高效液相色谱(HPLC)

合集下载

高效液相色谱法

高效液相色谱法

2.高效液相色谱法与气相色谱法的比较
(l)气相色谱法:分析对象仅占有机物总数的20%。 高效液相色谱法:分离和分析占有机物总数近80%的那些 高沸点、热稳定性差、离子型化合物及摩尔质量大的物质。
(2)气相色谱:流动相与组分不产生相互作用力,仅起运 载作用。 高效液相色谱法:流动相对组分可产生一定亲和力,并参与 固定相对组分作用的剧烈竞争,流动相对分离起很大作用, 相当于增加了一个控制和改进分离条件的参数;
高压输液泵应符合下列要求:密封性好,输出 流量恒定,压力平稳,可调范围宽,便于迅速 更换溶剂及耐腐蚀。
高压输液泵
常用的输液泵分为恒流泵和恒压泵两种。 恒流泵特点是在一定操作条件下,输出流量保持恒定而与色谱 柱引起阻力变化无关; 恒压泵是指能保持输出压力恒定,但其流量则随色谱系统阻力 而变化,故保留时间的重视性差。 目前主要使用恒流泵,又称机械泵,它又分机械注射泵和机械 往复泵两种,应用最多的是机械往复泵。
(四)检测系统
两种基本类型的检测器: 溶质型检测器:它仅对被分离组分的物理或化学特性有响应, 属于这类检测器的有紫外、荧光、安培检测器等。 总体检测器:它对试样和洗脱液总的物理或化学性质有响应, 属于这类检测器的有示差折光,电导检测器等。 (l)紫外检测器 (2)荧光检测器 (3)示差折光率检测器 (4)电化学检测器
高效液相色谱法
High Performance Liquid Chromatography,HPLC
§1
概 述
Introduction
一、高效液相色谱法概述
高效液相色谱法(HPLC)吸取了气相色谱与经典液相色谱优 点,并用现代化手段加以改进。
引入了气相色谱的理论;
在技术上采用了高压泵、高效固定相和高灵敏度检测器; 具备速度快、效率高、灵敏度高、操作自动化的特点;

hplc高效液相色谱

hplc高效液相色谱

hplc高效液相色谱HPLC高效液相色谱简介高效液相色谱(High Performance Liquid Chromatography,HPLC),也被称为液相色谱法(Liquid Chromatography),是一种广泛应用于药物分析、环境监测、食品检测等领域的分离技术。

HPLC色谱技术通过物质在液体流动相和固定相之间的相互作用,实现对分子化合物的分离、检测和定量。

相对于传统的柱层析技术,HPLC具有分离效率高、分析灵敏度高、分析速度快等特点,被广泛应用于科学研究和工业生产。

HPLC的基本原理HPLC色谱技术是建立在分配系数理论的基础上。

它通过固定填料上溶解物质与流动相中溶解物质之间的分配与再分配,实现目标化合物在固定相中的分离。

HPLC色谱法的基本步骤包括:样品制备、装柱、选择流动相、进样、洗脱分离、检测及数据处理等。

HPLC的主要组成部分HPLC主要由一系列组成部分组成,包括:溶剂输送系统、无菌进样器、色谱柱、检测器和数据处理系统等。

其中,溶剂输送系统用于控制流动相的输送速率和压力,确保流动相以一定速率通过色谱柱;无菌进样器用来将样品进样并转送到色谱柱中;色谱柱是分离目标化合物的关键组成部分,根据所分离物质的化学性质和目标要求选择合适的色谱柱;检测器用来检测溶质的浓度,并将信号转换为电信号输出;数据处理系统用来处理和分析检测到的信号,得出结果。

HPLC的种类和应用领域根据不同的分离机制和柱填料,HPLC可以分为很多不同的类型,包括:反相色谱、离子交换色谱、分子筛色谱等。

反相色谱是最常用的一种HPLC技术,其应用领域非常广泛。

例如,在药物研究领域,HPLC被广泛应用于药物分析、药代动力学研究、质量控制等方面。

在环境监测领域,HPLC被用来检测土壤和水体中的有机污染物、重金属和农药等化学物质。

在食品安全检测领域,HPLC被用来检测食品中的添加剂、农药残留和重金属等有害物质。

HPLC的发展和进展自HPLC技术在20世纪60年代首次提出以来,随着科学技术的不断发展,HPLC技术也在不断进步和改进。

高效液相色谱-HPLCppt课件.ppt

高效液相色谱-HPLCppt课件.ppt

色谱法的分类
按固定相的形态分:
平面色谱 o 纸色谱
o 薄层色谱
柱色谱
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
色谱法的分类示意图
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
▪ 高压梯度洗脱(高压混合,高压进柱,2个 泵。)
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
▪安捷伦泵:小视频 ▪色谱学堂:泵
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
色谱法原理及分类
什么是色谱法 色谱法溯源 Tswett(茨维特)的实验 色谱法原理 色谱法的分类
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
什么是色谱法
色谱法是一种现代的分离分析方法 1906年正式命名(见诸文献) 20世纪30年代开始广泛研究和应用 高效液相色谱法的广泛应用始于20世纪70年代
1. 紫外—可见光度检测器:
①固定波长:254nm , 低压汞 灯。
② 可 调 波 长 : 190 ~ 800mm , 钨灯,氘灯。
UV
③光电二极管矩阵检测器: 190~700nm。
接色谱柱 石英窗 光电倍增管
废液
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统

高效液相色谱和超高效液相色谱

高效液相色谱和超高效液相色谱

高效液相色谱和超高效液相色谱高效液相色谱(HighPerformanceLiquidChromatography,HPLC)和超高效液相色谱(Ultra High Performance Liquid Chromatography,UHPLC),是现代分析化学中常用的分离技术。

它们可以对复杂的混合物进行分离和定量分析,广泛应用于药物分析、食品分析、环境分析、生物分析等领域。

本文将从原理、仪器、方法和应用等方面,介绍高效液相色谱和超高效液相色谱的基本知识。

一、原理高效液相色谱和超高效液相色谱的原理基本相同,都是利用样品在流动相中的分配系数差异,通过固定相和流动相的作用,将混合物中的化合物分离出来。

不同的是,超高效液相色谱采用了更小的颗粒固定相,使得流动相可以更快地通过固定相,从而提高了分离效率和分离速度。

在高效液相色谱和超高效液相色谱中,样品首先被注入流动相中,然后通过固定相的柱子。

固定相通常是一种多孔的固体材料,如硅胶、C18等。

样品中的化合物在流动相中的分配系数不同,因此在通过固定相时,会被分离出来。

分离出来的化合物,会在检测器中被检测到,从而实现分离和定量分析。

二、仪器高效液相色谱和超高效液相色谱的仪器基本相同,主要由注射器、流动相泵、柱子、检测器和计算机控制系统等组成。

(一)注射器注射器是将样品引入流动相中的关键部分。

常用的注射器有手动注射器和自动进样器。

手动注射器通常用于小样品量的分析,而自动进样器可以实现高精度、高效率的样品进样。

(二)流动相泵流动相泵是将流动相送入柱子中的装置。

其主要功能是控制流动相的流速和流量,并确保流动相的稳定性。

常用的流动相泵有恒压流量泵和梯度流量泵。

恒压流量泵可以保持恒定的流量,适用于等浓度的流动相。

梯度流量泵可以实现不同浓度的流动相混合,从而实现更好的分离效果。

(三)柱子柱子是高效液相色谱和超高效液相色谱的核心部分,用于固定相的分离。

常用的柱子材料有硅胶、C18、C8等。

高效液相色谱HPLC基本原理

高效液相色谱HPLC基本原理
Chlortolur on ?
Take peak spectrum
Match: 998
Compare with library
250 300 250 300 W a v e l e n g t h (nm)
W a v e l e n g t h (nm)
*Library Searching may be performed in an automated fashion.
一、 概述 高效液相色谱 (HPLC) 是以溶剂液体为流动相的色谱方法。按照固定相 不同可分为:液液分配色谱;吸附色谱(液固色谱);离子交换色谱;尺寸排
阻色谱(凝胶渗透色谱)。
早期液相色谱,包括Tswett的工作,都是在直径1~5cm, 长50~500cm的玻 璃柱中进行的。为保证有一定的柱流速,填充的固定相颗粒直径多在 150~200m范围内。即使这样,流速仍然很低(<1mL/min),分析时间仍然很
2)荧光检测器
许多有机物具荧光活性,尤其是芳香族化合物具有很强的活性。荧光检测 器是一种选择性很强的检测器,其灵敏度比UV检测器高2~3个数量级。
3)示差折光检测器 原理:利用两束相同角度的光照射溶剂相和样 品+溶剂相,利用二者对光的折射率不同,其中一 束(通常是通过样品+溶剂相)光因为发生偏转造 成两束光的强度差发生变化,将此差示信号放大并 记录,该信号代表样品的浓度。 为通用型检测器,灵敏度为10-7g/mL。但对温 度变化敏感,且不适于梯度淋洗。
串联泵 单元泵原理
单元泵工作原理
Damper阻尼器
Outlet Ball Valve出口 单向阀
Purge valve 冲洗阀
Active Inlet Valve入 口单向阀

hplc高效液相色谱法

hplc高效液相色谱法

HPLC高效液相色谱法简介高效液相色谱法(HPLC)是一种利用液体作为流动相,通过高压输液系统,将样品中的各组分在固定相和流动相之间进行分配或吸附等作用而实现分离和检测的色谱技术。

HPLC具有分离效率高、灵敏度高、选择性强、分析速度快、样品适用范围广等优点,已成为化学、生物、医药、环境等领域中最重要的分析方法之一。

本文将简要介绍HPLC的基本原理、仪器组成、常用的色谱模式和应用领域,以期对HPLC感兴趣的读者有所帮助。

一、HPLC的基本原理HPLC的基本原理是利用样品中的各组分在固定相和流动相之间的不同亲和力,使其在色谱柱内以不同的速度移动,从而达到分离的目的。

固定相是填充在色谱柱内的颗粒状物质,可以是固体或涂于固体载体上的液体。

流动相是通过高压泵送入色谱柱的溶剂或溶剂混合物,可以是极性或非极性的。

样品是通过进样器注入流动相中,并随流动相进入色谱柱。

当样品中的各组分经过固定相时,会发生吸附、分配、离子交换、排阻等作用,导致它们在固定相中停留不同的时间。

这个时间称为保留时间(retention time),通常用tR表示。

保留时间是反映样品组分在色谱柱内分离程度的重要参数,不同的组分有不同的保留时间。

当样品组分从色谱柱出口流出时,会被检测器检测到,并产生一个信号。

这个信号随时间变化而变化,形成一个色谱峰(chromatographic peak)。

色谱峰的位置反映了样品组分的保留时间,色谱峰的面积或高度反映了样品组分的含量或浓度。

将检测器信号随时间变化而绘制出来,就得到了一条色谱图(chromatogram)。

色谱图上可以看到不同的色谱峰,每个峰对应一个样品组分。

通过比较保留时间和色谱峰面积或高度,就可以对样品进行定性和定量分析。

二、HPLC仪器组成HPLC仪器主要由以下几个部分组成:溶剂供给系统(solvent delivery system):负责提供恒定压力和流速的流动相,并将溶剂混合成所需比例。

高效液相色谱的简称

高效液相色谱的简称为HPLC,全称为High Performance Liquid Chromatography。

它是一种常用的分离和分析技术,广泛应用于化学、制药、环境科学、食品安全等领域。

HPLC利用液体作为流动相,在固定填充物(如柱填充剂)中进行分离。

样品溶液被注入进HPLC系统,经过柱子后,各组分根据其在填充物上的亲和性差异而被分离。

通过控制流动相的性质和梯度,可以实现对样品中不同组分的分离和定量。

HPLC具有以下特点:
1. 高效:HPLC能够在短时间内完成复杂样品的分离和分析,提高实验效率。

2. 灵敏度高:HPLC可以检测到很低浓度的物质,通常可达到ppm或ppb级别。

3. 选择性强:HPLC可以通过调整流动相的成分和条件来实现对不同化合物的选择性分离。

4. 应用广泛:HPLC可以用于分析各种样品,包括有机物、无机物、生物大分子等。

5. 自动化程度高:现代HPLC系统具有自动进样、自动分离和自动检测等功能,减少了人工操作的影响。

因为HPLC在科学研究和实验室分析中具有重要地位和广泛应用,所以被称为高效液相色谱。

1。

20-高效液相色谱

16
5. 离子色谱
其分离原理与离子交换色谱原理一样, 电导检测器检测。 问题:由于流动相都是强电解质,其电导率比 待测离子约高 2 个数量级,这种强背景电导会完
全掩盖待测离子信号。
1975年Small提出,在离子交换柱之后,再串结一根
抑制柱。该柱装填与分离柱电荷完全相反的离子交 换树脂。通过分离柱后的样品再经过抑制柱,使具 有高背景电导的流动相转变为低背景电导的流动相, 从而可用电导检测器检测各种离子的含量。
在反相色谱法中,通过调节流动相的pH,抑制样品组 分的解离,增加它在固定相中的溶解度,以达到分离 有机弱酸、弱碱的目的,称为离子抑制色谱法(ISC)
(1)适用范围 弱酸 3.0≤pKa≤ 7.0 弱碱 7.0≤pKa≤ 8.0
(2)抑制剂 弱酸(乙酸)、弱碱(氨水)或缓冲盐 (3)影响k的因素 a.与流动相的极性有关(同反相色谱) b.与流动相pH有关:弱酸 pH≤pKa k↑, tR↑ 弱碱 反之
由苯乙烯与二乙烯苯交联而成
21
20.4.2 化学键合相
化学键合固定相: 目前应用最广、性能最佳的固定相; 一般的键合相用硅胶为载体: a. 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C (ODS)
1. 非极性键合相 键合相表面基团为非极性烃基, 如C18 、C8、 C1 和苯基等。一般用于反相色谱
33
选择流动相时应注意的几个问题
(1)尽量使用高纯度试剂作流动相,防止微量杂质长期累 积损坏色谱柱和使检测器噪声增加。 (2)使用前需要用微孔滤膜过滤,除去固体颗粒。
(3)流动相使用前最好脱气。
34
20.6 高效液相色谱仪
35
记录系统
输液系统

高效液相色谱法


在液液色谱中为了避免固定液的流失。对流动相的 一个基本要求是流动相尽可能不与固定相互溶, 而且流动相与固定相的极性差别越显著越好。根 据所使用的流动相和固定相的极性程度,将其分 为正相分配色谱和反相分配色谱。如果采用流动 相的极性小于固定相的极性,称为正相分配色谱, 它适用于极性化合物的分离。其流出顺序是极性 小的先流出,极性大的后流出。如果采用流动相 的极性大于固定相的极性,称为反相分配色谱。 它适用于非极性化合物的分离,其流出顺序与正 相色谱恰好相反。
流动相
离子交换色谱法所用流动相大都是一定pH和盐浓度 (或离子强度)的缓冲溶液。通过改变流动相中 盐离子的种类、浓度和pH值可控制k值,改变选择 性。如果增加盐离子的浓度,则可降低样品离子 的竞争吸附能力,从而降低其在固定相上的保留 值。 一般,对于阴离子交换树脂来说,各种阴 离子的滞留次序为: 柠檬酸离子>SO42- >C2O42- >I- >NO3- >CrO42- > Br->SCN-> Cl->HCOO->CH3C00->OH->F-

相平衡参数
• 分配系数(distribution coefficient,K)——在一定温度下,化合物在两 相间达到分配平衡时,在固定相与流动相中的浓度之比。 • 分配系数与组分、流动相和固定相的热力学性质有关,也与温度、压 力有关。在不同的色谱分离机制中,K有不同的概念:吸附色谱法为 吸附系数,离子交换色谱法为选择性系数 (或称交换系数),凝胶 色谱法为渗透参数。但一般情况可用分配系数来表示 • 在条件(流动相、固定相、温度和压力等)一定,样品浓度很低时 (Cs、Cm很小)时,K只取决于组分的性质,而与浓度无关。这只 是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰; 在许多情况下,随着浓度的增大,K减小,这时色谱峰为拖尾峰;而 有时随着溶质浓度增大,K也增大,这时色谱峰为前延峰。因此,只 有尽可能减少进样量,使组分在柱内浓度降低,K恒定时,才能获得 正常峰。 在同一色谱条件下,样品中K值大的组分在固定相中滞留时间长,后 流出色谱柱;

高效液相色谱法(HPLC)

高效液相色谱法(HPLC) High Performance LiquidChromatography§3-1 高效液相色谱法概述一、定义以高压输出液体为流动相,以小粒径填料填充色谱柱的色谱分析方法。

高效液相色谱法是继气相色谱之后,70年代初期发展起来的一种以液体做流动相的新色谱技术.二、HPLC特点1、高压经典的液相色谱法,流动相在常压下输送,所用的固定相柱效低,分析周期长。

而现代液相色谱法中,流动相改为高压输送(150~350 ⨯105 Pa,最高输送压力可达450⨯105 Pa);2、高速由于流动相流速高,分析时间大大缩短,几min、十几min可完成一个分析任务。

3、高效HPLC色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万)。

4、高灵敏度利用高灵敏度的检测器,检测灵敏度大大提高。

紫外检测器10-9g荧光检测器10-11g高效液相色谱三、液相色谱分离原理及分类液相色谱分离的实质是样品分子(以下称溶质)与溶剂(即流动相或洗脱液)以及固定相分子间的作用,作用力的大小,决定色谱过程的保留行为。

根据分离机制不同,液相色谱可分为:液固吸附色谱、液液分配色谱、化学键合相色谱、离子交换色谱以及分子排阻色谱等类型。

四、液相色谱与气相色谱的比较1、相同点(1)基本原理一致:不同组分在两相中的作用力不同。

(2)基本概念一致:基本概念:保留值、塔板数、塔板高度、分离度、选择性等与气相色谱一致。

(3)基本理论一致:塔板理论与速率方程也与气相色谱基本一致。

2、不同点由于在液相色谱中以液体代替气相色谱中的气体作为流动相,而液体和气体的有性质本质不同,因此,两种方法也有不同之处:(1)仪器设备和操作条件不同;(2)应用范围不同;气相色谱仅能分析在操作温度下能气化而不分解的物质。

对高沸点化合物、非挥发性物质、热不稳定化合物、离子型化合物及高聚物的分离、分析较为困难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作为色谱柱填料的凝胶表 面有许多大小不一的孔穴, 体积非常大(即分子量很 大)的溶质分子由于无法 进入任何孔穴,很快就从 色谱柱中流出;尺寸较小 的溶质分子,由于他们进 入部分尺寸较大的孔穴, 因此在色谱柱中的停留时 间较长,较迟从色谱柱中 流出。这样,溶质分子就 会按尺寸从大到小的顺序 从色谱柱中流出,被分离
反相凝胶渗透色谱(RGPC)就是将未知孔穴尺寸及分布 的试样装填色谱柱,用一系列已知分子尺寸的溶质分别流 经色谱柱,根据不同尺寸分子对应的淋出体积,推算试样 内部的孔穴尺寸及分布。 项目 正相GPC 反相GPC (流动相内) 溶质分子尺寸 未知 已知 (固定相内) 孔穴尺寸和分布 已知 未知


同系列标样种类较多,具有较宽的相对分子量分
布,且每种标样的分子量分布较窄

溶液中,标样分子不能有变化,具有已知的尺寸
大小和形状

本课题组采用的标样分子体系及其对应孔穴直径
将纤维磨成粉末装填 将纤维切碎装填 用完整的纤维装填 1.松散纤维装填 2.块状、球状、条状纤维装填 3.棉条、粗纱、纱线装填 4.棉胎装填 5.织物直接装填 本课题组将棉织物剪成2mm ×2mm左右的碎布, 再用分析研磨机处理,使之成纤维状
针对仪器、方法本身特性和本课题组实际情况,注意: 整理到织物上的化学品必须具有一定的牢度,不被轻易淋 洗下来。若被淋洗下来,会影响试验结果。若洗脱的化学 品不亲水,即油性,则可能沾在仪器上而不易去除,影响 试验结果 可测的最大孔穴为39nm。虽然有更大的分子可用于标定 更大的孔穴,但它们的淋出时间相差在误差范围内,从而 失去意义。 只有一种装柱形式。这是由本课题组的实际情况决定


分离色谱(Partition Chromatography)
离子色谱(Ion Chromatography) 亲和色谱(Affinity Chromatography) 体积排阻色谱(Size Exclusion Chromatography)或 凝胶渗透色谱(Gel Permeation Chromatography)
高效液相色谱(HPLC)是色谱法的一个重要分支,以液体为 流动相,采用高压输液系统,将具有不同极性的单一溶剂或
不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色
谱柱,在柱内各成分被分离后,进入检测器进行检测,从而 实现对试样的分析
按照分离原理的不同,HPLC可以分为以下几种

吸附色谱(Adsorption Chromatography)

本课题组的纤维装填需已制好的纤维样拿到外校由专人装填
填 料 方 法
轻叩干填法
d>20um
高压湿法 (匀浆填装技术)
下流法 上流法
用注射器将试样(即标样:溶有一定量的标样分子的超纯水)注 入进样器,由泵输入的超纯水将标样带入色谱柱。当试样进入示差 折光检测器时,由于它们与作为参比的超纯水折光指数不同,会立 即被检测到,检测器就发出信号给记录仪,从而在记录仪上显示出 淋出峰。组分收集器是由多个已知质量的试管和一个精密天平组成。 它将流出的组分分别收集、称重,用于分析时归一化计算
流动相:水(本课题组采用超纯水) 使用过的标样分子体系
1.不同分子量、麦芽糖、棉子糖、水苏糖)
和一系列多聚糖(分子量在2600~24000)
3.乙二醇、聚乙二醇和葡聚糖(本课题组采用)
标样分子必须满足的条件

标样分子不能在纤维上发生化学吸附或物理吸附
相关文档
最新文档