人教新课标版数学高二-2015年春数学选修2-2作业 模块综合检测
人教新课标版数学高二-2015版高中数学(RJ)选修2-2第一章《导数及其应用》测试

第一章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设函数y =f (x )在(a ,b )上可导,则f (x )在(a ,b )上为增函数是f ′(x )>0的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件解析 y =f (x )在(a ,b )上f ′(x )>0⇒y =f (x )在(a ,b )上是增函数,反之,y =f (x )在(a ,b )上是增函数⇒f ′(x )≥0⇒f ′(x )>0.答案 A2.若曲线y =f (x )在点(x 0,f (x 0))处的切线方程是2x +y -1=0,则( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在解析 曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率为f ′(x 0)=-2<0.答案 B3.曲线y =13x 3-2在点(-1,-53)处切线的倾斜角为( ) A .30°B .45°C .135°D .150°解析 ∵y ′=x 2,k =tan α=y ′|x =-1=(-1)2=1, ∴α=45°. 答案 B4.曲线f (x )=x 3+x -2的一条切线平行于直线y =4x -1,则切点P 0的坐标为( )A .(0,-1)或(1,0)B .(1,0)或(-1,-4)C .(-1,-4)或(0,-2)D .(1,0)或(2,8)解析 设P 0(x 0,y 0),则f ′(x 0)=3x 20+1=4, ∴x 20=1,∴x 0=1,或x 0=-1.∴P 0的坐标为(1,0)或(-1,-4). 答案 B5.下列函数中,在(0,+∞)上为增函数的是( ) A .y =sin 2x B .y =x 3-x C .y =x e x D .y =-x +ln(1+x )解析 对于C ,有y ′=(x e x )′=e x +x e x =e x (x +1)>0. 答案 C6.下列积分值为2的是( ) A.⎠⎛05(2x -4)d xB .⎠⎛0πcos x d xC .⎠⎛131x d x D .⎠⎛0πsin x d x解析 ⎠⎛πsin x d x =-cos x ⎪⎪⎪⎪π0=-cos π+cos 0=2.答案D7.函数f(x)在其定义域内可导,y=f(x)的图象如右图所示,则导函数y=f′(x)的图象为()解析由y=f(x)的图象知,有两个极值点,则y=f′(x)的图象与x轴应有两个交点,又由增减性知,应选D项.答案D8.已知函数f(x)=x3-3x2-9x,x∈(-2,2),则f(x)有()A.极大值5,极小值为-27B.极大值5,极小值为-11C.极大值5,无极小值D.极小值-27,无极大值解析 f ′(x)=3x 2-6x -9 =3(x +1)(x -3). 当x<-1时,f ′(x)>0, 当-1<x<3时,f ′(x)<0. ∴x =-1是f(x)的极大值点.且极大值为f(-1)=5,在(-2,2)内无极小值. 答案 C9.已知f(x)为三次函数,当x =1时f(x)有极大值4,当x =3时f(x)有极小值0,且函数f(x)过原点,则此函数是( )A .f(x)=x 3-2x 2+3xB .f(x)=x 3-6x 2+xC .f(x)=x 3+6x 2+9xD .f(x)=x 3-6x 2+9x 解析 设f(x)=ax 3+bx 2+cx(a ≠0),则f ′(x)=3ax 2+2bx +c =3a(x -1)(x -3)=3ax 2-12ax +9a. 由题意得⎩⎪⎨⎪⎧f (1)=a +b +c =4,f (3)=27a +9b +3c =0,c =9a.解得a =1,b =-6,c =9. 所以f(x)=x 3-6x 2+9x. 答案 D10.由抛物线y =x 2-x ,直线x =-1及x 轴围成的图形的面积为( )A .23 B .1 C .43 D .53解析 如图所示,阴影部分的面积为S 1=⎠⎛0-1(x 2-x)d x=(13x 3-12x 2)⎪⎪⎪⎪ 0-1 =56.S 2= ⎪⎪⎪⎪ ⎠⎛01(x 2-x)d x ⎪⎪⎪⎪ =-(13x 3-12x 2)⎪⎪⎪⎪ 10=16, 故所求的面积为S =S 1+S 2=1. 答案 B11.函数f(x)=ax 3+bx 2+cx 在x =1a 处有极值,则ac +2b 的值为( )A .-3B .0C .1D .3解析 f ′(x)=3ax 2+2bx +c ,依题意知,3a ×(1a )2+2b ×1a +c =0, 即3a +2ba +c =0, ∴2b +ac =-3. 答案 A12.设函数f(x)满足x 2f ′(x)+2xf(x)=e x x ,f(2)=e28,则x>0时,f(x)( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析 由题意知,f ′(x)=e x x 3-2f (x )x =e x -2x 2f (x )x3.令g(x)=e x-2x 2f(x),则g ′(x)=e x -2x 2f ′(x)-4xf(x)=e x -2[x 2f ′(x)+2xf(x)]=e x -2e xx =e x ⎝ ⎛⎭⎪⎫1-2x . 由g ′(x)=0,得x =2.当x =2时,g(x)有极小值g(2)=e 2-2×22f(2)=e 2-8·e 28=0.∴g(x)≥0.当x>0时,f ′(x)=g (x )x 3≥0,故f(x)在(0,+∞)上单调递增,∴f(x)既无极大值也无极小值.答案 D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.函数f(x)在R 上可导,且f ′(0)=2.∀x ,y ∈R ,若函数f (x+y )=f (x )f (y )成立,则f (0)=________.解析 令y =0,则有f (x )=f (x )f (0). ∵f ′(0)=2,∴f (x )不恒为0,∴f (0)=1. 答案 114.解析答案 π2-115.若函数f(x)=13x 3-f ′(1)·x 2+2x +5,则f ′(2)=________. 解析 ∵f ′(x)=x 2-2f ′(1)x +2, ∴f ′(1)=1-2f ′(1)+2. ∴f ′(1)=1. ∴f ′(x)=x 2-2x +2. ∴f ′(2)=22-2×2+2=2. 答案 216.一物体以初速度v =9.8t +6.5米/秒的速度自由落下,且下落后第二个4 s 内经过的路程是________.解析 ⎠⎛48(9.8t +6.5)d t =(4.9t 2+6.5t)⎪⎪⎪⎪84=4.9×64+6.5×8-4.9×16-6.5×4 =313.6+52-78.4-26 =261.2. 答案 261.2米三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知函数f(x)=13x 3-4x +m 在区间(-∞,+∞)上有极大值283.(1)求实数m 的值;(2)求函数f(x)在区间(-∞,+∞)的极小值. 解 f ′(x)=x 2-4=(x +2)(x -2). 令f ′(x)=0,得x =-2,或x =2. 故f(x)的增区间(-∞,-2)和(2,+∞), 减区间为(-2,2).(1)当x =-2,f(x)取得极大值, 故f(-2)=-83+8+m =283, ∴m =4.(2)由(1)得f(x)=13x 3-4x +4, 又当x =2时,f(x)有极小值f(2)=-43.18.(12分)用总长为14.8米的钢条制成一个长方体容器的框架,如果所制的容器的底面的长比宽多0.5米,那么高为多少时容器的容器最大?并求出它的最大容积.解 设容器底面宽为x m ,则长为(x +0.5)m ,高为(3.2-2x)m .由⎩⎪⎨⎪⎧3.2-2x>0,x>0,解得0<x<1.6, 设容器的容积为y m 3,则有y =x(x +0.5)(3.2-2x)=-2x 3+2.2x 2+1.6x , y ′=-6x 2+4.4x +1.6,令y ′=0,即-6x 2+4.4x +1.6=0, 解得x =1,或x =-415(舍去).∵在定义域(0,1.6)内只有一个点x =1使y ′=0,且x =1是极大值点,∴当x =1时,y 取得最大值为1.8. 此时容器的高为3.2-2=1.2 m .因此,容器高为1.2 m 时容器的容积最大,最大容积为1.8 m 3. 19.(12分)设函数f(x)=2x 3-3(a +1)x 2+6ax(a ∈R ). (1)当a =1时,求证:f (x )为R 上的单调递增函数; (2)当x ∈[1,3]时,若f (x )的最小值为4,求实数a 的值. 解 (1)证明:当a =1时,f (x )=2x 3-6x 2+6x ,则f ′(x )=6x 2-12x +6=6(x -1)2≥0,∴f (x )为R 上的单调增函数.(2)f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ).①当a ≤1时,f (x )在区间[1,3]上是单调增函数,此时在[1,3]上的最小值为f (1)=3a -1,∴3a -1=4,∴a =53>1(舍去);②当1<a <3时,f (x )在(1,a )上是减函数,在区间(a,3)上是增函数,故在[1,3]上的最小值为f (a )=2a 3-3(a +1)a 2+6a 2=4.化简得(a +1)(a -2)2=0,∴a =-1<1(舍去),或a =2;③当a ≥3时,f (x )在区间(1,a )上是减函数,故f (3)为最小值, ∴54-27(a +1)+18a =4, 解得a =229<3(舍去). 综上可知,a =2.20.(12分)设函数f (x )=a 3x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两根分别为1,4.(1)当a =3,且曲线y =f (x )过原点时,求f (x )的解析式; (2)若f (x )在(-∞,+∞)内无极值点,求a 的取值范围. 解 由f (x )=a3x 3+bx 2+cx +d ,得f ′(x )=ax 2+2bx +c ,∵f ′(x )-9x =ax 2+2bx +c -9x =0的两根分别为1,4,∴⎩⎪⎨⎪⎧a +2b +c -9=0,16a +8b +c -36=0,(*) (1)当a =3时,由(*)得⎩⎪⎨⎪⎧2b +c -6=0,8b +c +12=0,解得b =-3,c =12.又∵曲线y =f (x )过原点,∴d =0. 故f (x )=x 3-3x 2+12x .(2)由于a >0,所以“f (x )=a 3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点”,等价于“f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立”.由(*)式得2b =9-5a ,c =4a .又Δ=(2b )2-4ac =9(a -1)(a -9),解⎩⎪⎨⎪⎧a >0,Δ=9(a -1)(a -9)≤0,得a ∈[1,9], 即a 的取值范围是[1,9].21.(12分)已知函数f (x )=ax 3+bx 2的图象经过点M (1,4),曲线在点M 处的切线恰好与直线x +9y =0垂直.(1)求实数a ,b 的值;(2)若函数f (x )在区间[m ,m +1]上单调递增,求m 的取值范围. 解 (1)∵f (x )=ax 3+bx 2的图象经过点M (1,4),∴a +b =4.①又f ′(x )=3ax 2+2bx ,则f ′(1)=3a +2b ,由条件f ′(1)(-19)=-1,得3a +2b =9.②由①,②解得a =1,b =3.(2)f (x )=x 3+3x 2,f ′(x )=3x 2+6x ,令f ′(x )=3x 2+6x ≥0,得x ≥0,或x ≤-2,若函数f (x )在区间[m ,m +1]上单调递增,则[m ,m +1]⊆(-∞,-2]∪[0,+∞),∴m ≥0,或m +1≤-2,即m ≥0,或m ≤-3,∴m 的取值范围是(-∞,-3]∪[0,+∞).22.(12分)已知函数f (x )=(x +1)ln x -x +1.(1)若xf ′(x )≤x 2+ax +1,求a 的取值范围;(2)证明:(x -1)f (x )≥0.解 (1)f ′(x )=x +1x +ln x -1=ln x +1x ,xf ′(x )=x ln x +1,题设xf ′(x )≤x 2+ax +1等价于ln x -x ≤a .令g (x )=ln x -x ,则g ′(x )=1x -1.当0<x <1时,g ′(x )>0;当x ≥1时,g ′(x )≤0,x =1是g (x )的最大值点,g (x )≤g (1)=-1.综上,a 的取值范围是[-1,+∞).(2)由(1)知,g (x )≤g (1)=-1,即g (x )+1≤0,即ln x -x +1≤0,当0<x <1时,f (x )=(x +1)ln x -x +1=x ln x +(ln x -x +1)≤0;当x ≥1时,f (x )=ln x +(x ln x -x +1)=ln x +x (ln x +1x -1)=ln x -x (ln 1x -1x +1)≥0.所以(x -1)f (x )≥0.。
人教新课标版数学高二-人教B版选修2-2综合素质测试

选修2-2综合素质测试时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.z -是z 的共轭复数.若z +z -=2,(z -z -)i =2(i 为虚数单位),则z =( )A .1+iB .-1-iC .-1+iD .1-i D本题考查复数、共轭复数的运算.设z =a +b i ,则z -=a -b i.由题设条件可得a =1,b =-1.选D.2.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( )A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)C本题主要考查导数的概念及分式不等式的解法和对数的概念.因为f (x )=x 2-2x -4ln x ,∴f ′(x )=2x -2-4x =2(x 2-x -2)x >0, 即⎩⎨⎧x >0x (x 2-x -2)>0,解得x >2,故选C. 3.下列命题中正确的是( )A .复数a +b i 与c +d i 相等的充要条件是a =c 且b =dB .任何复数都不能比较大小C .若z 1=z 2,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=z 2CA 选项未注明a ,b ,c ,d ∈R .实数是复数,实数能比较大小.z 1与z 2的模相等,符合条件的z 1,z 2有无数多个,如单位圆上的点对应的复数的模都是1.故选C.4.数列1,12,12,13,13,13,14,14,14,14,…,的前100项的和等于( ) A .13914B .131114C .14114D .14314 A从数列排列规律看,项1n 有n 个,故1+2+…+n =n (n +1)2≤100.得n (n +1)≤200,所以n ≤13,当n =13时,n (n +1)2=13×7=91(个),故前91项的和为13,从第92项开始到第100项全是114,共9个114,故前100项的和为13914.故选A. 5.对一切实数x ,不等式x 2+a |x |+1≥0恒成立,则实数a 的取值范围是( )A .(-∞,-2-2,2-2,+∞) D .答案解析答案解析答案解析答案解析答案解析答案解析-1,2答案解析-1,2答案解析答案解析答案解析答案解析答案解析证明解析解析0,1解析0,10,x 2x 2,1解析-1,1解析-1,00,1-1,1-1,1-1,1-1,1hslx3y3h .。
高二数学选修2-2综合测试卷新课标人教版

高二数学选修2-2综合测试卷一、选择题1、设)(x f 为可导函数,且满足12)1()1(lim 0-=--®xx f f x ,则过曲线)(x f y =上点))1(,1(f 处的切线斜率为 ( ))A 2B -1C 1D -22、若复数i m m m m z )23()232(22+-+--=是纯虚数,则实数m 的值为A 1或2B 21-或2 C 21-D 23、设)(,)(3bx a f x x f -=的导数是(的导数是( ))A )(3bx a -B 2)(32bx a b -- C 2)(3bx a b - D 2)(3bx a b --4、点P 在曲线323+-=x x y 上移动时,过点P 的切线的倾斜角的取值范围是(的切线的倾斜角的取值范围是( )) A ],0[p B ),43[)2,0(p p pÈ C ]43,2[]2,0[p ppÈ D ),43[]2,0[p p pÈ 5、已知0,,¹Îb a R b a 且,则在①ab b a ³+222;②2³+ba ab ;③2)2(b a a b +£;④2)2(222b a ba +£+这四个式子中,恒成立的个数是(这四个式子中,恒成立的个数是( ))A 1个B 2个C 3个D 4个6、利用数学归纳法证明“*),12(312)()2)(1(N n n n n n n nÎ-´×××´´´=+×××++ ”时,从“k n =”变到”变到 ““1+=k n ”时,左边应增乘的因式是(”时,左边应增乘的因式是( )) A 12+k B112++k k C1)22)(12(+++k k k D132++k k7、若函数2)(3-+=ax x x f 在区间),1(+¥内是增函数,则实数a 的取值范围是(的取值范围是( )) A ),3(+¥ B ),3[+¥- C ),3(+¥- D )3,(--¥ 8、当n 取遍正整数时,nnii -+表示不同值得个数是A 1B 2C 3D 49、函数12)(2++=ax ax x f 在[-3[-3,,2]2]上有最大值上有最大值4。
人教新课标版数学高二-2015年春数学选修2-2作业 第一章《导数及其应用》综合检测

(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=(2πx )2的导数是( ) A .f ′(x )=4πx B .f ′(x )=4π2x C .f ′(x )=8π2xD .f ′(x )=16πx解析:选C .f (x )=(2πx )2=4π2x 2, ∴f ′(x )=8π2x .2.已知物体的运动方程是s =13t 3-4t 2+12t (t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或6秒B .2秒或16秒C .2秒、8秒或16秒D .2秒或6秒 解析:选D .s ′=t 2-8t +12=0⇒t =2或t =6.3.若曲线f (x )=x 4-2x 在点P 处的切线垂直于直线x +2y +1=0,则点P 的坐标为( ) A .(1,1) B .(1,-1) C .(-1,1)D .(-1,-1)解析:选B.∵f ′(x )=4x 3-2,设P (x 0,y 0), 由题意得f ′(x 0)=4x 30-2=2, ∴x 0=1,y 0=-1. 故P 点坐标为(1,-1). 4.下列积分等于2的是( ) A.⎠⎛022x d xB.⎠⎛02(12x +1)d x C .⎠⎛021d xD .⎠⎛1212xd x解析:选C .⎠⎛021d x =x |20=2.5.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 解析:选D .∵f (x )=2x +ln x ,∴f ′(x )=-2x 2+1x ,令f ′(x )=0,即-2x 2+1x =x -2x 2=0,解得x =2.当x <2时,f ′(x )<0; 当x >2时,f ′(x )>0, 所以x =2为f (x )的极小值点.6.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( ) A .0≤a ≤21 B .a =0或a =7 C .a <0或a >21D .a =0或a =21解析:选A.f ′(x )=3x 2+2ax +7a ,当Δ=4a 2-84a ≤0,即0≤a ≤21时,f ′(x )≥0恒成立,函数f (x )不存在极值点.7. 已知f (x )的导函数f ′(x )的图象如图所示,那么f (x )的图象最有可能是图中的( )解析:选A.∵x ∈(-∞,-2)时,f ′(x )<0, ∴f (x )为减函数;同理f (x )在(-2,0)上为增函数,(0,+∞)上为减函数.8.以长为10的线段AB 为直径作半圆,则它的内接矩形面积的最大值为( ) A .10 B .15 C .25D .50解析:选C .设内接矩形的长为x , 则宽为25-x 24,∴S 2=x 2·(25-x 24)=y , ∴y ′=50x -x 3.令y ′=0,得x 2=50,x =0(舍去), ∴S 2max =625,即S max =25.9.若函数y =a (x 3-x )的递增区间是(-∞,-33),(33,+∞),则a 的取值范围是( ) A .a >0 B .-1<a <0 C .a >1D .0<a <1解析:选A.依题意y ′=a (3x 2-1)>0的解集为(-∞,-33),(33,+∞), 故a >0.10.若函数f (x )在(0,+∞)上可导,且满足f (x )>-xf ′(x ),则一定有( ) A .函数F (x )=f (x )x在(0,+∞)上为增函数B .函数F (x )=f (x )x在(0,+∞)上为减函数C .函数G (x )=xf (x )在(0,+∞)上为增函数D .函数G (x )=xf (x )在(0,+∞)上为减函数解析:选C .设y =xf (x ),则y ′=xf ′(x )+f (x )>0,故y =xf (x )在(0,+∞)上递增,故选C . 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)11.设x =-2与x =4是函数f (x )=x 3+ax 2+bx 的两个极值点,则常数a -b 的值为________. 解析:∵f ′(x )=3x 2+2ax +b ,∴⎩⎨⎧-2+4=-2a 3-2×4=b3⇒⎩⎪⎨⎪⎧a =-3,b =-24.∴a -b =-3+24=21.答案:2112.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t (v 单位:m/s ,t 单位:s),则列车刹车后至停车时的位移为________.解析:停车时v (t )=0,则27-0.9t =0,∴t =30 s ,s =∫300v(t)d t =∫300(27-0.9t)d t=(27t -0.45t 2)300=405(m ). 答案:405 m13.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________. 解析:设圆柱的底面半径为R ,母线长为L ,则V =πR 2L =27π,所以L =27R 2.要使用料最省,只需使圆柱表面积最小.S 表=πR2+2πRL =πR 2+2π·27R ,令S ′表=2πR -54πR2=0,得R =3,即当R =3时,S 表最小.答案:314.已知函数g(x)=x 3-x 2(x>0),h(x)=e x -x ,p(x)=cos 2x(0<x<π)的导函数分别为g ′(x),h ′(x),p ′(x),其零点依次为x 1,x 2,x 3,则将x 1,x 2,x 3按从小到大的顺序用“<”连接起来为________.解析:由g ′(x)=3x 2-2x =0,得x =0或x =23,∵x>0,∴x =23;由h ′(x)=e x -1=0,得x=0;由p ′(x)=-2sin 2x =0,得2x =k π(k ∈Z ),∴x =k π2(k ∈Z ),∵0<x <π,∴x =π2.∴x 1=23,x 2=0,x3=π2,故有x2<x1<x3.答案:x2<x1<x3三、解答题(本大题共6小题,每小题10分,共60分.解答应写出必要的文字说明、证明过程或演算步骤)15.设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3处取得极值.(1)求f(x)的解析式;(2)求f(x)在点A(1,16)处的切线方程.解:(1)f′(x)=6x2-6(a+1)x+6a.∵f(x)在x=3处取得极值,∴f′(3)=6×9-6(a+1)×3+6a=0,解得a=3.∴f(x)=2x3-12x2+18x+8.(2)A点在f(x)上,由(1)可知f′(x)=6x2-24x+18,f′(1)=6-24+18=0,∴切线方程为y=16.16.已知实数a>0,求函数f(x)=ax(x-2)2(x∈R)的单调区间.解:∵f(x)=ax(x-2)2=ax3-4ax2+4ax,∴f′(x)=3ax2-8ax+4a=a(3x2-8x+4)=a(3x-2)(x-2).令f′(x)>0,则x<23或x>2,∴函数f(x)的增区间是(-∞,23)和(2,+∞);令f′(x)<0,则23<x<2,∴函数f(x)的减区间是(23,2).17.若函数f(x)=ax2+2x-43ln x在x=1处取得极值.(1)求a的值;(2)求函数f(x)的单调区间及极值.解:(1)f′(x)=2ax+2-43x ,由f ′(1)=2a +23=0,得a =-13.(2)f (x )=-13x 2+2x -43ln x (x >0).f ′(x )=-23x +2-43x =-2(x -1)(x -2)3x .由f ′(x )=0,得x =1或x =2. ①当f ′(x )>0时1<x <2; ②当f ′(x )<0时0<x <1或x >2.当x 变化时f ′(x ),f (x )的变化情况如下表:函数的极小值为f (1)=53,极大值为f (2)=83-43ln 2.18.某集团为获得更大的收益,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元),可增加销售额约为-t 2+5t (百万元)(0≤t ≤3).(1)若该公司将当年的广告费控制在300万元之内,则应投入多少广告费,才能使该公司获得的收益最大?(2)现该公司准备共投入300万元,分别用于广告促销和技术改造.经预测,每投入技术改造费x (百万元),可增加的销售额为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该公司获得的收益最大.(注:收益=销售额-收入)解:(1)设投入t (百万元)的广告费后增加的收益为f (t )(百万元), 则有f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3),所以当t =2时,f (t )取得最大值4,即投入2百万元的广告费时,该公司获得的收益最大. (2)设用于技术改造的资金为x (百万元),则用于广告促销的资金为(3-x )(百万元),由此获得收益是g (x )(百万元),则g (x )=⎝⎛⎭⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3),所以g ′(x )=-x 2+4. 令g ′(x )=0,解得x =-2(舍去)或x =2.又当0≤x <2时,g ′(x )>0;当2<x ≤3时,g ′(x )<0.所以当x =2时,g (x )取最大值,即将2百万元用于技术改造,1百万元用于广告促销,该公司获得的收益最大.19.已知函数f (x )=kx 3-3(k +1)x 2-k 2+1(k >0),若f (x )的单调递减区间是(0,4). (1)求k 的值;(2)当x >k 时,求证:2x >3-1x .解:(1)f ′(x )=3kx 2-6(k +1)x , 由f ′(x )<0, 得0<x <2k +2k,∵f (x )的单调递减区间是(0,4), ∴2k +2k =4,∴k =1.(2)证明:设g (x )=2x +1x ,g ′(x )=1x -1x 2. 当x >1时,1<x <x 2, ∴1x>1x 2,∴g ′(x )>0,∴g (x )在x ∈[1,+∞)上单调递增. ∴x >1时,g (x )>g (1), 即2x +1x >3,∴2x >3-1x.20.给定函数f (x )=x 33-ax 2+(a 2-1)x 和g (x )=x +a 2x .(1)求证:f (x )总有两个极值点;(2)若f (x )和g (x )有相同的极值点,求a 的值.解:(1)证明:因为f ′(x )=x 2-2ax +(a 2-1)=[x -(a +1)]·[x -(a -1)], 令f ′(x )=0,解得x 1=a +1,x 2=a -1. 当x <a -1时,f ′(x )>0;当a -1<x <a +1时,f ′(x )<0;当x >a +1时,f ′(x )>0, 所以x =a -1为f (x )的极大值点, x =a +1为f (x )的极小值点. 所以f (x )总有两个极值点.(2)因为g ′(x )=1-a 2x 2=(x -a )(x +a )x 2.令g ′(x )=0,得x 1=a ,x 2=-a .因为f (x )和g (x )有相同的极值点,且x 1=a 和a +1,a -1不可能相等, 所以当-a =a +1时,a =-12;当-a =a -1时,a =12.经检验,当a =-12和a =12时,x 1=a ,x 2=-a 都是g (x )的极值点.。
人教版数学高二-人教A版选修2-2模块综合检测(二)

模块综合检测(二)(时间120分钟,满分150分)一、选择题(本大题共10小题,每小题5分,共50分) 1.(辽宁高考)设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2iD .3-2i解析:选A z =52-i +2i =5(2+i )(2-i )(2+i )+2i =2+i +2i =2+3i.2.已知 2+23=223, 3+38=338, 4+415=4415,…,类比这些等式,若6+ab =6ab (a ,b 均为正实数),则a +b =( )A .40B .41C .43D .47 解析:选B 观察下列等式2+23=223, 3+38=338, 4+415=4415,…,第n 个应该是 n +1+n +1(n +1)2-1=(n +1)n +1(n +1)2-1,则第5个等式中:a =6,b=a 2-1=35,a +b =41.3.三段论:“①所有的中国人都坚强不屈;②雅安人是中国人;③雅安人一定坚强不屈”中,其中“大前提”和“小前提”分别是( )A .①②B .①③C .②③D .②①解析:选A 解本题的关键是透彻理解三段论推理的形式和实质:大前提是一个“一般性的命题(①所有的中国人都坚强不屈)”,小前提是“这个特殊事例是否满足一般性命题的条件(②雅安人是中国人)”,结论是“这个特殊事例是否具有一般性命题的结论(③雅安人一定坚强不屈)”.故选A.4.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则∫21f (-x )d x 的值等于( ) A.56 B.12 C.23D.16解析:选A 由于f (x )=x m +ax 的导函数f ′(x )=2x +1,所以f (x )=x 2+x ,于是∫21f (-x )d x =∫21(x 2-x )d x =⎝⎛⎭⎫13x 3-12x 221=56. 5.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1(n -1)(n +1) B.12n (2n +1) C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)解析:选C 由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =1(2n -1)(2n +1).6.已知函数f (x )=x 3+bx 的图象在点A (1,f (1))处的切线的斜率为4,则函数g (x )=3sin 2x +b cos 2x 的最大值是( )A .1B .2 C. 2D. 3解析:选B ∵f ′(x )=3x 2+b ,∴f ′(1)=3+b =4, ∴b =1.∴g (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6≤2. 7.p =ab +cd ,q =ma +nc ·b m +dn(m 、n 、a 、b 、c 、d 均为正数),则p 、q 的大小为( )A .p ≥qB .p ≤qC .p >qD .不确定解析:选B q = ab +mad n +nbcm +cd ≥ab +2abcd +cd =ab +cd =p .8.在[12,2]上,函数f (x )=x 2+px +q 与g (x )=3x 2+32x 在同一点处取得相同的最小值,那么f (x )在[12,2]上的最大值是()A.134 B .4 C .8D.54解析:选B 因为g (x )=3x 2+32x,且x ∈[12,2],则g (x )≥3,当且仅当x =1时,g (x )min =3.又f ′(x )=2x +p , ∴f ′(1)=0,即2+p =0,得p =-2,∴f (x )=x 2-2x +q .又f (x )min =g (1)=3,∴1-2+q =3,∴q =4. ∴f (x )=x 2-2x +4=(x -1)2+3,x ∈12,2.∴f (x )max =f (2)=4.9.若函数y =x 3-2ax +a 在(0,1)内有极小值没有极大值,则实数a 的取值范围是( ) A .(0,3) B .(-∞,3) C .(0,+∞)D.⎝⎛⎭⎫0,32 解析:选D f ′(x )=3x 2-2a , ∵f (x )在(0,1)内有极小值没有极大值,∴⎩⎪⎨⎪⎧f ′(0)<0f ′(1)>0⇒⎩⎪⎨⎪⎧-2a <0,3-2a >0.即0<a <32.10.设f (x )=kx -kx -2ln x ,若f (x )在其定义域内为单调增函数,则k 的取值范围是( )A .(-∞,1]B .[1,+∞)C .(-∞,-1]D .[-1,+∞)解析:选B 由f ′(x )=k +k x 2-2x =kx 2-2x +kx 2,令h (x )=kx 2-2x +k ,要使f (x )在其定义域(0,+∞)上单调递增,只需h (x )在(0,+∞)内满足h (x )≥0恒成立.由h (x )≥0得kx 2-2x +k ≥0,即k ≥2x x 2+1=2x +1x在x ∈(0,+∞)上恒成立,∵x >0,∴x +1x ≥2.∴2x +1x ≤1.∴k ≥1.二、填空题(本大题共4小题,每小题5分,共20分)11.设a =3+22,b =2+7,则a ,b 的大小关系为____________.解析:a =3+22,b =2+7两式的两边分别平方,可得a 2=11+46,b 2=11+47,显然,6<7.∴a <b .答案:a <b12.复数z =i1+i(其中i 为虚数单位)的虚部是________.解析:化简得z =i 1+i =i (1-i )(1+i )(1-i )=12+12i ,则虚部为12.答案:1213.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.解析:f ′(x )=2x 2+2x -x 2-a (x +1)2=x 2+2x -a(x +1)2.因为f (x )在x =1处取极值,所以1是f ′(x )=0的根,将x =1代入得a =3.答案:314.已知f (x )=xe x ,定义f 1(x )=f ′(x ),f 2(x )=[f 1(x )]′,…,f n +1(x )=[f n (x )]′,n ∈N.经计算f 1(x )=1-x e x ,f 2(x )=x -2e x ,f 3(x )=3-xex ,…,照此规律,则f n (x )=________.解析:观察各个式子,发现分母都是e x ,分子依次是-(x -1),(x -2),-(x -3),(x -4),…,前边是(-1)n ,括号里是x -n ,故f n (x )=(-1)n (x -n )e x .答案:(-1)n (x -n )e x三、解答题(本大题共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)用数学归纳法证明:12+32+52+…+(2n -1)2=13n (4n 2-1).证明:(1)当n =1时,左边=12=1,右边=13×1×(4-1)=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即12+32+52+…+(2k -1)2=13k (4k 2-1).则当n =k +1时,12+32+52+…+(2k -1)2+(2k +1)2=13k (4k 2-1)+(2k +1)2=13k (4k 2-1)+4k 2+4k +1 =13k [4(k +1)2-1]-13k ·4(2k +1)+4k 2+4k +1 =13k [4(k +1)2-1]+13(12k 2+12k +3-8k 2-4k )=13k [4(k +1)2-1]+13[4(k +1)2-1] =13(k +1)[4(k +1)2-1]. 即当n =k +1时等式也成立.由(1),(2)可知,对一切n ∈N *,等式都成立.16.(本小题满分12分)已知函数f (x )=a3x 3+x 2-2ax -1,f ′(-1)=0.(1)求函数f (x )的单调区间;(2)如果对于任意的x ∈[-2,0),都有f (x )≤bx +3,求b 的取值范围. 解:(1)因为f ′(x )=ax 2+2x -2a ,因为f ′(-1)=0,所以a =-2.所以f ′(x )=-2x 2+2x +4=-2(x 2-x -2)=-2(x +1)(x -2). 令f ′(x )=0,解得x 1=-1,x 2=2.随着x 的变化,f ′(x )和f (x )的变化情况如下:(2)因为对于任意的x ∈[-2,0),都有f (x )≤bx +3, 即bx +3≥-23x 3+x 2+4x -1,所以b ≤-23x 2+x +4-4x .设h (x )=-23x 2+x +4-4x .则h ′(x )=-43x +1+4x2,因为x ∈[-2,0),所以-43x >0,4x 2>0.所以h ′(x )>0.所以h (x )在[-2,0)上单调递增.所以h min (x )=h (-2)=43.即b ≤43.故b 的取值范围为⎝⎛⎦⎤-∞,43.17.(本小题满分12分)已知函数f (x )=m ·⎝⎛⎭⎫x -1x +2ln x (m ∈R). (1)若m =1,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.解:(1)当m =1时,函数f (x )=x -1x +2ln x ,函数的定义域为(0,+∞),且f ′(x )=x 2+2x +1x 2,∴f (1)=0,f ′(1)=4,所以曲线y =f (x )在点(1,f (1))处的切线方程为4x -y -4=0.(2)函数的定义域为(0,+∞),且f ′(x )=mx 2+2x +mx 2,当m ≥0时,f ′(x )>0在x ∈(0,+∞)时恒成立, ∴f (x )在(0,+∞)上单调递增. 当m <0时,①当m ≤-1时,f ′(x )≤0在x ∈(0,+∞)时恒成立,∴f (x )在(0,+∞)上单调递减, ②当-1<m <0时,由f ′(x )=0得x 1=-1+1-m 2m ,x 2=-1-1-m 2m,且0<x 1<x 2, x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x ) - 0 + 0 - f (x )减增减所以f (x )在⎝ ⎛⎭⎪⎫0,-1+1-m 2和⎝ ⎛⎭⎪⎫-1-1-m 2,+∞,+∞上单调递减,f (x )在上单调递增.18.(本小题满分14分)已知函数f (x )=x 3-x -x . (1)判断f (x )x 的单调性;(2)求函数y =f (x )的零点的个数;(3)令g (x )=ax 2+ax f (x )+x +ln x ,若函数y =g (x )在⎝⎛⎭⎫0,1e 内有极值,求实数a 的取值范围. 解:(1)设φ(x )=f (x )x =x 2-1-1x(x >0),φ′(x )=2x +12x 3>0, 所以y =φ(x )在(0,+∞)上单调递增. (2)由(1)知φ(1)=-1,φ(2)=3-12>0且y =φ(x )在(0,+∞)上单调递增,所以y =φ(x )在(1,2)上有一个零点,又f (x )=x 3-x -x =xφ(x ),显然x =0是f (x )=0的一个零点,所以y =f (x )在[0,+∞)上有两个零点.(3)因为g (x )=ax 2+axf (x )+x +ln x =ax 2+ax x 3-x +ln x =ax -1+ln x ,所以g ′(x )=-a(x -1)2+1x =x 2-(2+a )x +1(x -1)2x,设h (x )=x 2-(2+a )x +1,则h (x )=0有两个不同的根x 1,x 2,且一根在⎝⎛⎭⎫0,1e 内, 不妨设0<x 1<1e,由于x 1·x 2=1,所以,x 2>e ,由于h (0)=1,则只需h ⎝⎛⎭⎫1e <0,即1e 2-(2+a )1e +1<0,解得a >e +1e -2,即a 的取值范围为⎝⎛⎭⎫e +1e -2,+∞.。
2014-2015学年高二数学选修2-2、2-3综合试题(二)Word版含答案

2014-2015学年高二数学下期选修2-2、2-3综合试卷第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每題给出的四个选中,只有一项是符合题目要求)1.已知i 为虚数单位,复数1iz i=-+,则复数z 的共轭复数的虚部为( ) A .12i - B .12 C .12- D .12i2.已知a 1、a 2∈(1,+∞),设P =1a 1+1a 2,Q =1a 1a 2+1,则P 与Q 的大小关系为( )A .P >QB .P <QC .P =QD .不确定3.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到b a lg lg -的不同值的个数是( ) A .9 B .10 C .18 D .20 4.已知函数y =f (x )和y =g (x )的图象如图,则有( )A .'()()f x g x =B .'()()g x f x =C .''()()f x g x =D .()()g x f x = 5.设随机变量ξ~B (2,p ),η=2ξ-1,若P (η≥1)=6581,则E (ξ)=( )A .59B .89C .109D .16816.△ABC 满足AB →·AC →=23,∠BAC =30°,设M 是△ABC 内的一点(不在边界上),定义f (M )=(x ,y ,z ),其中x 、y 、z 分别表示△MBC 、△MCA 、△MAB 的面积,若f (M )=(x ,y ,12),则1x +4y的最小值为( )A .9B .8C .18D .167.观察:52-1=24,72-1=48,112-1=120,132-1=168,… 所得的结果都是24的倍数,由此推测可有( )A .其中包含等式:152-1=224B .一般式是:(2n +3)2-1=4(n +1)(n +2)C .其中包含等式1012-1=10 200D .24的倍数加1必是某一质数的完全平方 8)ABCD9.设函数()(sin cos )(040)xf x e x x x π=-≤≤,则函数()f x 各极小值点之和为( )A .380πB .800πC .420πD .820π10.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( )A .6种B .8种C .36种D .48种 11.已知函数()2,()ln(1)fx x ax g x b a x =-=+-,存在实数(1)a a ≥,使()yf x =的图象与()y g x =的图象无公共点,则实数b 的取值范围( )A .[1,)+∞B .3[1,ln 2)4+ C .3[ln 2,)4++∞ D .3(,ln 2)4-∞+ 12.定义在R 上的可导函数()f x ,当(1,)x ∈+∞时,()()()f x f x xf x ''+<恒成立,(2)a f =,1(3)2b f =, 1)c f =则a ,b ,c 的大小关系为( )A .c a b <<B .b c a <<C .a c b <<D .c b a << 二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中的横线上)13.()25212(1)x x +-的展开式中41x 的系数是 .14.函数21()ln 2(0)2f x x ax x a =--<存在单调递减区间,则a 的取值范围是15.若52345012345(23)x a a x a x a x a x a x -=+++++,则123452345a a a a a ++++等于 . 16.给出下列命题:①用反证法证明命题“设,,a b c 为实数,且0,0,a b c ab bc ca ++>++>则0,0,0a b c >>>”时,要给出的假设是:,,a b c 都不是正数; ②若函数()()2fx x x a =+在2x =处取得极大值,则2a =-或-6;③用数学归纳法证明*1111...(1,)2321n n n n N ++++<>∈-,在验证2n =成立时,不等式的左边是11123++; ④数列{}n a 的前n 项和c S n n -=3,则1=c 是数列{}n a 成等比数列的充分必要条件;三、解答题(本大题共6题,共70分,解答时应写出必要的文字说明证明过程或演算步骤)17.(本小题满分12分)若非零实数,m n 满足20m n +=,且在二项式12()m n ax bx +(a>0,b >0)的展开式中当且仅当常数项是系数最大的项,(1)求常数项是第几项; (2)求ab的取值范围.(第4题)18.(本小题满分12分)观察下表:1,2,3 4,5,6,78,9,10,11,12,13,14,15, ……问:(1)此表第n 行的各个数之和是多少? (1)2012是第几行的第几个数?(2)是否存在n ∈N *,使得第n 行起的连续10行的所有数之和为227-213-120?若存在,求出n 的值;若不存在,请说明理由.19.(本小题满分10分)某高校共有学生15 000人,其中男生10 500人,女生4 500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:)(()(22c b a bc ad n K +-=20.(本小题满分12分)某学校为了丰富学生的业余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取题目,背诵正确加10分,背诵错误减10分,只有“正确”和“错误”两种结果,其中某班级的正确率为23p =,背诵错误的的概率为13q =,现记“该班级完成n 首背诵后总得分为n S ”. (1) 求620S =且()01,2,3i S i ≥=的概率;(2)记5S ξ=,求ξ的分布列及数学期望.21.(本小题满分12分)(本小题满分12分)设函数1()ln 1af x x ax x-=-+-. (1)当1a =时,求曲线()f x 在1x =处的切线方程;(2)讨论函数()f x 的单调性;22.(本小题满分12分)已知函数2()ln ,()f x ax x x a R =+∈ (1)当0=a 时,求)(x f 的最小值;(2)在区间(1,2)内任取两个实数,()p q p q ≠,若不等式(1)(1)f p f q p q+-+-1>恒成立,求实数a 的取值范围; (3)求证:333ln 2ln 3ln 4234+++...3ln n n+<1e (其中*1,, 2.71828...n n N e >∈=).高二下期理科数学选修2-2、2-3综合试卷13. -10 14.(-1,0) 15.10 16.③④17.(1)解:设12112()()rm r n rr T C ax bx -+=为常数项,则可由(12)020,0,0m r nr m n m n -+=+=≠≠⎧⎨⎩ …………4分解得 r=4,所以常数项是第5项. ………………6分 (2)由只有常数项为最大项且a >0,b >0,可得48457512124843931212C a b C a b C a b C a b >>⎧⎨⎩ …………10分解得 8954b a<<…………12分18.解:∵第n +1行的第1个数是2n ,∴第n 行的最后一个数是2n -1.(1)2n -1+(2n -1+1)+(2n -1+2)+…+(2n -1)=n -1+2n -n -12=3·22n -3-2n -2.(2)∵210=1024,211=2048,1024<2012<2048,∴2012在第11行,该行第1个数是210=1024,由2012-1024+1=989,知2012是第11行的第989个数.(3)设第n 行的所有数之和为a n ,第n 行起连续10行的所有数之和为S n . 则a n =3·22n -3-2n -2,a n +1=3·22n -1-2n -1,a n +2=3·22n +1-2n ,…,a n +9=3·22n +15-2n +7,∴S n =3(22n -3+22n -1+…+22n +15)-(2n -2+2n -1+…+2n +7)=3·22n-310-4-1-2n -210-2-1=22n +17-22n -3-2n+8+2n -2,n =5时,S 5=227-128-213+8=227-213-120.∴存在n =5使得第5行起的连续10行的所有数之和为227-213-120.19.(1)300×4 50015 000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:结合列联表可算得K 2=3-75×225×210×90=10021≈4.762>3.841.所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”. 20.当206=S 时,即背诵6首后,正确个数为4首,错误2首,………………2分 若第一首和第二首背诵正确,则其余4首可任意背诵对2首;…………………3分 若第一首正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵对1首,此时的概率为:811631)32(323132)31()32()32(21322242=⨯⨯⨯⨯⨯+⨯⨯⨯=C C p ………… …………5分 (2)∵5S =ξ的取值为10,30,50,又21,,32p q ==…………………6分∴8140)31()32()31()32()10(32252335=+==C C Pξ,8130)31()32()31()32()30(41151445=+==C C P ξ5505552111(50)()().3381P C C ξ==+=…………………9分∴ξ的分布列为:∴81815081308110=⨯+⨯+⨯=ξE .…………………………………………12分21.函数()f x 的定义域为(0,)+∞, (Ⅰ)当1a =时,()ln 1f x x x =--,∴()f x 在1x =处的切线方程为2y =-(Ⅱ,)(x f 的定义域为),0(+∞。
高二数学模块综合检测卷新人教A版选修2-2

n(n- 1)
解析: 若 { an} 是等差数列,则 a1+ a2+…+ an= na1+
2
d,
( n- 1) d
d
∴ bn= a1+
2
d= 2n+ a1-2,即 { bn} 为等差数列;
n(n- 1)
若 { cn} 是等比数列,则 c1· c2·…· cn= cn1·q1+2+…+ ( n-1) = cn1· q
13 2,- 2 ,它到原点的距离为
(1) 2+(- 3) 2=
10 . 故选 D.
2
2
2
31 1 3 3. i 是虚数单位,则 ( i - )( - + i) =( D)
2 2 22
13
13
A. 1
B
.- 2+ 2 i C. 2- 2 i
D
13 .- 2- 2 i
解析:
3 2i
1 -2
13 -2+ 2 i
A.直线 B .圆 C .椭圆 D .抛物线
解析: 设 z= x+ yi( x、 y∈R), | x+1+ yi| = ( x+ 1) 2+ y2,
|1 + i z| = |1 + i( x+ yi)| =
(
y
-
1
)
2
+
x
2
,则
(
x+
1
)
2
+
y
2
=
(
y-
1)
2
+
x
2
.
∴复数 z= x+ yi 对应点 ( x, y) 的轨迹为到点 ( - 1, 0) 和 (0 , 1) 距离相等的直线.
模块综合检测卷
一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有
人教版高中数学选修2-2综合测试卷C(含答案)

aT
f ( x)dx
T
; [ 来源 :]
其中正确命题的个数为 ( )
(A)1 (B)2 (C)3 (D)0
7. 若复数 (a2 a 2) ( a 1 1)i (a R) 不是纯虚数,则 a 的取值范围是 ( )
(A) a 1 或 a 2 (B) a 1 且 a 2 (C) a 1 (D) a 2
.
精品文档
1
20. ( 本小题满分 14 分 ) 已知函数 f (x) ln x ( x
g( x) 0) , 函数
af ( x)( x 0) f ( x)
⑴ 当 x 0 时 , 求函数 y g ( x) 的表达式 ;
⑵若 a 0 , 函数 y g(x) 在 (0, ) 上的最小值是 2 , 求 a 的值 ;
1 8. 设 0< a <b,且 f (x) =
1x
x
,则下列大小关系式成 立的是 ( ).
ab
ab
(A)f ( a )< f (
2 )<f ( ab ) (B)f (
2 )<f (b)< f (
ab )
(C)f (
ab
ab )< f (
2 )<f ( a ) (D)f (b)< f (
ab 2 )<f ( ab )
2. 下列结论中正确的是 ( )
[ 来源:学 +科+网 Z+X+X+K]
(A) 导数为零的点一定是极值点
[ 来源:学 # 科#网 Z#X#X#K]
(B) 如果在 x0 附近的左侧 f ' ( x) 0 ,右侧 f ' (x) 0 ,那么 f ( x0 ) 是极大值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,E ,F 分别为AB ,AC 的中点,则有EF ∥BC .这个命题的大前提为( )A .三角形的中位线平行于第三边B .三角形的中位线等于第三边的一半C .EF 为中位线D .EF ∥CB答案:A2.⎠⎛01(e x +2x )d x =( ) A .1B .e -1C .eD .e +1解析:选C .⎠⎛01(e x +2x)d x =(e x +x 2)10=e ,故选C . 3.复数(1-i 2)2=a +b i (a ,b ∈R ,i 是虚数单位),则a 2-b 2的值为( ) A .0B .1C .2D .-1解析:选D .(1-i 2)2=1-2i +i 22=-i =a +b i.所以a =0,b =-1,所以a 2-b 2=0-1=-1. 4.下列求导运算正确的是( ) A .(x +3x )′=1+3x2 B .(log 2x )′=1x ln 2 C .(3x )′=3x log 3e D .(x 2cos x )′=-2x sin x 解析:选B.(x +3x )′=1-3x2,所以A 不正确; (3x )′=3x ln 3,所以C 不正确;(x 2cos x )′=2x cos x +x 2·(-sin x ),所以D 不正确;(log 2x )′=1x ln 2,所以B 正确.故选B. 5.用反证法证明命题:“若(a -1)(b -1)(c -1)>0,则a ,b ,c 中至少有一个大于1”时,下列假设中正确的是( )A .假设a ,b ,c 都大于1B .假设a ,b ,c 都不大于1C .假设a ,b ,c 中至多有一个大于1D .假设a ,b ,c 中至多有两个大于1解析:选B.a ,b ,c 中至少有一个大于1的否定为a ,b ,c 都不大于1.6.已知函数f (x )=2x +1x +2,则函数y =f (x )的单调增区间是( ) A .(-∞,+∞)B .(-∞,-2)C .(-2,+∞)D .(-∞,-2)和(-2,+∞)解析:选D .据解析式可知函数f (x )的定义域为{x |x ∈R ,x ≠-2},由于f ′(x )=3(x +2)2>0,故函数f (x )在(-∞,-2)和(-2,+∞)上分别为增函数.7.已知集合A ={x |x 2+y 2=4},集合B ={x ||x +i|<2,i 为虚数单位,x ∈R },则集合A 与B 的关系是( )A .AB B .B AC .A ∩B =AD .A ∩B =∅解析:选B.|x +i|=x 2+1<2, 即x 2+1<4,解得-3<x <3,∴B =(-3,3),而A =[-2,2],∴B A ,故选B.8.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n (2n 2+1)3时,从n =k 到n =k +1,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] 解析:选B.n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12,n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2.9.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系为( )A .P >QB .P =QC .P <QD .由a 的取值确定解析:选C .要比较P 与Q 的大小,只需比较P 2与Q 2的大小,只需比较2a +7+2a (a +7)与2a +7+2(a +3)(a +4)的大小,只需比较a 2+7a 与a 2+7a +12的大小,即比较0与12的大小,而0<12,故P <Q .10.如图,阴影部分的面积为( )A .⎠⎛ab [f (x )-g (x )]d x B .⎠⎛ac [g (x )-f (x )]d x +⎠⎛c b [f (x )-g (x )]d x C .⎠⎛a c [f (x )-g (x )]d x +⎠⎛cb [g (x )-f (x )]d x D .⎠⎛ab [g (x )-f (x )]d x 解析:选B .∵在区间(a ,c )上g (x )>f (x ),而在区间(c ,b )上g (x )<f (x ).∴S =⎠⎛a c [g (x )-f (x )]d x +⎠⎛cb [f (x )-g (x )]d x ,故选B . 11.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)解析:选D .由题图可知,当x <-2时,f ′(x )>0;当x =-2时,f ′(x )=0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x =2时,f ′(x )=0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.12.观察数表:1 2 3 4 … 第一行2 3 4 5 … 第二行3 4 5 6 … 第三行4 5 6 7 … 第四行… … … …第一列 第二列 第三列 第四列根据数表中所反映的规律,第n 行与第n -1列的交叉点上的数应该是( )A .2n -1B .2n +1C .n 2-1D .2n -2解析:选D .根据数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,那么,由此可以推导出第n 行与第n 列交叉点上的数应该是2n -1,故第n 行与第n -1列的交叉点上的数应为2n -2.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13.设复数i 满足i(z +1)=-3+2i(i 为虚数单位),则z 的实部是________.解析:由i(z +1)=-3+2i ,得到z =-3+2i i-1=2+3i -1=1+3i. 答案:114.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为p =25-18q ,则产量q =________时,利润L 最大. 解析:收入R =q ·p =q (25-18q )=25q -18q 2. 利润L =R -C =(25q -18q 2)-(100+4q )=-18q 2+21q -100(0<q <200), L ′=-14q +21,令L ′=0,即-14q +21=0,求得唯一的极值点q =84. ∴产量q 为84时,利润L 最大.答案:8415.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b 2=1类似的性质为________. 解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b 2=1. 答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b 2=1 16.(2014·山东省实验中学月考)给出下列四个命题:①若f ′(x 0)=0,则x 0是f (x )的极值点;②“可导函数f (x )在区间(a ,b )上不单调”等价于“f (x )在区间(a ,b )上有极值”;③若f (x )>g (x ),则f ′(x )>g ′(x );④如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,则该函数在[a ,b ]上一定能取得最大值和最小值.其中真命题的序号是________(把所有真命题的序号都填上).解析:②④显然正确;对f (x )=x 3,有f ′(0)=0,但x =0不是极值点,故①错;f (x )=x +1>g (x )=x ,但f ′(x )=g ′(x )=1,故③错.答案:②④三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知复数z 1=2-3i ,z 2=15-5i (2+i )2. 求:(1)z 1+z 2;(2)z 1·z 2;(3)z 1z 2. 解:z 2=15-5i (2+i )2=15-5i 3+4i =5(3-i )(3-4i )(3+4i )(3-4i )=5-15i 5 =1-3i.(1)z 1+z 2=(2-3i)+(1+3i)=3.(2)z 1·z 2=(2-3i)(1-3i)=2-9-9i =-7-9i.(3)z 1z 2=2-3i 1-3i =(2-3i )(1+3i )(1-3i )(1+3i )=2+9+3i 10=1110+310i. 18.(本小题满分12分)求函数f (x )=e xx -2的单调区间. 解:函数f (x )的定义域为(-∞,2)∪(2,+∞).f ′(x )=e x (x -2)-e x (x -2)2=e x (x -3)(x -2)2. 因为x ∈(-∞,2)∪(2,+∞),所以e x >0,(x -2)2>0.由f ′(x )>0,得x >3,所以函数f (x )的单调递增区间为(3,+∞);由f ′(x )<0,得x <3,又定义域为(-∞,2)∪(2,+∞),所以函数f (x )的单调递减区间为(-∞,2)和(2,3).19.(本小题满分12分)已知a ,b ,c >0,且a +b +c =1,求证:(1)a 2+b 2+c 2≥13; (2)a +b +c ≤ 3.证明:(1)∵a 2+19≥23a ,b 2+19≥23b ,c 2+19≥23c , ∴(a 2+19)+(b 2+19)+(c 2+19)≥23a +23b +23c =23. ∴a 2+b 2+c 2≥13. (2)∵a ·13≤a +132,b ·13≤b +132,c ·13≤c +132, 三式相加得a 3+b 3+c 3≤12(a +b +c )+12=1, ∴a +b +c ≤ 3.20.(本小题满分12分)已知数列{a n }满足S n +a n =2n +1.(1)写出a 1,a 2,a 3,并推测a n 的表达式;(2)用数学归纳法证明所得的结论.解:(1)由S n +a n =2n +1,当n =1时,S 1=a 1,∴a 1+a 1=2×1+1,得a 1=32. 当n =2时,S 2=a 1+a 2,则a 1+a 2+a 2=5,将a 1=32代入得a 2=74. 同理可得a 3=158.∴a n =2n +1-12n =2-12n. (2)证明:当n =1时,结论成立.假设n =k 时,命题成立,即a k =2-12k ; 当n =k +1时,S n +a n =2n +1,则a 1+a 2+…+a k +2a k +1=2(k +1)+1.∵a 1+a 2+…+a k =2k +1-a k ,∴2a k +1=4-12k ,a k +1=2-12k +1成立. ∴当n =k +1时,结论也成立.∴根据上述知对于任意自然数n ∈N *,结论成立.21.(本小题满分13分)设函数f (x )=x 3+ax 2+x +1,a ∈R .(1)若x =1时,函数f (x )取得极值,求函数f (x )在x =-1处的切线方程;(2)若函数f (x )在区间(12,1)内不单调,求实数a 的取值范围. 解:(1)由已知得f ′(x )=3x 2+2ax +1,f ′(1)=0,故a =-2, ∴f (x )=x 3-2x 2+x +1,当x =-1时,f (-1)=-3,即切点坐标为(-1,-3). 又f ′(-1)=8,∴切线方程为8x -y +5=0.(2)f (x )在区间(12,1)内不单调,即f ′(x )=0在(12,1)内有解, 令f ′(x )=3x 2+2ax +1=0,则2ax =-3x 2-1.由x ∈(12,1),得2a =-3x -1x. 令h (x )=-3x -1x ,由h ′(x )=-3+1x 2=0, 知h (x )在(33,1)上单调递减,在(12,33]上单调递增, ∴h (1)<h (x )≤h (33),即h (x )∈(-4,-23]. ∴-4<2a ≤-23,即-2<a ≤- 3.而当a =-3时,f ′(x )=3x 2-23x +1=(3x -1)2≥0,不满足题意.综上,实数a 的取值范围为(-2,-3).22.(本小题满分13分)已知函数f (x )=38x 2-2x +2+ln x . (1)求函数y =f (x )的单调区间;(2)若函数y =f (x )在[e m ,+∞)(m ∈Z )上有零点,求m 的最大值. 解:(1)函数f (x )的定义域为(0,+∞).f ′(x )=34x -2+1x =(3x -2)(x -2)4x, 当f ′(x )>0时,x ∈(0,23)∪(2,+∞);当f ′(x )<0时,x ∈(23,2),所以函数f (x )的单调递增区间为(0,23)和(2,+∞),单调递减区间为[23,2]. (2)由(1)知y 极大值=f (23)=56+ln 23>0,y 极小值=f (2)=ln 2-12>0. 当x >0且x →0时f (x )<0,故f (x )在定义域上存在唯一零点x 0,且x 0∈(0,23). 若m ≥0,则e m ≥1,[e m ,+∞)⊂(23,+∞),此区间不存在零点,舍去,故m <0. 当m =-1时,x ∈[1e ,+∞),f (1e )=1+38e 2-2e>0, 又(1e ,23)为增区间,此区间不存在零点,舍去. 当m =-2时,x ∈[1e 2,+∞),f (1e 2)=1e 2(38e 2-2)<0, 又(1e 2,23)为增区间,且y =f (23)>0,故x 0∈(1e 2,23). 综上,m 的最大值为-2.。