数学物理方程与特殊函数-模拟试题及参考答案(1)

合集下载

数学物理方程与特殊函数

数学物理方程与特殊函数

第7页/共20页
例3、热传导
热传导现象:当导热介质中各点的温度分布不均匀时,有 热量从高温处流向低温处。
所要研究的物理量:
温度 u(x, y, z,t)
根据热学中的傅立叶试验定律
在dt时间内从dS流入V的热量为:
S n
M V
S
dQ k u dSdt ku nˆdSdt ku dSˆdt
热场
横向: T cos T 'cos '
纵向: T sin T 'sin ' gds ma y
其中: cos 1 cos ' 1
sin tan u(x,t)
x
sin ' tan ' u(x dx,t)
x
M'
ds
T'
'
M
gds
T
x
x dx x
第3页/共20页
T T'
其中: m ds
和高阶微分方程。
3、线性偏微分方程的分类
按未知函数及其导数的系数是否变化分为常系数和变系数微分方 程
按自由项是否为零分为齐次方程和非齐次方程
第17页/共20页
思考判断下列方程的类型
2u 2t
a2
2u 2x
x
2u x2
a2
u t
xu
2u x2
a2
2u t 2
u1u源自122u2
0
4、叠加原理
线性方程的解具有叠加特性
第13页/共20页
2、边界条件——描述系统在边界上的状况
A、 波动方程的边界条件 (1)固定端:对于两端固定的弦的横振动,其为:
u |x0 0, 或: u(a,t) 0

数学物理方程练习题第七版(学生用)

数学物理方程练习题第七版(学生用)

= u(0, t) 0= , ux (2,t) 1,
u(x= ,0)
cos π x + x3 − 3x2 − x.
2
3.求定解问题的解:
u
x= x + u yy
sinπ x,
0 < x < 1, 0 < y < 1,
= u(0, y) 1,= u(1, y) 2,
u(x,0) =1+ x,
7
u
rr
+
1 u
r
r
+
1 r2
uθθ
= 0,
u= (1,θ ) A cosθ (−π < θ ≤ π ).
4. 设 A, B 为常数,用试探法求如下定解问题的解:
u rr
1 +rur
+
1 r2
u
θθ
=
0,
r < a,
u r= =a A cosθ + B sinθ (−π < θ ≤ π ).
练习十五
练习六
1.求解如下定解问题:
ut = uxx + cosπ x, (0 < x < 1, t > 0), u= x (0,t) u= x (1,t) 0, u(x,0) = 0.
3
2.求解如下定解问题:
= u tt
a2u
xx
+
t
sin
π l
x
,
u= (0,t) u= (l,t) 0, t ≥ 0,
X= ′(0)
X= (l)
0.
3. 求如下定解问题的解:
= ut uxx , 0 < x < 2, t > 0, ux= (0, t) u= (2, t) 0,

数学物理方程第一章、第二章习题全解

数学物理方程第一章、第二章习题全解

18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x

数学物理方程与特殊函数试题及答案

数学物理方程与特殊函数试题及答案

数学物理方程与特殊函数试题及答案猜你喜欢: 1. 2. 3. 4. 5.数学物理方程与特殊函数是一门专业性比拟强的课程,要学好这门课程,同学们还是要用心去学才能学好数学物理方程与特殊函数。

下面是给大家的数学物理方程与特殊函数试题及答案,欢送大家学习参考。

1.对于一般的二阶线性偏微分方程0(1) 它的特征方程为,假设在域内ACB那么此域内称(1) 椭圆型假设在域内B那么此域内称(1)为抛物型假设在域内 B 那么此域内称(1)为双曲型。

2. 第一类格林公式第二类格林公式 . 已那么 ;而函数按1xP的展开式4.一维热传导方程可用差分方程似代替。

二维拉普拉斯方程可用差分方0 近似代替。

5. 勒让德多项式的正交性???。

二.用别离变量法求?的解。

(15分) 解:用别离变量法求解,先设满足边界条件且是变量被别离形式的特解为tTxXtxu?代入方程(1)上式左端不含有x,右端不含有t,从而得到两个线性常微分方程解(6)得 x由(2)得,及相应的固有函数为xlnBxXnn?sin? 7?? ,再由(5)得,? 由(7),(8)得由(1),(3)得又由(3) 得所以,原定解问题的解为?三.求方程? 的解。

(15分) 解:对(1)两端积分的通解为任意二阶可导函数,令(4)满足(2),(3)得解之得6(5),(6)代入(4)得u 四.求柯西问题的解。

(12分) 解;先确定所给方程的特征线。

为此,写出它的特征方程 dy2-2dxdy-3dx20 它的两族积分曲线为作特征变换4?经过变换原方程化它的通解为中21ff 是两个任意二次连续可微的函数。

方程(1)的通解为由(2。

数学物理方程与特殊函数-模拟试题及参考答案(1)

数学物理方程与特殊函数-模拟试题及参考答案(1)

《数学物理方程》模拟试题一、填空题(3分⨯10=30分)1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ).2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u nuS=+∂∂)(σ是第( )类边界条件,其中S 为边界.5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22222x u a t u ∂∂=∂∂的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有=)(0x J dxd( ) . 7.根据勒让德多项式的表达式有)(31)(3202x P x P += ( ). 8.计算积分=⎰-dx x P 2112)]([( ) .9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) .二、试用分离变量法求以下定解问题(30分):1.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂===><<∂∂=∂∂====30,0,3,000,30,200322222,0x t u x x t x x u t u t t x u u u2.⎪⎪⎪⎩⎪⎪⎪⎨⎧===><<∂∂=∂∂===x t x x ut u u u u t x x 2,0,00,40,04022 3. ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂===><<+∂∂=∂∂====20,0,8,00,20,162002022222x t u t x x u t u t t x x u u u三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)⎪⎩⎪⎨⎧=∂∂=>+∞<<-∞+∂∂=∂∂==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u四、用积分变换法求解下列定解问题(10分):⎪⎪⎩⎪⎪⎨⎧=+=>>=∂∂∂==,1,10,0,1002y x u y u y x y x u五、利用贝赛尔函数的递推公式证明下式(10分):)(1)()('0''02x J xx J x J -=六、在半径为1的球内求调和函数u ,使它在球面上满足θ21cos ==r u ,即所提问题归结为以下定解问题(10分):.0,12cos 3,0,10,0)(sin sin 1)(11222πθθπθθθθθ≤≤+=≤≤<<=∂∂∂∂+∂∂∂∂=r u r ur r u r r r(本题的u 只与θ,r 有关,与ϕ无关)《数学物理方程》模拟试题参考答案一、 填空题:1.初始条件,边值条件,定解条件.2. )(2222222zu y u x u a t u ∂∂+∂∂+∂∂=∂∂ 3.01)(1222=∂∂+∂∂∂∂θρρρρρu u . 4. 三.5.U a dt U d 2222ω-=. 6.)(1x J -.7.2x .8.52.9.)1(212-x dxd . 10.2020)()(1lny y x x u -+-=.二、试用分离变量法求以下定解问题1.解 令)()(),(t T x X t x u =,代入原方程中得到两个常微分方程:0)()(2''=+t T a t T λ,0)()(''=+x X x X λ,由边界条件得到0)3()0(==X X ,对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到22223πβλn ==为特征值,特征函数3sin )(πn B x X n n =,再解)(t T ,得到32sin32cos )(;;t n D t n C t T n n n ππ+=,于是,3sin )32sin 32cos (),(1xn t n D t n C t x u n n n πππ+=∑∞=再由初始条件得到0,)1(183sin 332130=-==+⎰n n n D n xdx n x C ππ,所以原定解问题的解为,3sin )32cos )1(18(),(11xn t n n t x u n n πππ+∞=-=∑2. 解 令)()(),(t T x X t x u =,代入原方程中得到两个常微分方程:0)()('=+t T t T λ,0)()(''=+x X x X λ,由边界条件得到0)4()0(==X X ,对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到22224πβλn ==为特征值,特征函数4sin )(πn B x X n n =,再解)(t T ,得到16;22)(t n n n eC t T π-=,于是,4sin(),(16122xn eC t x u t n n n ππ-∞=∑=再由初始条件得到140)1(164sin 242+-==⎰n n n xdx n x C ππ,所以原定解问题的解为,4sin)1(16),(161122xn e n t x u t n n n πππ-+∞=-=∑3.解 由于边界条件和自由项均与t 无关,令)(),(),(x w t x v t x u +=,代入原方程中,将方程与边界条件同时齐次化。

西安邮电大学期末数理方程试题+答案

西安邮电大学期末数理方程试题+答案

数学物理方程与特殊函数09级试题选讲一、求解定解问题22200,0,(0,0)x x lt u u a t x u u x l t xx u x ===ì¶¶=ï¶¶ï¶¶ï==<<>í¶¶ïï=ïî)()(),(t T x X t x u =)()()()(2t T x X a t T x X ¢¢=¢22)()()()(b -=¢¢=¢x X x X t T a t T 0>b 设,代入原方程得,则)()(22=+¢t T a t T b 0)()(2=+¢¢x X x X b 则,0x x lu u xx==¶¶==¶¶'(0)'()0X X l Þ==又因为得固有值问题2()()0'(0)'()0X x X x X X l b ¢¢ì+=í==î22)(ln pb =()cos 0,1,2,n n n xX x A n lp ==则固有值固有函数,数学物理方程与特殊函数09级试题选讲)()()(2=+¢t T la n t T p 2()()n a tl n T t C ep -Þ=2()01(,)cosn a tln n n x u x t C C elp p ¥-==+å从而0t ux==有因为01cosnn n x x C C lp ¥==+å所以220022[(1)1]cos 12n ln l n x l C x dx l l nl C xdx lp p --====òò2()2212(1)1(,)cos 2n a ntln l l n xu x t enlp p p¥-=--=+å数学物理方程与特殊函数09级试题选讲二、求解定解问题2222,,0(),0(),0(0)(0)t x t x u ut x t t t x ux x u x x =-=ì¶¶=-<<>ï¶¶ïï=F £íï=Y ³ïïF =Y î解:特征变换为x t x tx h =-ìí=+î2u x h¶=¶¶原方程化为12()()u f f x h =+则它的通解为00(),()()(),()()2222t xt x ux u x u u h x x h x h x h=-====F =Y +-Þ=F =F =Y =Y 又因为数学物理方程与特殊函数09级试题选讲1212(0)()()2()(0)()2f f f f h h xx +=Y +=F 2112()()(0)2()()(0)2f f f f h h x x ì=Y -ïïÞíï=F -ïî12()()((0)(0))22()()(0)22u f f x t x tx h=F +Y -+-+=F +Y -F 则它的解为三、求解定解问题)0,(,0,3,03202022222>+¥<<-¥ïïïîïïíì=¶¶==¶¶-¶¶¶+¶¶==y x y ux u y uy x u x u y y 解:原方程的特征方程为22()23()0dy dydx dx --=13C x y +=2C x y +-=,则特征线为3x y x yx h =-ìí=+î特征变换20ux h¶=¶¶原方程化为12()()u f f x h =+则它的通解为数学物理方程与特殊函数09级试题选讲12(,)(3)()u x y f x y f x y =-++即203,y y u ux y==¶==¶又因为21212(3)()3(3)()0f x f x xf x f x ì+=í¢¢-+=î则可得C x x f¢-=2149)3(C x x f ¢+=2243)(C x x f¢-=2141)(222234)(34)3(),(yx y x y x y x u +=++-=22()()C Du vv u u v d v u ds n n s ¶¶Ñ-Ñ=-¶¶òòò 四、证明平面上的格林公式其中n 为曲线的外法线向量。

1-2_初始条件与边界条件chen

1-2_初始条件与边界条件chen
数学物理方程与特殊函数 主页 上一页 下一页 退出
练习题: 考虑长为 l 的均匀杆的导热问题. 若 1.杆的两端温度保持零度;
2.杆的一端为恒温零度,另一端绝热. 写出杆在上面两种情况下的边界条件. 答案: u
= 0, u = 0;
u = 0, u x = 0;
x=0
x=l
x=0
x=l
数学物理方程与特殊函数 主页 上一页 下一页
退出
退出
偏微分方程要给出 n 个初始条件才能确定一个特 解.
初始条件的个数的确定:关于时间 t 的 n 阶
边界条件的个数的确定:关于空间变量 x 的 n 阶 偏微分方程不一定要给出 n 个边界条件.
数学物理方程与特殊函数 主页 上一页 下一页
退出
练习题: 若 考虑长为 l 的均匀杆的导热问题. 1.杆的两端温度保持零度; 2.杆的一端为恒温零度,另一端绝热. 写出杆在上面两种情况下的边界条件. 答案:
∂u = f . 外法线方向的方向导数,即 ∂n s 2
第二类边界条件.
第一类边界条件. 三是在边界 S 上给出了未知函数 u 及其沿 S
的外法线方向的方向导数某种线性组合的
⎛ ∂u ⎞ + σ u ⎟ = f3 . 值,即 ⎜ ∂n 第三类边界条件. ⎝ ⎠s
数学物理方程与特殊函数 主页 上一页 下一页
M
初始条件:
u(M ,t)
t=0
= ϕ (M )
退出
数学物理方程与特殊函数 主页 上一页 下一页
泊松方程与拉 普拉斯方程
泊松方程与拉 普拉斯方程都是描 述稳恒状态的,与初 始状态无关,不提初 始条件.
数学物理方程与特殊函数 主页 上一页 下一页
退出

数理方程习题讲议

数理方程习题讲议



a 2 n 2 2 l2
t
n cos x l
数学物理方程与特殊函数
习题
2 u 2 u , 0 x l, t 0 a 2 a 2 n 2 2 t x t n 2 l u ( 0 , t ) u ( l , t ) u C0 Cn e cos x 0 , 0 , t 0 l n 1 x x 0 xl u ( x,0) x, 1 l l n C x d x 0 0 u ( x,0) x C C cos x
a2 于 是: c
令:
u j r 2 u a 2 t x c
2 2
Байду номын сангаас
数学物理方程与特殊函数
习题
习题2:长为 l 的均质杆,两端受压从而长度缩为 l (l 2 ) 放手后,杆自由振动,试写出该问题的定解问题。
解:因为杆作纵向自由振动,即无外力的作用,其泛 定方程为齐次波动方程。
数学物理方程与特殊函数
习题
习题3 设弦的两端固定于x=0及x=l,弦的初始位移如图所示,初速度为 零,没有外力作用,求弦作横向振动时的位移函数u(x,t)。 2 2u 2 u , 0 x l, t 0 2 a 2 x t u (0, t ) 0, u (l , t ) 0, t 0 u ( x,0) 0, 0 xl t u( x, t ) X ( x)T (t ) h 2 x, XT a X T 0 xc c u ( x,0) X 1 T h c xl 2 l x , X a T l c X X 0 X (0) 0, X (l ) 0 2 T a T 0 X X 0, 0 x l u (0, t ) X (0)T (t ) 0 X (l ) 0 X (0) 0, u (l , t ) X (l )T (t ) 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学物理方程》模拟试题一、填空题(3分⨯10=30分)1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ).2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u nuS=+∂∂)(σ是第( )类边界条件,其中S 为边界.5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22222x u a t u ∂∂=∂∂的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有=)(0x J dxd( ) . 7.根据勒让德多项式的表达式有)(31)(3202x P x P += ( ). 8.计算积分=⎰-dx x P 2112)]([( ) .9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) .二、试用分离变量法求以下定解问题(30分):1.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂===><<∂∂=∂∂====30,0,3,000,30,200322222,0x t u x x t x x u t u t t x u u u2.⎪⎪⎪⎩⎪⎪⎪⎨⎧===><<∂∂=∂∂===x t x x ut u u u u t x x 2,0,00,40,04022 3. ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂===><<+∂∂=∂∂====20,0,8,00,20,162002022222x t u t x x u t u t t x x u u u三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)⎪⎩⎪⎨⎧=∂∂=>+∞<<-∞+∂∂=∂∂==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u四、用积分变换法求解下列定解问题(10分):⎪⎪⎩⎪⎪⎨⎧=+=>>=∂∂∂==,1,10,0,1002y x u y u y x y x u五、利用贝赛尔函数的递推公式证明下式(10分):)(1)()('0''02x J xx J x J -=六、在半径为1的球内求调和函数u ,使它在球面上满足θ21cos ==r u ,即所提问题归结为以下定解问题(10分):.0,12cos 3,0,10,0)(sin sin 1)(11222πθθπθθθθθ≤≤+=≤≤<<=∂∂∂∂+∂∂∂∂=r u r ur r u r r r(本题的u 只与θ,r 有关,与ϕ无关)《数学物理方程》模拟试题参考答案一、 填空题:1.初始条件,边值条件,定解条件.2. )(2222222zu y u x u a t u ∂∂+∂∂+∂∂=∂∂ 3.01)(1222=∂∂+∂∂∂∂θρρρρρu u . 4. 三.5.U a dt U d 2222ω-=. 6.)(1x J -.7.2x .8.52.9.)1(212-x dxd . 10.2020)()(1lny y x x u -+-=.二、试用分离变量法求以下定解问题1.解 令)()(),(t T x X t x u =,代入原方程中得到两个常微分方程:0)()(2''=+t T a t T λ,0)()(''=+x X x X λ,由边界条件得到0)3()0(==X X ,对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到22223πβλn ==为特征值,特征函数3sin )(πn B x X n n =,再解)(t T ,得到32sin32cos )(;;t n D t n C t T n n n ππ+=,于是,3s i n )32s i n 32c o s (),(1xn t n D t n C t x u n n n πππ+=∑∞=再由初始条件得到0,)1(183sin 332130=-==+⎰n n n D n xdx n x C ππ,所以原定解问题的解为,3sin )32cos )1(18(),(11xn t n n t x u n n πππ+∞=-=∑2. 解 令)()(),(t T x X t x u =,代入原方程中得到两个常微分方程:0)()('=+t T t T λ,0)()(''=+x X x X λ,由边界条件得到0)4()0(==X X ,对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到22224πβλn ==为特征值,特征函数4sin )(πn B x X n n =,再解)(t T ,得到16;22)(t n n n e C t T π-=,于是,4si n (),(16122x n eC t x u tn n n ππ-∞=∑=再由初始条件得到140)1(164sin 242+-==⎰n n n xdx n x C ππ,所以原定解问题的解为,4sin)1(16),(161122xn e n t x u t n n n πππ-+∞=-=∑3.解 由于边界条件和自由项均与t 无关,令)(),(),(x w t x v t x u +=,代入原方程中,将方程与边界条件同时齐次化。

因此212''''22222)(16)(416)]([4c x c x x w x w x w xv t v ++-=⇒=⇒++∂∂=∂∂,再由边界条件有8)2(,0)0(==w w ,于是0,821==c c ,x x x w 82)(2+-=.再求定解问题⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂-===><<∂∂=∂∂====20,0),(,000,20,200322222,0x t v x w x t x x v t v t t x v v v 用分离变量法求以上定解问题的解为,2sin cos ])1)1[(32)1(16(),(331xn t n n n t x v n n n ππππ--+-=∑∞=故,2sin cos ])1)1[(32)1(16(28),(3312x n t n n n x x t x u n n n ππππ--+-+-=∑∞=三.解:令)(),(),(x w t x v t x u +=,代入原方程中,将方程齐次化,因此x a x w x x w a x x w x v a t v cos 1)(0cos )(cos )]([2''2''22222=⇒=+⇒++∂∂=∂∂,再求定解问题⎪⎪⎩⎪⎪⎨⎧=∂∂-=>∂∂=∂∂==,0),(cos 12sin 0,02022222t t t vx xw a x t x v a t v v 由达朗贝尔公式得到以上问题的解为atx a at x at x aat x at a a at x t x v cos cos 1cos sin 0)]cos(1)(2sin )cos(1)(2[sin 21),(222-=+---++-+=故.cos 1cos cos 1cos sin ),(22x aat x a at x t x u +-=四.解 :对y 取拉普拉斯变换),()],([p x U y x u L =,对方程和边界条件同时对y 取拉普拉斯变换得到p pU pdx dU px 11,12+===,解这个微分方程得到p px p p x U 111),(22++=,再取拉普拉斯逆变换有1),(++=y yx y x u所以原问题的解为1),(++=y yx y x u .五.证明:由公式)())((1x J x x J x dxd n n n n+---=有)()()(1'x J x x nJ x xJ n n n +-=-,令1=n 有)()()(211'x xJ x J x xJ -=-,所以)(1)()(11'2x J xx J x J +-=,又)()(),()(1'0''10'x J x J x J x J -=-=,所以)(1)()(0'0''2x J xx J x J -=.六.解:由分离变量法,令)()(),(θθΦ=r R r u ,得到∑∞==0)(cos ),(n n nn P r C r u θθ,由边界条件有∑∞===+=01)(cos 12cos 3n n n r P C u θθ,令x =θc o s ,)()()(261)12(322110022x P c x P c x P c x x ++=-=+-∴,)13(212622102-++=-x c x c c x , 4,0,0210===∴c c c ,故222222cos 6)1cos 3(214),(r r r r u -=-=θθθ。

相关文档
最新文档