温度控制器的工作原理详解-民熔

温度控制器的工作原理详解-民熔
温度控制器的工作原理详解-民熔

温度控制器

温度控制器所控制的空调房间内的温度范围一般

在18℃--28 ℃。窗式空调

常用的温度控制器是以压力作用原理来推动触点的通与断。

其结构由波纹管、感温包(测试管)、偏心轮、微动开关等组成一个密封的感应系统和一个转送信号动力的系统。控制方法一般分为两种;

一种是由被冷却对象的温度变化来进

行控制,多采用蒸气压力式温度控制器,另

一种由被冷却对象的温差变化来进

行控制,多采用电子式温度控制器。

以温控器制造原理来分,温控器分为:

一、突跳式温控器

各种突跳式温控器的型号统称

KSD,常见的如KSD301 ,KSD302 等,该

温控器是双金属片温控器的新型产品,主要作为各种电热产品具过热保护时,通

常与热熔断器串接使用,突跳式温控器作为一级保护。热熔断器则在突跳式温控

器失娄或失效导致电热元件超温时,作为二级保护自,有效地防止烧坏电热元件

以及由此而引起的火灾事故。

二、液涨式温控器是当被控制对象的温度发生变化时使温控器感温部内的物质(一般是液体)

产生相应的热胀冷缩的物理现象(体积变化),与感温部连通一起的膜盒产生膨

胀或收缩。以杠杆原理,带动开关通断动作,达到恒温目的液胀式温控器具有控

温准确,稳定可靠,开停温差小,控制温控调节范围大,过载电流大等性能特点。

液涨式温控器主要用于家电行业,电热设备,制冷行业等温度控制场合用。

三、压力式温控器

改温控器通过密闭的内充感温工质的温包和毛细管,把被控温度的变化转变

为空间压力或容积的变化,达到温度设定值时,通过弹性元件和快速瞬动机构,

自动关闭触头,以达到自动控制温度的目的。它由感温部、温度设定主体部、执

行开闭的微动开关或自动风门等三部分组成。

压力式温控器适用于制冷器具(如

电冰箱冰柜等)和制热器等场合。

四、电子式温控器电子式温度控制器(电阻式)是采用电阻感温的方法来测量的,一般采用白

金丝、铜丝、钨丝以及热敏电阻等作为测温电阻,这些电阻各有其优确点。一般

家用空调大都使用热敏电阻式

电锅炉采暖方案

电锅炉供暖方案 、工程概况 供暖采用电热水锅炉采暖系统 二、参照标准、依据 1、蓄热式电锅炉房设计施工图集。 2、常压蓄热水箱。 三、系统工作原理 1、蓄热系统直接向采暖系统供热,简称直接供热。直接供热在蓄热系统和采暖系统中不设热交换器,采暖系统中的循环水也回到蓄热水箱中。由于直接供热系统中不设热交换器、补水泵、定压装置,减少了设备,锅炉房管道也较为简单。 2、谷电、平电、峰电时间段(以北京地区为例) 谷电时间:23:00~7:00共计8小时;平电时间:7:00~8:0011:00~18:00共计8小时;峰电时间:8:00~11:0018:00~23:00共计8小时 电锅炉蓄热式供暖系统的运行,全部使用谷电: 23: 00~7: 00开启电锅炉加热水箱中的水,加热至95C,向系统供热; 7:00~23:00 关闭电锅炉,由蓄热水箱向系统供热。 3、电网电价: 谷电0.21 元/度 平电0.52 元/ 度 峰电0.84 元/度 4、自控: 蓄热状态和供热状态,蓄热水箱中的热水温度不断的在变化。但是锅炉房采暖供水温度却不能随蓄热水箱温度的变化而变化。为使锅炉房采暖供水温度保持在设定范围内,采取有效的温度调控装置是必须的。对直接供热的系统,采用合流三通阀来调控锅炉房采暖供水温

度。淋浴系统出水管设温度自动控制阀。 5、蓄热式电锅炉房系统单独设置系统控制柜,系统控制柜一般应具备以下功能: ①控制蓄热箱是否达到蓄热温度。 ②控制锅炉在23:00自动启动,7:00 达到蓄热温度后自动停炉。 ③控制电动三通阀,调控锅炉房采暖供水温度。 ④控制蓄热泵的启停,保证先启泵,后启炉,先停炉,后停泵。 6、电气部分: ①电锅炉的电源应由配电室直接供给,可用电缆或金属排输送。 ②锅炉控制柜及系统控制柜宜单独设置在控制室内。 ③所有设备外壳均应有可靠接地,接地电阻按有关要求执行。 四、设计参数 1、采暖系统: 采暖室外计算温度:-9C 采暖室内设计温度:20~22C 建筑物总耗热量:350KW 设计采暖天数:120天 采暖系统总阻力:60Kpa 2、淋浴系统按同时开启20个水龙头,开放时间每天2 小时计算。 五、设备造型及运行方案 根据需方实际情况,采用全谷电、谷+平的方式。全谷电:选一台900KW 的锅炉,水箱容积为100m3。

电锅炉蓄热采暖系统的工作原理

电锅炉蓄热采暖系统的工作原理 电锅炉蓄热采暖系统是以电锅炉为热源,水为热媒,利用峰谷电价差,在供电低谷时,开启电锅炉将水箱的水加热、保温、储存;在供电高峰及平电时,关闭电锅炉,用蓄热水箱的热水供热。 系统是由电锅炉、蓄热水箱、换热器、水箱循环泵、供热泵、补水泵、定压装置、电动三通阀等设备组成。 电锅炉为热源,蓄热水箱用于蓄热和放热,定压装置用于用户侧定压,热交换器用于热源系统与采暖系统换热。 换热器一次侧由锅炉,蓄热水箱,蓄热泵,板换等组成热源系统。换热器二次侧由系统循环泵,换热器,定压装置,用户等组成了采暖供热系统。在系统中设置了电动三通调节阀,根据室外温度变化, 自动调节换热器二次侧的供水温度。从而节约能源,保证了采暖的舒适性。 系统内的电锅炉、水泵、电动三通阀均由系统控制柜控制,加上电动碟阀可做到无人值守全自动运行,在需要时全部设备也可手动操作运行。 电锅炉蓄热采暖的优越性 1.自动化程度高, 可根据室外温度变化调节采暖供水温度, 运行合理, 节约能源消耗。 2.运行安全可靠,具有过温、过压、过流、短路、断水、缺相等六重自动保护功能,实现了机电一体化。 3.无噪音、无污染、占地少(锅炉本体体积小,设备布置紧凑,不需要烟囱和燃料堆放地,锅炉房可建在地下)。 4.热效率高,运行费用低,可充分利用低谷电。 5.操作方便, 值班人员劳动强度小,节约人工费用。 6.适用范围广,可满足各种环境及条件的要求,可满足宾馆、饭店、机关、学校、厂房、住宅等多种取暖方式和生活热水的需要。 电锅炉蓄热采暖运行方式介绍 蓄热式电锅炉的运行方式,主要分为两种形式: 一种是全部使用低谷电,(23:00~7:00为低谷电价)即低谷时段电锅炉开启运行并蓄热,平电及高峰用电时段(7:00~8:00、11:00~18:00执行平电电价,8:00~11:00、18:00~23:00执行峰电电价)关闭电锅炉,由蓄热水箱中的热水向系统供热。 另一种运行方式是在使用低谷电的同时使用一部分平电,即低谷时段电锅炉开启运行并蓄热;白天关闭电锅炉,由蓄热水箱中的热水向系统供热、同时使用一部分平电蓄热或供热。

温度控制器的工作原理

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID模糊控制技术*用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。当然,在电压稳定工作的速度不变、外界气温不变和空气流动速度不变的情况下,这样做是完全可以的,但要清楚地知道,以上的环境因素是不断改变的,同时,用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。当需要控温的关键很多时,就会手忙脚乱。这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有采用PID模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。例如烫金机,其温度要求比较稳定,通常在正负2℃以内才能较好运作。高速烫金机烫制同一种产品图案时,随着速度加快,加热速度也要相应提高。这时,传统的温度控制器方式和采用调压器操作就不能胜任,产品的质量就不能保证,因为烫金之前必须要把烫金机的运转速度调节适当,用速度来迁就温度控制器和调压器的弱点。但是,如果采用PID模糊控制的温度控制器,就能解决以上的问题,因为PID中的P,即Pvar功率变量控制,能随着烫金机工作速度加快而加大功率输出的百分量。 有机械式的和电子式的, 机械式的采用两层热膨胀系数不同金属亚在一起,温度改变时,他的弯曲度会发生改变,当弯曲到某个程度是,接通(或断开)回路,使得制冷(或加热)设备工作。

减震器工作原理详解

汽车悬架知识专题:减震器工作原理详解 悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。 减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾。 (1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。 在汽车悬架系统中广泛采用的是筒式减振器,且在压缩和伸张行程中均能起减振作用叫双向作用式减振器,还有采用新式减振器,它包括充气式减振器和阻力可调式减振器。

1. 活塞杆; 2. 工作缸筒; 3. 活塞; 4. 伸张 阀;5. 储油缸筒; 6. 压缩阀;7. 补偿阀; 8. 流通阀;9. 导向座;10. 防尘罩;11. 油 封 双向作用筒式减振器示意图 双向作用筒式减振器工作原理说明。在压缩行程时,指汽车车轮移近车身,减振器受压缩,此时减振器内活塞3向下移动。活塞下腔室的容积减少,油压升高,油液流经流通阀8流到活塞上面的腔室(上腔)。上腔被活塞杆1占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀6,流回贮油缸5。这些阀对油的节约形成悬架受压缩运动的阻尼力。减振器在伸张行程时,车轮相当于远离车身,减振器受拉伸。这时减振器的活塞向上移动。活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀4流入下腔。由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,主使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。由于这些阀的节流作用对悬架

电锅炉房的电气设计

概述 电锅炉是一种高效、节能、安全可靠、减少环境污染的新型电加热设备。利用它可以将电网夜间低谷电力用于加热水并保温储存, 供白天使用或供热。对于充分利用电网低谷电力,增加电力有效供给,提高电网的负荷率是一种非常有效的手段。 电锅炉突出优点如下: 1电锅炉全套设备占地面积小,不需烟囱、燃料渣堆放场所。产品成套组装岀厂, 大大节省基建投资及安装费用 2 热效率高,输送方便,损失很小。电锅炉运行热效率在 95%以上。启停调节方便,比煤锅炉、油锅炉更能节约能源 。电热锅炉与 其它锅炉运行费用比较见表 1。 几种锅炉运行费用比较表表1 电锅炉房的电气设计 日期:2005-05-17 作者:解克勤 在现场只需接上电源,水管,即可投入运行,可

注:供暧面积以1 0 0 0 0 M2,采暧以每天10小时计算,采暧季为4个月。因各地区电价参数不同,此表数据仅供参考 3自动化程度高、运行安全可靠 一般电锅炉都采用自动控制,快速平稳地控制电加热管组的循环投切。并且具有漏电保护、短路保护、过电流保护、过电压保护、压力超限保护、水位过低保护等多项保护功能。产品实现了机电一体化,不需专职锅炉运行工、节省费用,避免了人为因素的影响而发生事故。 4保护环境、造福大众电锅炉不会排出如二氧化硫、二氧化碳等有害气体,无黑烟、灰尘,没有废物需要处理,无噪声、无污染,从环境保护角度来看,最为优越。 5适用范围广 电锅炉产品规格品种多,可满足各种用途、各种环境和各种条件下的需要。还可根据用户的特殊要求进行加工订货。 二电锅炉房的主要设备 电锅炉房的主要设备有: 电锅炉本体,电锅炉电控柜,蓄热水箱、蓄热水泵、循环水泵、补水泵及其控制箱,软水器等。 电锅炉本体主要由钢制壳体、电加热管、进出水管及检测仪表等组成。电锅炉的加热方式有电磁感应加热方式和电阻加热方式两种。由于电磁感应加热方式为间接加热,因而热效率较低,约为96 %。而电阻加热方式热效率高,可达98 %。电阻加热方式即采用 电阻式管状电热元件加热,在结构上易于叠加组合,控制灵活,更换方便。目前电锅炉基本上都采用电阻式管状电热元件加热。 采用电阻式管状电热元件加热方式,其电气特点是锅炉中的水不带电。但当电热元件漏水或爆裂时,也会使锅炉中的水带电,即称之 为漏电。另外,受电热元件绝缘导热层的绝缘程度的影响,电热管也存在着一定的漏电电流。按照国家标准, 漏漏电流应不大于0.5mA 。因此,电气线路上都应设漏电保护。 电加热管是电锅炉的心脏,其性能好坏直接关系到电锅炉性能的好坏。电加热管一般选用管状形式,由金属管、电热丝、引出棒、连接座和填料等组成。一般情况下,电加热管使用寿命在10000-30000 小时。电加热管的使用寿命主要取决于电加热管的材料,表面热负荷和用户的运行管理水平。电加热管为镍铬不锈钢管材,表面热负荷为6-9 W/cm2 。此外,电加热管的额定电功率也是一个非 常重要的性能指标。在额定工况下,根据国标规定,电功率偏差绝对值不应大于 5 %。 电加热管的连接方式,一般采用三相,对称地接成星形(Y)或三角形(△)「根据容量大小分成两组或多组。图1为750kW 电 锅炉主接线原理图。

基于单片机的温度控制器附程序代码

生产实习报告书 报告名称基于单片机的温度控制系统设计姓名 学号0138、0140、0141 院、系、部计算机与通信工程学院 专业信息工程10-01 指导教师 2013年 9 月 1日

目录 1.引言.................................. 错误!未定义书签。 2.设计要求.............................. 错误!未定义书签。 3.设计思路.............................. 错误!未定义书签。 4.方案论证.............................. 错误!未定义书签。方案一................................................. 错误!未定义书签。方案二................................................. 错误!未定义书签。 5.工作原理.............................. 错误!未定义书签。 6.硬件设计.............................. 错误!未定义书签。单片机模块............................................. 错误!未定义书签。 数字温度传感器模块 .................................... 错误!未定义书签。 DS18B20性能......................................... 错误!未定义书签。 DS18B20外形及引脚说明............................... 错误!未定义书签。 DS18B20接线原理图................................... 错误!未定义书签。按键模块............................................... 错误!未定义书签。声光报警模块........................................... 错误!未定义书签。数码管显示模块......................................... 错误!未定义书签。 7.程序设计.............................. 错误!未定义书签。主程序模块............................................. 错误!未定义书签。 读温度值模块.......................................... 错误!未定义书签。 读温度值模块流程图: ................................. 错误!未定义书签。

减震原理

摩托车减震器的分类以及工作原理 为了缓和与衰减摩托车在行驶过程中因道路凹凸不平受到的冲击和震动,保证行车的平顺性与舒适性,有利于提高摩托车的使用寿命和操纵的稳定性,摩托车上均设置有减震器装置。本文拟对常见的减震器结构类型、工作原理,以及减震器油的技术要求和如何调配、更换等进行探讨,供广大摩托车用户和车迷朋友们参考。 一、减震器的分类 减震器有许多种类,摩托车中绝大多数采用筒式减震器,只有极少数采用钢板弹簧结构。筒式减震器的型式和品种很多,大体上有以下几种类型: 1、根据安装位置分,有前减震器和后减震器; 2、按结构形式分,有(a)伸缩管式前*液力减震器(这是目前摩托车中使用最多的前减震器);(b)摇臂式减震器;(c)摇臂杠杆垂直式中心减震器;(d)摇臂杠杆倾斜式中心减震器。 3、按油缸工作位置分,有(a)倒置式减震器(即油缸位置在上方,活塞杆在下方);(b)正置式减震器(油缸位置在下方,活塞杆在上方)。 4、按工作介质分,有(a)弹簧式减震器;(b)弹簧—空气阻尼式减震器(因空气的阻尼力有限,减震效果也不太理想,一般只用于速度不高的轻便摩托车作后减震器);(c)液力阻尼式减震器;(d)油—气组合式前*减震器。(e)充氮气液压减震器。 5、按衰减力方向分,有(a)单向作用减震器;(b)双向作用减震器。 6、按负载调节式分,有(a)弹簧初始压力调节式;(b)气簧式;(c)安装角度调节式。 世界各国摩托车厂家在相互竞争中,对摩托车的前悬挂装置和后悬挂装置的设计,投入较大且十分考究,采用了更为新颖的变直径和变节距的弹性元件,如油压阻尼器、油—气调节装置、负载调节装置、摇臂杠杆式中心减震装置等先进结构。这些新技术的普及,能迅速衰减因车速、负载及多种路况变化所带来的冲击和震动,将振抗自动地调节到最佳的技术状态,极大地改善了摩托车的减震性能,不同程度地提高了摩托车乘骑的适应性、舒适性、平稳性和安全性。 二、液压阻尼减震器的工作原理 液压式减震器是目前摩托车使用最为普遍的减震器,现简要介绍其工作原理。 1、液压阻尼式后减震器 液压式减震器的结构同吸入式泵基本相似,不同之处只是液压减震器的钢体上端是封闭的,而阀门上留有小孔。当后轮遇到凸起的路面受到冲击时,缸筒向上移动,活塞在内缸筒里相对往下移动。此时,活塞阀门被冲开向上,内缸筒腔内活塞下侧的油不受任何阻力地流向活塞上侧。同时,这一部分油也通过底部阀门上的小孔流入内、外缸筒之间的油腔内。这样就有效地衰减了凹凸路面对车辆的冲击负荷。而当车轮越过凸起地面往下落时,缸筒也会跟着往下运动,活塞就会相对于缸筒向上移动。当活塞向上移动时,油冲开底部的阀门流向内缸筒,同时内缸筒活塞上侧的油经活塞阀门上的小孔流向下侧。此时当油液流过小孔过程中,会受到很大的阻力,这样就产生了较好的阻尼作用,起到了减震的目的。 2、伸缩管式前*液力减震器 伸缩式前*同前轮和车架是连在一起的,它既起到一部分骨架支撑作用,又起到减震器的作用。随着柄管和套管之间的相互伸缩,前*内的油经设置在隔壁的小孔流动。当柄管压缩时,随着柄管的移动(如图1所示),B室里的油受压后经柄管上的小孔流向C室。同时经自由阀流向A室。油液流动时,受到的阻力衰减了压缩力。当压缩行程快到极限时,柄管末端的锥形油封片就会插上,从而封闭了B室内油的通路。此时,B室油压激剧上升,使其处于被封闭的状态,这样就限制了柄管的行程,有效地防止前*上的可动零件之间的瞬间机械碰撞。 在柄管伸张(即反弹)时,A室内的油经设在前*活塞上部(靠近活塞环附近)的小孔流向C室。此时,油液流动所受到的阻力衰减了伸张力。当伸张行程快到极限时,反弹弹簧的伸长吸收了振动能量,而且在这一过程中,油经前*活塞下部的小孔补充到B室,为下一次的工作做好了准备。 三、减震力调节器及防点头装置 1、减震力调节器

温度控制器的工作原理

温度控制器的工作原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID 模糊控制技术 *用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar 三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控

简易温度控制器的设计(DOC)

" 简易温度控制器的设计 摘要 简易温度控制器是采用热敏电阻作为温度传感器,由于温度的变化而引起电压的变化,再利用比较运算放大器与设置的温度值对应的电压进行比较,输出高或低电平从而对控制对象即加热器进行控制。其电路可分为三大部分:测温电路,比较/显示电路,控制电路。 关键词:测温,显示,加热 ! }

目录 一、设计任务和要求 0 设计内容 0 设计要求 0 二、系统设计 0 系统要求 0 系统工作原理 0 方案设计 0 三.单元电路设计 (1) 温度检测电路 (1) 电路结构及工作原理 (1) 电路仿真 (2) 、元器件的选择及参数的确定 (3) 比较/显示电路 (3) 电路结构及工作原理 (3) 电路仿真 (4) 元件的选择及参数的确定 (5) 、温度控制单元电路 (5) 电路结构及工作原理 (5) 温度控制单元仿真电路 (6) 电源部分 (7) 四.系统仿真 (9) 结论 (9) 致谢 (9) 参考文献 (9)

一、设计任务和要求 设计内容 采用热敏电阻作为温度传感器,由于温度变化而引起电压的变化,再利用比较运算放大器与设置的温度值对应的电压进行比较,从而通过输出电平对加热器进行控制。 设计要求 首先通过电源变压器把220V的交流电变成所需要的5V电压;当水温小于40℃时,H1、H2两个加热器同时打开,将容器内的水加热;当水温大于50℃,但小于70℃时,H1加热器打开,H2加热器关闭;当水温大于50℃时,H1、H2两个加热器同时关闭;当水温小于30℃,或者大于80℃时,红色发光二极管报警;当水温在30℃~80℃之间时,用绿色发光二极管指示水温正常[2]。 二、系统设计 系统要求 系统主要要求将温度模拟量转化为数字量,再将其转化为控制信号,从而对显示电路和控制电路进行控制,从而自动的调节水温, 系统工作原理 通过对水温进行测量,将所测量的温度值与给定值进行比较,利用比较后的输出信号至加热部分,让加热部分调控水温,从而实现对水温控制的目的。同时也反应到显示部分,让其正确的表示温度的状态。温度值的变化引起电阻值的变化,从而最终引起测温电路输出的电压值的变化,经过后边比较电路进行比较,从而控制显示电路和加热电路。 方案设计 为了使信号输出误差很小,选用桥式测压电路,这样可以得出较为准确的与温度相对应的电压值,关于比较部分可以选用比较器LM339构成窗口比较器,再利用滑动变阻

电锅炉运行费用

整个采暖期一平方米的电锅炉采暖运行费用公式计算: 单位面积热负荷×热负荷系数×每天电锅炉工作时间×采暖期天数×电费单价=整个采暖期单位面积的电锅炉采暖费用。 电锅炉采暖运行状态可分为以下几种: 1、用户长时间在家,电锅炉采暖炉24小时不间断运行,为节省运行费用将夜晚的电锅炉取暖温度适当调低。 电锅炉采暖费用为:0.06kw/平米× 0.6 × 10小时× 140天× 0.48元/度= 24.2元/平米 2、上班族,电锅炉用户只有中午、夜晚在家,电锅炉采暖炉分3时段间歇运行。 电锅炉采暖费用为:0.06kw/平米× 0.6 × 6小时× 140天× 0.48元/度= 14.5元/平米 3、办公室,5日工作制,电锅炉只在周一至周五取暖,电锅炉采暖炉白天运行,其余时间电锅炉运行在防冻状态。 电锅炉采暖费用为:0.07kw/平米× 0.6 × 6小时×(140天× 5/7)× 0.48元/度= 12.1元/平米 4、学校,电锅炉除了每周5日工作制外还有35天的假期,电锅炉采暖时间比较短。 电锅炉采暖费用为:0.07kw/平米× 0.6 × 6小时× [(140天 - 35天)× 5/7] ×0.48元/度 = 9.1元/平米 用以上计算值×房间的实际采暖面积(实用面积)就可以大约算出整个采暖期的电锅炉运行费用,若电锅炉用户合理调整电锅炉或关闭不需电锅炉采暖房间(如闲置的客房、洗手间或厨房)的电锅炉采暖器,电锅炉实际采暖面积就相应减小,电锅炉采暖费用就会相应降低。 注:0.07kw/平米是标准节能建筑要求电锅炉冬季采暖热负荷为55-70w/平米0.48元/度是2000年北京的居民用电锅炉电单价,若实行峰谷电价可按平均0.35元/度计算电锅炉运行费用,电锅炉用户长时间在家的电锅炉采暖费用为17.6元 热负荷系数0.6是指在取暖期的初期和末期室内需求的热负荷较小,在取暖期最冷的时期室内需求的热负荷较大,平均取0.6

电锅炉的节能技术解析

电锅炉的节能技术解析 电锅炉节能环保性是指这种锅炉使用的是二次洁净能源,做到了百分之百零排放。节能性是指由于国家电力部门的峰、谷电政策,蓄热式电锅炉在谷电时段运行费用仅相当于峰电时段的二分之一,所以运行费用几乎与燃煤锅炉持平。另外,由于加大了谷电段用电量,可以减少发电厂在夜间运行中的停机限负荷,从而提高了发电机组的等效可用系数。所以蓄热式电锅炉是一种社会效益与经济效益并存,用户和国家双赢的好产品。变频技术和模糊技术的采用使该产品性能更加完美。 一、电锅炉设备具有以下优点: ①、热效率高:可满足各地区冬季采暖要求; ②、采暖费用低:根据分时分段供暖程控原理采用经济运行方式,运行费用比燃油、燃气和电锅炉费用更低,省去人工费用; ③、有利于环保:无泄露、低噪声,无任何污染,温度、湿度适宜,有益于身体健康; ④、运行安全:全自动控制常压设计并有漏电保护装置,无需专人看守; ⑤、使用方便:智能温控器自动控制,使用灵活方便,室内温度可由自己需要自己设定,启动关闭机器可由电脑自行控制。 ⑥、价格便宜:投资小,成本低; ⑦、多功能:本产品可以洗浴、供暖一炉多用; ⑧、最佳方式:地面低温水暖方式,对房间温度进行调节,湿度适宜,有益于人身体健康。 ⑨、对人体无辐射、温度适宜,设备外型美观、可与各种暖气片、地热、热风幕等散热装置配合使用。 (二)工作原理: 电热供暖设备是集电机、水泵、锅炉于一体的环保、节能型新产品,产品主要由加热主体、电热装置和智能温控装置等主要部分组成的水循环供暖系统。主要应用电热转换原理通过加热设备对水进行加热,使电能得到接近100%的发挥,能源得到充分利用;智能温控器自动控制,通过程控分时分段采用经济运行原理节约大量使用费用,产品体积小、使用灵活方便,室内温度可由自己需要自己设定,启动关闭机器可由电脑自行控制。

减震器原理

减振器原理 一.工作原理 减振器功能 对因路面不平或驾驶条件差而引起向车身传递的振动进行阻尼。 快速消除由地面引起的轴和车轮的振动,保证车轮随时抓地,从而保证车辆的转向和刹车功能。 减振器在一方面必须支持汽车的安全行驶功能,比如抓地、刹车和加速等。另一方面,为获得最大可能的舒适度,它又必须尽可能地把振动的传递降低到最低水平。 工作原理 悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减而增减,并与油液粘度有关。 弹性元件和减振器承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变差,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾:(1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。二.独立悬架原理 悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩. 独立悬挂系统是每一侧的车轮都是单独地通过弹性悬挂系统悬挂在车架或车身下面的。其优点是:质量轻,减少了车身受到的冲击,并提高了车轮的地面附着力;可用刚度小的较软弹簧,改善汽车的舒适性;可以使发动机位置降低,

电锅炉控制办法

电锅炉控制办法 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

锅 炉 控 制 方 案 一、企业概况 1.企业简介 2.企业的主要工程业绩 二、技术部分 1.锅炉自动控制方案 2.锅炉自动控制设备及报价 3.项目调试原则 4.项目培训计划 5.项目服务承诺书 第一部分:企业概况 企业简介 公司先后开发了各类锅炉节能控制系统、城市热网节能监控系统等产品,广泛应用于电力、热力、锅炉、供水、中央空调等行业,承揽了大量自动化系统工程,为广大用户创

造了非常巨大的经济效益。极其卓越的节能效果和良好的投入产出比始终领先于市场。公司通过了“ISO9001:2000质量管理体系”认证,并获得市科学技术局颁发的“高新技术企业”证书。“以科技创造未来”是企业不断追求的目标,“开拓、进取、创新、服务”的理念不断促使企业的技术与服务推陈出新。 我公司将不遗余力地提高员工素质,以确保在技术上的先进地位,推陈出新,以我们优质的产品,合理的价格,完善的售后体系,为用户更好的服务。 企业典型业绩 第二部分:技术部分 一、锅炉自动控制方案 本方案采用集散型(DCS)结构,实现集中管理,分散控制的技术目标。子系统在脱离中央控制系统后能够维持目标的基本运行。 系统网络拓扑图如下: 中心控制室操作台示意图如下: 上位机欢迎界面如下: 上位机锅炉A部分控制界面如下: 上位机报表界面如下: 上位机报警界面如下: 上位机温度、压力曲线界面如下: 循环泵起停界面如下: 自动控制原理。 1、供暖温度18℃~22℃。根据室外温度检测元件测量到的温度,参考供回水 温度之差,通过PID控制算法,起停电加热器,来达到小区室内温度控 制。

自动温度控制器工作原理

风机控制的工作原理一、总原理图 CBB Y 1 2 2 . 1 1 8 4 M C2 22 C1 22 S M L A 1 2 3 W D D S18b20 V CC V CC 1 2 3 4 5 6 7 8 9 R P A102*8 V CC B G 31*51 R6 330 G ND R 5 1 k V CC C3 10u/16V EA/VP 31 X1 19 X2 18 R ST 9 P37(RD) 17 P36(W R) 16 P32(IN T0) 12 P33(IN T1) 13 P34(T0) 14 P35(T1) 15 P10 1 P11 2 P12 3 P13 4 P14 5 P15 6 P16 7 P17 8 P00 39 P01 38 P02 37 P03 36 P04 35 P05 34 P06 33 P07 32 P20 21 P21 22 P22 23 P23 24 P24 25 P25 26 P26 27 P27 28 PS EN 29 A LE/P 30 P31(TX D) 11 P30(RX D) 10 G ND 20 V CC 40 IC2 89S52 V CC C4 104/400V R9 10k R10 5 1 1 2 46 3 5 IC1 3022 1 2 3 4 PO W E R 1 2 3Q4 B TA10 K2FA N K1O N/O FF K3U P K4D OW N V CC C5 100u/16V V CC In 1 O u t 3 2 IC3 78L05 C6 220u/16V C8 104 C7 104 D3 4007 D2 4007 R4 5k1 R3 5 k 1 G ND R2 5 k 1 2 1 3 Q1 8050 D4 4007 D1 4007 G ND V CC D5 4007 a b f c g d e 1 1 7 4 2 1 1 5 a b c d e f g 3 d p d p 1 2 9 8 6 S 4 S 3 S 2 S 1 X S a b c d e f f g g h h a a b b c c d d e R 8 5 . 1 K R 1 1 k R7 330

液压阻尼减震器的工作原理

液压阻尼减震器的工作原理 Tag:减震器,隔震器,减震,隔震,钢 液压式减震器是目前摩托车使用最为普遍的减震器,现简要介绍其工作原理。 1、液压阻尼式后减震器 液压式减震器的结构同吸入式泵基本相似,不同之处只是液压减震器的钢体上端是封闭的,而阀门上留有小孔。当后轮遇到凸起的路面受到冲击时,缸筒向上移动,活塞在内缸筒里相对往下移动。此时,活塞阀门被冲开向上,内缸筒腔内活塞下侧的油不受任何阻力地流向活塞上侧。同时,这一部分油也通过底部阀门上的小孔流入内、外缸筒之间的油腔内。这样就有效地衰减了凹凸路面对车辆的冲击负荷。而当车轮越过凸起地面往下落时,缸筒也会跟着往下运动,活塞就会相对于缸筒向上移动。当活塞向上移动时,油冲开底部的阀门流向内缸筒,同时内缸筒活塞上侧的油经活塞阀门上的小孔流向下侧。此时当油液流过小孔过程中,会受到很大的阻力,这样就产生了较好的阻尼作用,起到了减震的目的。 2、伸缩管式前*液力减震器 伸缩式前*同前轮和车架是连在一起的,它既起到一部分骨架支撑作用,又起到减震器的作用。随着柄管和套管之间的相互伸缩,前*内的油经设置在隔壁的小孔流动。当柄管压缩时,随着柄管的移动,B室里的油受压后经柄管上的小孔流向C室。同时经自由阀流向A室。油液流动时,受到的阻力衰减了压缩力。当压缩行程快到极限时,柄管末端的锥形油封片就会插上,从而封闭了B室内油的通路。此时,B室油压激剧上升,使其处于被封闭的状态,这样就限制了柄管的行程,有效地防止前*上的可动零件之间的瞬间机械碰撞。 在柄管伸张(即反弹)时,A室内的油经设在前*活塞上部(*近活塞环附近)的小孔流向C室。此时,油液流动所受到的阻力衰减了伸张力。当伸张行程快到极限时,反弹弹簧的伸长吸收了振动能量,而且在这一过程中,油经前*活塞下部的小孔补充到B室,为下一次的工作做好了准备。 三、减震力调节器及防点头装置 1、减震力调节器 根据道路状况和摩托车上负荷的大小,需要对摩托车乘坐的缓冲程度进行调节。减震力调节器主要有凸轮式、螺旋式及气压式和油压式,最常见的是凸轮式。 凸轮式调节器在减震器本体上焊接制动器处装一个波纹阶梯的圆筒凸轮,转动凸轮进行调节。这种结构最简单,且价格低,因而被广泛采用。不过,也有通过拨动手柄来改变凸轮位置进行调节的。 2、防点头装置 防点头(即防俯冲)装置的作用是根据制动力的大小自动减轻制动时俯冲的影响,以及获得舒适的制动感。该机构装在前*下部。前轮受到冲击及轻微制动时,前*管内的油沿着中细箭头的方向流动。紧急制动时,利用制动钳的动作制动钳的销(即活塞)介入,从而堵住减震器油的通路,油从活塞上的油路通过孔阀回到内油管,孔阀的通道比减震器受冲击动作时的油路小,油的流动受到限制,防俯冲装置使减震器受到压缩时的阻尼增大,俯冲得到有效控制。这时,由于制动力的作用,前面的负荷增加,由于制动钳的作用,俯冲力就和阀的挤压力相平衡,即使在动作中受到路面的冲击,由于正常的油路还通着,也可起到一定的缓冲作用。

空气源热泵与电锅炉取暖的区别

空气源热泵与电锅炉取暖的区别 日期:2015-01-21 作者:西莱克热泵点击:535 空气源热泵与电锅炉都是使用电的设备,是北方目前煤改电政策的首选的取暖设备;它们之间有什么区别,它们的好处分别是什么?投资成本怎样,它们两者那种更好,更节能,都是用户选购之前必须了解清楚的。 一从投资成本来看。 相同产热量的情况小,电锅炉要比空气源热泵稍微便宜一点,但是它需要的电功率要比空气源热泵大3倍作用。 二、从节能性来看》 空气源热泵是通过吸收空气中热量,经过压缩机压缩产热的过程,比传统的电节能4倍左右;而电锅炉是直接产热的设备,中间没有经过任何的转换直接产热的过程,所以只能产生90%的热量,节能性空气源热泵比电锅炉节能。 1、、空气源热泵常年可以实现1KW可以转化4KW的过程。 2、锅炉只能实现1KW实现0.95KW或者更低的过程。 三、工作原理的差异: 1、空气源热泵运转基本原理根据是逆卡循环原理,液态工质首先在蒸腾器内吸收空气中的热量而蒸腾形成蒸汽(汽化),汽化潜热即为所回收热量,然后经压缩机压缩成高温高压气体,进入冷凝器内冷凝成液态(液化)把吸收的热量发给需求的加热的水中,液态工质经胀大阀降压胀大后从头回到胀大阀内,吸收热量蒸腾而完成一个循环,如此往复,不断吸收低温源的热而输出所加热的水中,直接达到预定温度。 2、电锅炉也称电加热锅炉、电热锅炉,望文生义,它是由电加热和相关的电控部件组成的,主要以电加热的形式,向外输出具 有必定热能的蒸汽、高温水或有机热载体的设备。 四、机构上的区别: 1、空气源热泵机组比较复杂,主要由压缩机、冷凝器、蒸发器、膨胀阀、四大部件组成。 2、锅的机构比较简单,主要由大功率的电热线和绝缘的壳体组成。 五、安全性的区别 空气源热泵产热过程中,无压力,无漏电的危险,电锅炉产热的过程,主要绝缘的壳体,看是否有漏电的可能,有触电的危险。 六、电功率的要求 空气源热泵需要的电负荷要比电锅炉小1/3,对电网的要求小于传统的电锅炉。 七、功能上的区别: 空气源热泵属于空调设备,在使用过程中可以根据用户的需求,实现取暖和制冷功能和日常的生活热水,实现了三合一;,而电锅炉比较单一,只能实现取暖功能。 当然,由于投资成本方面的制约,用户得根据自己的经济条件来选取合适自己的取暖产品,由于电锅炉的安全系数比较低,所以在选购的时候,必选选用品牌大,售后服务好的公司生产的;选用空气源热泵应当选用在行业比较知名的品牌厂家。 上一篇:空气源热泵制热量受哪些因素影响 下一篇:别墅安装什么样的取暖设备比较好

电极式电锅炉蓄热系统概述

电极式电锅炉蓄热系统 一、产品简介 工作电压:一般采用中压电压(≥6 kV); 大功率锅炉电压(可达13.5 kV); 控制电压380/220V 。 保护措施:1)、过流保护; 2)、缺相保护; 3)、短路保护; 4)、三相不平衡保护。 加热原理:一般采用电厂除盐水,加入一定电解质,使炉水具有一定电阻。利用水的高热阻特性,直接将电能转换为热能并产生蒸汽的一种装置,装置包含高电阻绝缘的压力容器和三相电级。 结构形式:

功率调整范围:调整范围是1%-100%. 在10%-100%的范围内可以做到无级调节。 优点: ?锅炉利用水的电阻性直接加热,电能100%转化成热量,基本无热损失。当锅炉缺水时,电极间的电流通道被切断,不存在类似常规锅炉干烧的现象。 ?体积小巧,启动速度快,从冷态启动到满负荷只需要几十分钟,从热态到满负荷只需1分钟。 ?在节能领域,电极热水锅炉结合大型蓄能设备,在低谷电价时间段把蓄能装置内热水加温,在高电价时使用,能够起到平衡电网负荷的作用。 图一:电极式电锅炉蓄热系统示意图

二、国内外同类产品水平综述 电极锅炉的应用在国外由来已久,世界上第一台电极锅炉于1905年诞生于欧洲。国内针对电极锅炉的研究始于20世纪80年代,主要是电热水锅炉技术,通常使用的是380V动力电,常压水箱作为蓄热体,此设备占地面积大、系统热效率低。20世纪80年代,承压蓄热一体化锅炉能有效减小设备占地面积,缺点是承压蓄热电锅炉技术的单台设备不能适用于高于100 m3的蓄热体积。20世纪90年代,喷射式电极锅炉通过美国西屋公司进入中国,开始了长达十余年的价格垄断阶段。目前,国内的少数企业通过吸收欧洲技术并经过改造升级,形成了常压电极锅炉。

温度控制器的工作原理

温度控制器的工作原理 控制温度控制器原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID 模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID 模糊控制技术 *用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这

不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。当然,在电压稳定工作的速度不变、外界气温不变和空气流动速度不变的情况下,这样做是完全可以的,但要清楚地知道,以上的环境因素是不断改变的,同时,用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。当需要控温的关键很多时,就会手忙脚乱。这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有采用PID模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。例如烫金机,其温度要求比较稳定,通常在正负2℃以内才能较好运作。高速烫金机烫制同一种产品图案时,随着速度加快,加热速度也要相应提高。这时,传统的温度控制器方式和采用调压器操作就不能胜任,产品的质量就不能保证,因为烫金之前必须要把烫金机的运转速度调节适当,用速度来迁就温度控制器和调压器的弱点。但是,如果采用PID模糊控制的温度控

相关文档
最新文档