维方式,也是两种不同的解题方向,有时举出反例可能比进行推理论证更困难,二者同样重要.【训练1】给出如下三个命题:①四个非零实数a,b,c,d依次成等比数列的充要条件是ad=bc;②设a,b∈R,且ab≠0,若ab<1,则ba>1;③若f(x)=log2x,则f(|x|)是偶函数.其中不正确命题的序号是().A.①②③B.①②C.②③D.①③解析对于①,可举反例:如a,b,c,d依次取值为1,4,2,8,故①错;对于②,可举反例:如a、b异号,虽然ab<1,但ba<0,故②错;对于③,y=f(|x|)=log2|x|,显然为偶函数,故选B.答案 B考向二四种命题的真假判断【例2】►已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是().A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”,是真命题[审题视点] 分清命题的条件和结论,理解四种命题间的关系是解题关键.解析f′(x)=e x-m≥0在(0,+∞)上恒成立,即m≤e x在(0,+∞)上恒成立,故m≤1,这说明原命题正确,反之若m≤1,则f′(x)>0在(0,+∞)上恒成立,故逆命题正确,但对增函数的否定不是减函数,而是“不是增函数”,故选D. 答案 D判断四种形式的命题真假的基本方法是先判断原命题的真假,再判断逆命题的真假,然后根据等价关系确定否命题和逆否命题的真假.如果原命题的真假不好判断,那就首先判断其逆否命题的真假.【训练2】已知命题“函数f(x)、g(x)定义在R上,h(x)=f(x)·g(x),如果f(x)、g(x)均为奇函数,则h(x)为偶函数”的原命题、逆命题、否命题、逆否命题中正确命题的个数是().A.0 B.1 C.2 D.3解析由f(x)、g(x)均为奇函数,可得h(x)=f(x)·g(x)为偶函数,反之则不成立,如h(x)=x2是偶函数,但函数f(x)=x2e x,g(x)=ex都不是奇函数,故逆命题不正确,故其否命题也不正确,即只有原命题和逆否命题正确.答案 C考向三充要条件的判断【例3】►指出下列命题中,p是q的什么条件(在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选出一种作答).(1)在△ABC中,p:∠A=∠B,q:sin A=sin B;(2)对于实数x、y,p:x+y≠8,q:x≠2或y≠6;(3)非空集合A、B中,p:x∈A∪B,q:x∈B;(4)已知x、y∈R,p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0.[审题视点] 结合充分条件,必要条件的定义判断所给命题间的关系.解(1)在△ABC中,∠A=∠B⇒sin A=sin B,反之,若sin A=sin B,因为A与B不可能互补(因为三角形三个内角和为180°),所以只有A=B.故p是q的充要条件.(2)易知,綈p:x+y=8,綈q:x=2且y=6,显然綈q⇒綈p,但綈p⇒/ 綈q,即綈q是綈p的充分不必要条件,根据原命题和逆否命题的等价性知,p是q的充分不必要条件.(3)显然x∈A∪B不一定有x∈B,但x∈B一定有x∈A∪B,所以p是q的必要不充分条件.(4)条件p:x=1且y=2,条件q:x=1或y=2,所以p⇒q但q⇒/ p,故p是q的充分不必要条件.判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q,二是由条件q能否推得条件p.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.【训练3】(2010·山东)设{a n}是首项大于零的等比数列,则“a1<a2”是“数列{a n}是递增数列”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析a1<a2且a1>0,则a1(1-q)<0,a1>0且q>1,则数列{a n}递增;反之亦然.答案:C难点突破2——高考中充要条件的求解从近几年课改区高考试题可以看出,高考主要以选择题或填空题的形式对充分条件、必要条件内容进行考查,一般难度不大,属中档题,常与不等式、数列、向量、三角函数、导数、立体几何等内容结合考查.考查形式主要有两种:一是判断指定的条件与结论之间的关系;二是探求某结论成立的充要条件、充分不必要条件或必要不充分条件.判断充分、必要条件要从两方面考虑:一是必须明确哪个是条件,哪个是结论;二是看由条件推出结论和由结论推出条件哪个成立,该类问题虽然属于容易题,但有时会因颠倒条件与结论或因忽视某些隐含条件等细节而失分.一、充要条件与不等式的解题策略【示例】►(2011·天津)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件二、充要条件与方程结合的解题策略【示例】►(2011·陕西)设n∈N*,一元二次方程x2-4x+n=0有整数根的充要条件是n=________.三、充要条件与数列结合的解题策略【示例】►(2010·山东)设{a n}是等比数列,则“a1<a2<a3”是“数列{a n}是递增数列”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件四、充要条件与向量结合的解题策略【示例】►(2010·福建)若向量a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件五、充要条件与三角函数结合的解题策略【示例】► (2010·上海)“x =2k π+π4(k ∈Z )”是“tan x =1”成立的(). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件。

高考数学一轮总复习第一章集合与常用逻辑用语不等式 2常用逻辑用语课件

高考数学一轮总复习第一章集合与常用逻辑用语不等式 2常用逻辑用语课件
− + 1 ≤ 0,
是− + 1 < < + 1的一个充分条件,则满足ቊ
解得 ≥ 1.故选D.
+ 1 ≥ 1,
考点三 全称量词命题与存在量词命题
命题角度1 全称、存在量词命题及其否定
例3 【多选题】设命题: ∃ ∈ 0,4 , 2 > 4且 3 < 6,命题:每个三角形都有内切圆,
)
3.(教材题改编)若 ∈ ,则“3 > 1”是“2 > 1”的(
A.充分不必要条件

C.充要条件
)
B.必要不充分条件
D.既不充分也不必要条件
解:解不等式3 > 1可得 > 1,解不等式2 > 1可得 < −1或 > 1.
因为{ > 1} ⫋ { < −1或 > 1},
A.充分不必要条件

)
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
π
2
π
2
解:(方法一){ sin = 1} = { = + 2π , ∈ } ⫋ {| = + π ,
∈ } = {|cos = 0},故是充分不必要条件.
(方法二)当sin = 1时,由同角关系,得cos = 0,充分性成立;当cos = 0时,
≤ sin ,故B正确.素数2不是奇数,所以是真命题,故C正确.的否定:所有的素
数都是奇数,故D错误.故选BC.
命题角度2
根据命题的真假求参数
例4 已知“命题:∃ ∈ , 2 + 2 + 1 < 0”为真命题,则实数的取值范围是 (

高中数学-集合与常用逻辑用语

高中数学-集合与常用逻辑用语

q⇒p
p是q的充要条件
p⇒q且q⇒p
p是q的充分不必要条件 p⇒q且q⇒/ p
p是q的必要不充分条件 p⇒/ q且q⇒p
p是q的既不充分也不必要 p⇒/ q且q⇒/ p 条件
集合法: A={x|p(x)}, B={x|q(x)} A⊆B A⊇B A=B A⫋B A⫌B A⊈B且A⊉B
考点二 全称量词与存在量词
3.含有量词的命题的否定 含有量词的命题的否定必须否定命题所含的量词,对于隐含量词的命题要结 合命题的含义显现量 词,再进行否定.
题型方法
充分条件与必要条件的判断及应用
1.充分、必要条件的判断方法
(1)定义法:根据p⇒q,q⇒p是否成立进行判断. (2)集合法:根据p,q成立与对应的集合间的关系进行判断.
x 1
是q的充分不必要条件,则实数a的取值范围是 [0,1/2]
.
1.全称量词与存在量词
名称 全称量词
存在量词
常见量词
符号
所有、一切、任意、全部、 ∀ 每 一个等存在来自个、至少一个、有些 ∃ 、 某些等
2.全称量词命题与存在量词命题
全称量词命题一般形式:对M中任意一个x,有p(x)成立,符号表示:∀x∈M,p(x). 存在量词命题一般形式:存在M中一个x,使p(x)成立,符号表示:∃x∈M,p(x).
C.充要条件
D.既不充分也不必要条件
(2)(2019北京文,6,5分)设函数f(x)=cos x+bsin x(b为常数),则“b=0”是“f(x)为偶
函数”的 ( C )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
(3)(2020山东省实验中学期中)设命题p: 2x 1 <0,命题q:x2-(2a+1)x+a(a+1)≤0,若p

最新整理高考数学第一讲集合与常用逻辑用语.docx

最新整理高考数学第一讲集合与常用逻辑用语.docx

第一讲集合与常用逻辑用语1.集合的概念、运算(1)集合元素的三个特性:确定性、互异性、无序性,是判断某些对象能否构成一个集合或判断两集合是否相等的依据.(2)集合的表示方法:列举法、描述法、图示法.(3)集合间的关系:子集、真子集、空集、集合相等,在集合间的运算中要注意空集的情形.(4)重要结论A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.2.命题(1)两个命题互为逆否命题,它们有相同的真假性;(2)含有量词的命题的否定:∀x∈M,p(x)的否定是∃x∈M,綈p(x);∃x∈M,p(x)的否定是∀x∈M,綈p(x).3.充要条件A BB A1.(2013·辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于() A.(0,1) B.(0,2] C.(1,2) D.(1,2]答案D解析A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}.2.(2013·北京)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案A解析当φ=π时,y=sin(2x+φ)=-sin 2x过原点.当曲线过原点时,φ=kπ,k∈Z,不一定有φ=π.∴“φ=π”是“曲线y=sin(2x+φ)过原点”的充分不必要条件.3. (2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D. 4. (2013·天津)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③答案 C解析 对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.5. (2013·四川)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段AB 上的任意点都是端点A 、B 的中位点.现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出所有真命题的序号) 答案 ①④解析 ∵|CA |+|CB |≥|AB |,当且仅当点C 在线段AB 上等号成立,即三个点A ,B ,C , ∴点C 在线段AB 上,∴点C 是A ,B ,C 的中位点,故①是真命题.如图(1),在Rt △ABC 中,∠C =90°,P 是AB 的中点,CH ⊥AB ,点P ,H 不重合,则|PC |>|HC |.又|HA |+|HB |=|P A |+|PB |=|AB |, ∴|HA |+|HB |+|HC |<|P A |+|PB |+|PC |,∴点P 不是点A ,B ,C 的中位点,故②是假命题.如图(2),A ,B ,C ,D 是数轴上的四个点,若P 点在线段BC 上,则|P A |+|PB |+|PC |+|PD |=|AD |+|BC |,由中位点的定义及①可知,点P 是点A ,B ,C ,D 的中位点.显然点P 有无数个,故③是假命题.如图(3),由①可知,若点P 是点A ,C 的中位点,则点P 在线段AC 上,若点P 是点B ,D 的中位点,则点P 在线段BD 上,∴若点P 是点A ,B ,C ,D 的中位点,则P 是AC ,BD 的交点,∴梯形对角线的交点是梯形四个顶点的唯一中位点,故④是真命题.题型一 集合的概念与运算问题例1 (1)(2012·湖北)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)定义A -B ={x |x ∈A 且x ∉B },若M ={1,2,3,4,5},N ={2,3,6},则N -M 等于( ) A .MB .NC .{1,4,5}D .{6}审题破题 (1)先对集合A 、B 进行化简,注意B 中元素的性质,然后根据子集的定义列举全部适合条件的集合C 即可.(2)透彻理解A -B 的定义是解答本题的关键,要和补集区别开来. 答案 (1)D (2)D解析 (1)由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)N -M ={x |x ∈N 且x ∉M }. ∵2∈N 且2∈M ,∴2∉N -M ; 3∈N 且3∈M ,∴3∉N -M ; 6∈N 且6∉M ,∴6∈N -M . ∴故N -M ={6}.反思归纳 (1)解答集合间关系与运算问题的一般步骤:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解. (2)两点提醒:①要注意集合中元素的互异性;②当B ⊆A 时,应注意讨论B 是否为∅.变式训练1 (2013·玉溪毕业班复习检测)若集合S ={x |log 2(x +1)>0},T =⎩⎨⎧⎭⎬⎫x |2-x 2+x <0,则S ∩T 等于( )。

高中数学 01集合与常用逻辑用语.doc

高中数学 01集合与常用逻辑用语.doc

高中数学 01集合与常用逻辑用语.doc一、本章内容属于“预备知识”,起着衔接初高中数学的作用。

在初中,我们接触的集合与逻辑用语知识较为零散。

在本章,学生首次使用系统学习表达数学内容的语言和工具。

学习中,应特别关注通过抽象的数学符号语言的学习,提升数学表达的抽象层次,从知识与技能、方法与习惯、能力与素养等各方面实现初高中数学学习的过渡。

二、本章内容需要掌握的有---7个重要概念:集合、子集、充分条件、必要条件、充要条件、全称量词命题、存在量词命题3个重要特征:集合中的元素具有确定性、互异性、无序性2种重要关系:元素与集合间的关系、集合间的基本关系3种重要运算:集合的并集、交集、补集运算3种重要方法:列举法、描述法、 Venn 图法三、思想方法归纳1,分类与整合的思想当所给集合不确定时,往往需要对集合的种类和集合中的字母参数进行分类讨论,特别要注意空集的情况。

2,数形结合的思想在集合运算时,对离散的数集间的运算或抽象集合间的运算,可借助Venn图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用。

3,化归与转化的思想a,在集合的运算关系和两个集合的包含关系之间经常存在一定的联系,在一定的情况下可以相互转化,如A包含于B 等价于 A交B=A 等价于 A并B=B 等价于 A的补集包含B的补集等价于 A交B 的补集=空集,在解题中运用这种转化能有效地简化解题过程。

b,利用充分、必要条件求参数时,常将命题“若p,则q”中满足条件p的元素构成的集合设为A,满足条件q的元素构成的集合设为B,转化为集合A,B之间的包含关系。

四,专题归纳总结1,集合的运算与容斥原理(条件较多时,利用图示方法)2,解决“逻辑”问题的两个意识a,转化意识:因为一个命题与其否定的真假恰好相反,因此当一个命题的真假不易判断时,可转化为判断其否定的真假。

b,反例意识:在“逻辑”中,经常要对一个命题的真假(尤其是假)作出判断,若直接从正面判断一个命题是假命题不易进行,这时可以通过举出恰当的反例来说明,这是一个简单有效的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 集合与常用逻辑用语第二讲 常用逻辑用语一、选择题1. (2018 浙江 ) 已知平面,直线 m , n 满足 m, n ,则“ m ∥ n ”是“ m ∥ ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2. (2018 北京 )设 a , b , c , d 是非零实数,则 “ad bc ”是 “ , b , c , d 成等比数列 ”的aA .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3. (2018 天津 ) 设 x R ,则“ x3 8 ”是“ |x | 2 ” 的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4. (2018 上海 ) 已知 a R ,则“ a1 1 ”的( )1”是“aA .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件5.( 2017 天津)设 x R ,则“ 2x 0 ”是“ | x 1| 1”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.( 2017 山东)已知命题 p : xR , x 2 x 1≥ 0 ;命题 q :若 a 2 b 2 ,则 a b .下列命题为真命题的是A . p qB . p qC .p q D . pq7.( 2017 北京)设 m , n 为非零向量,则 “存在负数 ,使得 mn ”是“m n0 ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.( 2017 浙江)已知等差数列a n 的公差为 d ,前 n 项和为 S n ,则“ d0 ”是“ S 4 +S 6 2S 5 ”的 A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件D .既不充分也不必要条件9.( 2016 年山东) 已知直线 a,b 分别在两个不同的平面 α,b 内,则“直线 a 和直线 b 相交 ”是“平面 和平面相交 ”的A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.( 2016 年浙江高考)已知函数f ( x) x2bx,则“b 0f ( f ( x))的最小值与f (x)的最小值相等””是“的A .充分不必要条件B .必要不充分条件C.充分必要条件 D .既不充分也不必要条件11.(2015 重庆)“x 1 ”是“ x22x 10 ”的A .充要条件B .充分不必要条件C.必要不充分条件 D .既不充分也不必要条件12 .( 2015 浙江)设 a ,b是实数,则“ a b 0 ”是“ ab 0 ”的A .充分不必要条件B .必要不充分条件C.充分必要条件 D .既不充分也不必要条件13 .( 2015 安徽)设 p : x 3 , q : 1 x 3 ,则 p 是 q 成立的A .充分必要条件B .充分不必要条件C.必要不充分条件 D .既不充分也不必要条件14.( 2015 湖北)命题“x0 (0, ),ln x0 x0 1 ”的否定是A .x (0, ),ln x x 1B .x (0, ),ln x x 1C.x0 (0, ),ln x0 x0 1D .x0 (0, ),ln x0 x0 115 .( 2015 四川)设a, b为正实数,则“ a b 1 ”是“log2a log2 b 0 ”的A .充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件16 .( 2015 山东)设m R ,命题“若 m 0 ,则方程 x2 x m 0 有实根”的逆否命题是A .若方程x2 x m 0 有实根,则 m 0B .若方程x2 x m 0 有实根,则 m 0C.若方程x2 x m 0 没有实根,则 m 0D .若方程x2 x m 0 没有实根,则 m 017 .( 2015 陕西)“sin cos ”是“ cos 2 0 ”的A .充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件18 .( 2015 北京)设a,b是非零向量,“a b | a ||b | ”是“a∥b”的A .充分而不必要条件B.必要而不充分条件C.充分必要条件 D .既不充分也不必要条件19 .( 2015 福建)“对任意x (0, ) , k sin xcos x x ”是“ k 1 ”的2A .充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件20 .( 2014 新课标 2)函数f ( x)在x=x0 处导数存在,若 p: f x0 0 , q : x x0是f (x)的极值点,则A .p是q的充分必要条件B .p是q的充分条件,但不是q 的必要条件C.p是q的必要条件,但不是q 的充分条件D .p既不是q的充分条件,也不是q 的必要条件21 .( 2014 广东)在ABC 中,角 A ,B , C 所对应的边分别为a,b, c, 则“ a b ”是“ sinA sin B ”的A .充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件22 .( 2014 福建)命题“x 0, .x3 x 0 ”的否定是A.x 0, .x3 x 0 B .x ,0 .x3 x 0C.x0 0, .x03 x0 0 D .x0 0, .x03 x0 023.(2014浙江)已知i是虚数单位,a, b R ,1”是“(a bi)22i”的则“ a bA .充分不必要条件B .必要不充分条件C.充分必要条件 D .既不充分也不必要条件24 .( 2014 湖南)已知命题p : 若x y,则 x y;命题 q : 若x y, 则x2 y2 . 在命题① p q ② p q ③ p ( q) ④ ( p) q 中,真命题是A .①③B.①④C.②③D.②④an an 1a n,n N,则a n 为递减数列” ,关于逆命题,否命题,逆否25.( 2014 陕西)原命题为“若2命题真假性的判断依次如下,正确的是A .真,真,真B .假,假,真C.真,真,假D.假,假,假26.( 2014 江西)下列叙述中正确的是A .若a,b, c R ,则 " ax 2 bx c 0" 的充分条件是" b2 4ac 0"B .若a,b, c R ,则 " ab2 cb 2 " 的充要条件是 " a c"C.命题“对任意x R ,有 x2 0 ”的否定是“存在x R ,有 x2 0 ”D .l是一条直线,, 是两个不同的平面,若 l ,l ,则/ / 27.( 2013 安徽)“a≤0 ”是“函数 f (x)= (ax-1)x 在区间(0,+ ) 内单调递增”的A .充分不必要条件B .必要不充分条件C.充分必要条件 D .既不充分也不必要条件28.( 2013 北京)“”是“曲线y sin 2 x过坐标原点的”A .充分而不必要条件B .必要而不充分条件C.充分必要条件 D .既不充分也不必要条件29.设 z 是复数 , 则下列命题中的假命题是A .若 z2 0 , 则 z 是实数B.若 z2 0 , 则 z 是虚数C.若 z 是虚数 , 则 z2 02 D.若 z 是纯虚数 , 则 z 030.( 2013 浙江)已知函数 f ( x) Acos( x )( A 0,0,R) ,则“ f ( x) 是奇函数”是的2A .充分不必要条件B.必要不充分条件C.充分必要条件 D .既不充分也不必要条件31.( 2013 重庆)命题“对任意x R,都有 x20 ”的否定为A .对任意x R ,都有x2 0 B.不存在x R ,都有 x2 0C.存在x0 R ,使得 x 2 0 D.存在x0 R ,使得 x 2 00 032.( 2013 四川)设x Z,集合A是奇数集,集合 B 是偶数集,若命题p : x A,2 x B ,则A .p:x A,2 xB B .p:x A,2x BC.p:x A,2 x B D .p:x A,2x B33.(2013 湖北)在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围” , q 是“乙降落在指定范围” ,则命题“至少有一位学员没有降落在指定范围”可表示为A .p qB .p q C.p q D.p q34 .( 2012 湖北)命题“x0 e R Q , x0 3 Q ”的否定是A . x0 e R Q, x03 QB . x0 e R Q, x03 QC. x e R Q, x3 Q D . x e R Q, x3 Q35 .( 2012 湖南)命题“若,则 tan 1”的逆否命题是4A .若,则 tan 1 B.若,则 tan 14 4C.若tan 1,则4 D.若tan 1,则436 .( 2012 安徽)设平面与平面相交于直线 m ,直线 a 在平面内,直线 b 在平面内,且 b m ,则“”是“ a b ”的A .充分不必要条件B.必要不充分条件C.充要条件 D .即不充分不必要条件37 .( 2012 福建)下列命题中,真命题是A .x R, e x0 , 0 B.x R,2 x x2C.a ba1 D.a 1 ,b 1 是 ab 1 的充分条件0的充要条件是b38 .( 2012 北京)设a,b R ,“a 0 ”是‘复数 a bi 是纯虚数”的A .充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件39.( 2012 湖北)命题“存在一个无理数,它的平方是有理数”的否定是A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数40. (2012 山东 )设a0 且 a 1,则“函数 f x a x在R上是减函数”是“ g x2 a x3在R上是增函数”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件41 .(2012 山东 )设命题 p :函数 ysin 2 x 的最小正周期为;命题 q :函数 ycosx 的图象关于直线 x对22称 .则下列判断正确的是A . p 为真B . q 为假C . p q 为假D . p q 为真42 .( 2011 山东)已知 a, b,c R ,命题 “若 ab c =3,则 a 2 b 2 c 2 ≥ 3,”的否命题是A .若 a b c 3,则 a 2 b 2 c 2 <3B .若 a b c 3,则 a 2 b 2c 2 <3C .若 a b c 3,则 a 2 b 2 c 2 ≥ 3D .若 a 2b 2c 2 ≥3,则 a bc 343.( 2011 新课标)已知 a , b 均为单位向量,其夹角为,有下列四个命题p 1 :| a b | 1[0,2)3p 2 : | a b | 1(2,]3p 13 :| a b | 1[0, )3 p4 : | a b | 1( , ]3其中真命题是A . p 1, p 4B . p 1 , p 3C . p 2 , p 3D . p 2 , p 444.( 2011 陕西)设 a , b 是向量,命题“若 ab ,则 a b ”的逆命题是A .若 a b ,则 a bB .若C .若 ab ,则 a bD .若a b ,则 a bab ,则 ab45 .( 2011 湖南)设集合 M1,2 , N a 2 , 则 “ a1”是“ N M ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件46 .( 2011 安徽)命题 “所有能被 2 整聊的整数都是偶数 ”的否定 是.. A .所有不能被 2 整除的数都是偶数B .所有能被 2 整除的整数都不是偶数C.存在一个不能被 2 整除的数都是偶数D.存在一个能被 2 整除的数都不是偶数47 .( 2010 新课标)已知命题 p1:函数 y 2x 2 x在 R 为增函数,p2 :函数 y 2x 2 x在R为减函数,则在命题 q1: p1 p2, q2: p1 p2, q3:p1 p2和 q4: p1 p2 中,真命题是A .q1,q3 B.q2,q3 C.q1,q4 D.q2,q448 .( 2010 辽宁)已知 a >0,则 x0满足关于 x 的方程ax b 的充要条件是A .x R,1ax2 bx1ax02 bx0 B.2 2C.x R,1ax2 bx1ax02 bx0 D.2 2二、填空题x R,1ax2 bx1ax02 bx02 2x R,1ax 2 bx1ax02 bx02 249. (2018 北京 )能说明“若a b1 1,则”为假命题的一组 a ,b的值依次为____.a b50 .( 2013 四川)设P1,P2,, P n 为平面 a 内的 n 个点,在平面 a 内的所有点中,若点P到点P1,P2,,P n 的距离之和最小,则称点P 为点P1,P2,,P n的一个“中位点” ,例如,线段 AB 上的任意点都是端点 A , B 的中位点,现有下列命题:①若三个点A, B , C 共线, C 在线段 AB 上,则 C 是 A, B, C 的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点 A , B , C , D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点;其中的真命题是________________ (写出所有的真命题的序号).51 . (2011 陕西 )设n N ,一元二次方程x2 4x n 0 有正数根的充要条件是n=.52 .( 2010 安徽)命题“存在x R,使得x2 2x 5 0 ”的否定是.。

相关文档
最新文档