最新同济大学《高等数学》第三版下册答案

合集下载

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)
高等数学(下册)考试试卷(一)
一、填空题(每小题 3 分,共计 24 分)
1、 z = log a ( x 2 y 2 ) (a 0 ) 的定义域为 D=
2、二重积分
2
ln( x
| x| | y | 1
2
y ) dxdy
的符号为
。 。
3 、由 曲线 y ln x 及直线 x y e 1 , y 1 所围图 形的面 积用 二重 积分表 示为
( C)最大值点在 D 的内部,最小值点在 D 的边界上;
( D)最小值点在 D 的内部,最大值点在 D 的边界上。
3、设平面区域 D: ( x
2
2)
(y
2
1)
1 ,若 I 1
则有(

(x
D
2
y) d
, I2
(x
D
3
y) d
( A) I 1 I 2 ; (B) I 1 I 2 ; ( C) I 1 I 2 ;
是由有限块分片光滑的曲面所组成,如果函数
P ( x, y, z) ,
Q (x, y, z) , R( x, y , z) 在 上 具 有 一 阶 连 续 偏 导 数 , 则 三 重 积 分 与 第 二 型 曲 面 积 分 之 间 有 关 系
式:
, 该关系式称为
公式。
7、微分方程 y
6y
9y
2
x
6x
9 的特解可设为
(D )不能比较。
23
4、设 是由曲面 z xy , y x , x 1 及 z 0 所围成的空间区域,则
xy z dxdydz =(

(A) 1 ; 361
( B) 1 ; 362

高等数学(同济大学版)第三章练习(含答案)

高等数学(同济大学版)第三章练习(含答案)

第三章 微分中值定理与导数的应用一、要求:1、罗尔定理,拉格朗日定理应用;2、洛必达法则;3、函数单调性、极值、最值、凹凸性、拐点的判断,函数图形的描绘;4、简单不等式证明;5、最值在实际问题中的应用。

二、练习1. 在区间 [ 1,1] 上满足罗尔定理条件的函数是 ().A.1 B.f ( x ) | x | C. f ( x) 1 x 2D. f ( x ) x22 x 1.f ( x)x 22. 函数 f ( x) arctan x 在 [ 0 ,1] 上满足拉格郎日中值定理的值是 ().A.4B.41C. 1D. 4.11 3.4设函数 f ( x ) ( x 1)( x2)( x 3),则方程 f ( x )0 有个零点,这些零点所在的范围是;.3. 设函数 f ( x ) ( x 1)( x 2)( x 3),则方程 f ( x )0 有个零点,这些零点所在的范围是.4. 函数 f ( x ) ln xx2在(0,) 内的零点的个数为.e5. 曲线6. 函数yxe x 的拐点 ,凹区间,凸区间.yln x1x 2的单调区间.7. 曲线 f ( x) e x的渐近线为.x 18. 计算:5 x 4x11(12(2) lim (cos x )(1) limx 1xx) (3) limtan 2 xx1xe 1x 0arctan x x(1 x 2 )1 / 31 ;1( 4) lim ;(5) lim(6) lim (cscx ) ;x 0x ln(1 2 x 2 )xcosx1x 0x( 7) lim x 3 (sin 11 sin2 ) ;( ) lim (tanx )2 x;( 9) limx;exx2x8x ln xx29. 证明 2 arctanxarcsin2 xx1 .21 x10. 证明方程x5x10 在区间( 1, 0)内有且只有一个实根.11. 证明多项式f x3 3 x a 在0,1上不可能有两个零点 .x12. 证明:当0x时, x sin x 22x13.证明:当x0时,1x2arctan x xx14. 设 f x32bx在 x 1 处有极值-2,试确定系数 a , b ,并求x axy f x 的所有极值点与拐点.15. 求内接于椭圆x2y2221 而面积最大的矩形的各边之长.a b16.由直线 y0,x8及抛物线 y x2围成一个曲边三角形 ,在曲边 y x2上求一点 , 使曲线在该点处的切线与直线y0 及 x 8 所围成的三角形面积最大.17.描绘 (1)y 3 x2,(2) y21的图形 .2( x1) ( x 1) 2( x 1)18.要做一个容积为 2 的密闭圆柱形罐头筒,问半径和筒高如何确定才能使所用材料最省?19.要造一个长方体无盖蓄水池,其容积为500 立方米,底面为正方形。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

精品文档高等数学(下册)考试试卷(一)一、填空题(每小题 3分,共计24分)1、 z = log a (x 2 y 2)(a 0)的定义域为 D= ____________________2 22、 二重积分 In(x y )dxdy 的符号为 _____________ 。

|x| |y| 16、 微分方程dy y tan#的通解为 ________________________dx x x7、 方程y ⑷ 4y 0的通解为 ___________________ 。

&级数的和为 ___________________ 。

n in(n 1)二、选择题(每小题 2分,共计16分)1、二元函数z f (x, y)在(x 0, y 0)处可微的充分条件是()(A ) f (x, y)在(x °, y °)处连续;f x (x, y ), f y (x, y)在(X 0,y °)的某邻域内存在;(C ) f x (x 0,y 。

)x f y (x 0,y 。

)y 当.(x)2 y)2时,是无穷小;(D ) lim xf x (x °,y °) x f y (x °,y °) y 2 2 x) ( y) 2、设U x yf (一)y y xf(),其中 xf 具有二阶连续导数,则ux 2 y xU 2 y等于(A ) x y ;(B ) x ;(C) y ;(D)0 o3、设2 :x 2 y z 2 1,z0,则二重积分 I zdV 等于()(A ) 4和2d13 . r sincos dr ; (B )"d.1 2 .d r sin0 0dr ;2 2y3、由曲线y ln x 及直线xye 1 , y 1所围图形的面积用二重积分表示为为。

4、设曲线 L 的参数方程表示为x (t) ( x ),则弧长元素dsy(t)5、设曲面刀为 2 9x y 9介于 z0及z 3间的部分的外侧,贝U (x 2 y 2 1)ds,其值(B )精品文档2 (C) d0 13o r sin cos dr;(D)2 1 •d d r sin cos dr。

高等数学(本科少学时类型)同济第三版课后习题答案选解1

高等数学(本科少学时类型)同济第三版课后习题答案选解1

高等数学(本科少学时类型)同济第三、四版课后习题答案选解1第一章函数与极限1.1函数P.17习题1.11..005.0:01.0;05.0:1.0,222,1),,1(<=<=<<-<-∈δεδεεδδδx x U x 1..3.下列函数是否为同一函数?为什么?(1)2()2ln ()ln f x x x x j ==与;(2)()f x =()x x j =;(2)(3)()f x =与()g x x =;(4)()f x =与()sin g x x =;解:(1)否;因为定义域不同;(2)否;因为对应关系不同;(2)否;因为函数的定义域不同;(3)是;因为定义域和对应关系及值域都相同;(4)否;因为对应关系及值域都相同;4.求下列函数的定义域:(1)1y x =(2)2232x y x x =-+;(3)arcsin(3)y x =-;(4)1arctan y x =;(5)ln(1)y x =+;(6)1x y e =;解:(1)要使1y x=有意义,需使20,10x x ¹-³故函数的定义域为[-1,0)[(0,1].(2)要使2232x y x x =-+有意义,需使2320x x -+¹故函数的定义域为(-,-2)(-2,1)[1,+.) (3)要使arcsin(3)y x =-有意义,需使31x -£故函数的定义域为[2,4].(4)要使1arctan y x=有意义,需使30,0x x ->¹故函数的定义域为(-,0)(0,3].¥(5)要使ln(1)y x =+有意义,需使10x +>故函数的定义域为+).(1,-¥(6)要使1xy e =有意义,需使0x ≠故定义域为(,0)(0,)-∞+∞ .5.6.7.8.9.10.下列函数中哪些是偶函数,哪些是奇函数,哪些是非奇函数又非偶函数?(1)22(1)y x x =-;(2)233y x x =-;(3)(1)(1)y x x x =-+;(4)2x xa a y -+=;(5)2x xa a y --=;(6)sin cos 1y x x =-+;解:(1)按运算:偶函数与偶函数的和差积仍是偶函数;也可以按定义判定;(2)定义域对称,但()();()()f x f x f x f x -¹-¹-所以是非奇非偶函数;(3)按运算:奇函数与奇函数的积是偶函数;奇函数与偶函数的积是奇函数;所以是奇函数;也可以按定义判定;(4)定义域对称,()()f x f x -=所以函数是偶函数;(5)定义域对称,()()f x f x -=-所以函数是奇函数;(6)定义域对称,但()();()()f x f x f x f x -¹-¹-所以是非奇非偶函数;11.设下面所考虑的函数都是定义在对称区间(,)l l -内的,证明:(1)两个偶函数的和是偶函数;两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数。

高等数学同济教材答案详解

高等数学同济教材答案详解

高等数学同济教材答案详解在学习高等数学的过程中,同济教材是被广泛采用的一本教材。

它的题目设计复杂,内容全面,很好地满足了学生对高等数学知识的学习需求。

然而,很多同学在学习过程中会遇到一些难题,独自解答困难重重。

因此,在这篇文章中,我将针对高等数学同济教材中的一些问题,给出详细的答案解析,帮助同学们更好地掌握和理解这些知识。

1. 一元函数的连续性与间断点1.1 什么是一元函数的连续性?一元函数的连续性是指函数在某一点和该点的邻域内的函数值之间不存在突变的现象。

具体来说,函数在某一点x=a处连续的条件是函数在x=a处的极限存在且等于函数在x=a处的函数值。

1.2 什么是一元函数的间断点?一元函数的间断点是指函数在某一点上不满足连续性的点。

根据函数在间断点附近的性质,可以将间断点分为可去间断点、跳跃间断点和无穷间断点。

2. 一元函数的极限与连续性2.1 什么是一元函数的极限?一元函数的极限是指当自变量趋于某一特定值时,函数趋近于某一确定值或无穷大的现象。

具体来说,函数在自变量趋于某一点x=a处的极限L的定义为:对于任意给定的正数ε,存在与ε相关的正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε成立。

2.2 一元函数的连续性与极限的关系一元函数的连续性与极限密切相关。

若函数在某一点x=a处的极限存在且等于函数在该点的函数值,那么该函数在x=a处就是连续的。

3. 一元函数的导数3.1 什么是一元函数的导数?一元函数的导数是描述函数在某一点上斜率的概念。

一元函数f(x)在点x=a处的导数定义为:lim┬(h→0)⁡〖(f(a+h)-f(a))/h〗。

3.2 一元函数的导数与函数的图像之间的关系一元函数的导数可以描述函数图像的特征。

导数正值表示函数在对应点上是单调递增的,导数负值表示函数在对应点上是单调递减的,导数为0表示函数在对应点上取得极值。

4. 一元函数的不定积分4.1 什么是一元函数的不定积分?一元函数的不定积分也被称为原函数。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y 的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ20213cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

同济大学版高等数学课后习题答案第1章

习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x x x x x x x x y y ,所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=log(a,(x+y))的定义域为D={(x,y)|x+y>0}。

2、二重积分22ln(x+y)dxdy的符号为负号。

3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(x+y-e-1)dxdy,其值为1/2.4、设曲线L的参数方程表示为{x=φ(t),y=ψ(t)}(α≤t≤β),则弧长元素ds=sqrt(φ'(t)^2+ψ'(t)^2)dt。

5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∬(x+y+1)ds=27√2.6、微分方程y'=ky(1-y)的通解为y=Ce^(kx)/(1+Ce^(kx)),其中C为任意常数。

7、方程y(4)d^4y/dx^4+tan(x)y'''=0的通解为y=Acos(x)+Bsin(x)+Ccos(x)e^x+Dsin(x)e^x,其中A、B、C、D为任意常数。

8、级数∑n(n+1)/2的和为S=1/2+2/3+3/4+。

+n(n+1)/(n+1)(n+2)=n/(n+2),n≥1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。

2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x^2+y^2等于(B)x。

3、设Ω:x+y+z≤1,z≥0,则三重积分I=∭Ω2z dV等于(C)∫0^π/2∫0^1-rsinθ∫0^1-r sinθ-zrdrdφdθ。

4、球面x^2+y^2+z^2=4a^2与柱面x^2+y^2=2ax所围成的立体体积V=(A)4∫0^π/4∫0^2acosθ∫0^4a-rsinθ rdrdφdθ。

同济大学《高等数学(下)》模拟试卷(二)及参考答案

同 济 大 学 模 拟 试 卷课程名称 高等数学(下) 姓 名 学 号适用专业考试形式闭卷考试时间 120分钟一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D. 2xyz xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()x ax b xe +C.2()x ax b ce ++D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( );A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.200ad d rdrππθϕ⎰⎰⎰ D.220sin ad d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 12D.三.计算题(每题8分,共48分)1、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .2、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .3、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .4、 求函数22(,)56106f x y x y x y =+-++的极值. 5、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷二参考答案一、填空题:(每空3分,共15分)1、 222{(,)|4,01}x y y x x y ≤<+< 2、222e dx e dy + 3、10(,)y eedy f x y dx⎰⎰4、11)12 5、12()xy C C x e =+二、选择题:(每空3分,共15分) 1. A 2.B 3. B 4.D 5. A三、计算题(每题8分,共48分)1、解: 12(0,2,4){1,0,2}{0,1,3}A n n →→==- 2'1210223013ij ks n n i j k →→→→→→→→→=⨯==-++- 6'∴直线方程为24231x y z --==- 8' 2、解: 令sin cos x yu x y v e +== 2' 12cos cos x yz z u z v f x y f e x u x v x+∂∂∂∂∂''=⋅+⋅=⋅+⋅∂∂∂∂∂ 6' 12(sin sin )x yz z u z v f x y f e y u y v y+∂∂∂∂∂''=⋅+⋅=⋅-+⋅∂∂∂∂∂ 8'3、解::0014D r πθ≤≤≤≤, 3'21400arctan 64D Dy dxdy r drd d rdr x ππθθθθ∴===⎰⎰⎰⎰⎰⎰ 8' 4.解: (,)260(,)10100x y f x y x f x y y =-=⎧⎪⎨=+=⎪⎩ 得驻点(3,1)- 4' (,)2,(,)0,(,)10xx xy yy A f x y B f x y C f x y ====== 6'220,200A ACB =>-=>∴极小值为(3,1)8f -=- 8'5.解:sin 2,cos 2x x P e y y Q e y =-=-,有cos 2,cos ,x x PQe y e y yx ∂∂=-=∂∂2'取(2,0),:0,A a OA y x =从02a → 4'L OA Pdx Qdy Pdx Qdy +++⎰⎰2()2D D Q P dxdy dxdy a x y π∂∂=-==∂∂⎰⎰⎰⎰ 6'∴原式=2a π-OA Pdx Qdy +⎰=220a a ππ-= 8'6.解:321,(1)1P Q x x =-=++ 2'∴通解为113()()112[()][(1)]dx dx P x dxP x dxx x y e Q x e dx C e x e dx C --++⎰⎰⎰⎰=+=++⎰⎰ 4'13222(1)[(1)](1)[(1)]3x x dx C x x C =+++=+++⎰ 8'四、解答题1、解:(1)令1(1)2sin 3n n n n u π-=-1112sin23lim lim 132sin 3n n n n n n n nu u ππ+++→∞→∞==<4' 12sin 3nn n π∞=∴∑收敛, 11(1)2sin 3n n nn π∞-=∴-∑绝对收敛 6' (2)令1()n n x s x n ∞==∑1111()1n n n n x s x x n x ∞∞-=='⎛⎫'===⎪-⎝⎭∑∑, 2' 0()()(0)ln(1)xs x s x dx s x '⇒=+=--⎰ 4'2、解:构造曲面1:1,z ∑=上侧122xdydz ydzdx zdxdy xdydz ydzdx zdxdy∑∑+++++⎰⎰⎰⎰ 2'22110(211)44r dv dv d rdr dz πθΩΩ=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰1208(1)2r rdr ππ=-=⎰4' 6' 8'122I xdydz ydzdx zdxdyπ∑∴=-++⎰⎰ 10'2xyD dxdy ππ=-=⎰⎰ 12'。

同济高数课后习题答案解析

同济大学高等数学一、求下列极限1、sin ()lim x x x →−−22111;解一:()()12sin 1cos 1lim 02x x x x→−−==原式解二:()()11sin 1sin 1lim lim11x x x x x x →→−−==−+原式2、lim sin x x x →2203解一:00021311lim lim lim 6sin3cos39sin3cos39x x x x x x x x x →→→==⋅=原式解二:sin 3~30021limlim 6sin 3cos 39cos 39x xx x x x x xx x →→===原式3、20tan 2lim sin 3x x xx →解:()2tan 2~2,sin3~3222lim93x x x xx xx →=原式=4、0lim ln(1)x x x →+解一:()001lim lim 1111x x x x→→==+=+原式解二:()1011lim1ln ln 1x xex →===+原式5、2lim xx x x →∞−⎛⎞⎜⎟⎝⎠解一:()2222lim 1xx ex −⋅−−→∞⎛⎞=−=⎜⎟⎝⎠原式解二:()1211ln 2ln 22limlim ln2lim22lim x x x x xx x x x xx xx x x eeeee−−→∞→∞→∞−−−−−−→∞−−−=====原式6、()111lim 32x x x −→−解一:()()112220lim 12t x tt t e=−−−−→=−=令原式解二:1(2)221122221lim[1(22)]{lim[1(22)]}xx x x x x e−−→−−−→=+−=+−=i 原式7、30sin lim x x x x →−解:2001cos sin 1lim lim 366x x x x x x →→−===原式8、111lim ln 1x x x →⎛⎞−⎜⎟−⎝⎠解:111111ln 11lim lim lim 1(1)ln ln 1ln 11lim ln 112x x x x x x x x x x x x x x x xx →→→→−−+−===−−+−+−==−++原式9、12lim 22n n n n →∞+++⎛⎞−⎜⎟+⎝⎠⋯解:()()221122lim lim22221lim 422n n n n n n n n n n n n n n →∞→∞→∞⎛⎞+⎜⎟+−−=−=⎜⎟++⎜⎟⎝⎠−==−+原式10、329sin limx x t dtx →∫解:26686003sin 1sin 1lim lim 933x x x x x x x →→===原式11、arctan limx x tdt →+∞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
练习 8-1
精品文档
精品文档 精品文档
精品文档
练习 8-2
>
精品文档

精品文档 精品文档
精品文档 精品文档
精品文档 精品文档
精品文档
精品文档
练习 8-3
精品文档 精品文档
精品文档
精品文档
练习 8-4
精品文档 精品文档
精品文档 精品文档
精品文档 精品文档
精品文档
精品文档
练习 8-5
精品文档 精品文档
精品文档 精品文档
精品文档
练习 8-6
精品文档
精品文档 精品文档
精品文档
精品文档
练习 8-7
精品文档 精品文档
精品文档 精品文档
精品文档
总习题八
精品文档
精品文档
练习 9-1
精品文档
精品文档 精品文档
精品文档 精品文档
精品文档
练习 9-2
精品文档
精品文档 精品文档
精品文档
精品文档 精品文档
精品文档 精品文档
精品文档
精品文档
练习 102
精品文档 精品文档
精品文档
练习 103
精品文档
精品文档
练习 10-4
精品文档
精品文档
练习 10-5
精品文档
精品文档 精品文档
精品文档 精品文档
精品文档 精品文档
精品文档
<< >>
精品文档
精品文档 精品文档
精品文档 精品文档
精品文档 精品文档
精品文档
<<
精品文档
精品文档 精品文档
精品文档 精品文档
精品文档
精品文档
练习 9-4
精品文档 精品文档
精品文档 精品文档
精品文档 精品文档
精品文档
总习题九
精品文档
精品文档
练习 101
相关文档
最新文档