八年级数学下册第二十一章一次函数一次函数和二元一次方程的关系作业设计冀教版

合集下载

冀教版八年级下册数学第21章 一次函数 一次函数与二元一次方程的关系

冀教版八年级下册数学第21章 一次函数 一次函数与二元一次方程的关系
解:如图所示. 自变量x的取值范围是x<2.
∴解得
∴直3线m+l2的n=函0数,表达式为y=x-m=3. 1,
-2m+n=-5,
n=-3.
9 【中考·滨州】如图,在平面直角坐标系中,直线
y=-x1-1与直线y=-2x+2相交于点P,并分别与x轴相 交于点2A,B.
(1)求交点P的坐标;
解:由解y得=-12x-1, ∴P(2,-y=2)-.2x+2
6 若直线y=-x+a与直线y=x+b的交点坐标为(2,8), 则a-b的值为( ) B A.2 B.4 C.6 D.8
【点拨】 a=y+x,-b=x-y,两式相加,a-b=2x=4.
7 【 中 考 ·陕 西 】 在 平 面 直 角 坐 标 系 中 , O 为 坐 标 原 点.若直线y=x+3分别与x轴、直线y=-2x交于点A,
3 如图所示是一次函数y=ax-b的图像,则关于x的方程 ax-1=b的解为x=____4____.
【教材P108习题A组T1变式】若直线y=3x+6与y=2x
4
+ 4的交点坐标为 (a, b),x=则a是,下列哪个方程组的解
()
y=b
A.DB.
C. D.
y-3x=6, 2y+x=-4
y-3x=6, 2y-x=4
3x-y=6, 2x-y=4
3x-y=-6, 2x-y=4
5 【2021·邢台期末】已知直线y=x-2与y=mx-n相交于
点M(3,b),则关于x,y的二元一次方程组 y+2=x,
的解为( )
mx-y=n
A. B. A
C. D.
x=3, y=1
x=-3, y=-5
x=1, y=-1
x=5, y=3
冀教版八年级

《二元一次方程与一次函数》教学设计精选4篇

《二元一次方程与一次函数》教学设计精选4篇

《二元一次方程与一次函数》教学设计精选4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《二元一次方程与一次函数》教学设计精选4篇在教学工作者开展教学活动前,时常需要用到教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

冀教版八年级下册数学第21章 一次函数 一次函数与二元一次方程的关系

冀教版八年级下册数学第21章 一次函数 一次函数与二元一次方程的关系

解:由题意,可得方程组yy==32xx++6b,的解为xy==--2140.,将 xy==--2140,代入 y=2x+b, 得-24=2×(-10)+b,所以 b=-4.
12.如图,已知直线l1:y=3x+1与y轴交于点A,且与 直线l2:y=mx+n交于点P(-2,a),根据以上信息 解答下列问题: (1)求a的值;
14.如图,在平面直角坐标系 xOy 中,已知正比例函数 y=34x 与一次函数 y=-x+7 的图像交于点 A. (1)求点 A 的坐标;
解:由题意,得y=34x, y=-x+7,
解得xy==34.,所以点 A 的坐标为(4,3).
(2)设 x 轴上有一点 P(a,0),过点 P 作 x 轴的垂线(垂线位于点 A 的右侧),分别交 y=34x 和 y=-x+7 的图像于点 B,C,连接 OC,若 BC=7,求三角形 OBC 的面积.
(1)求焚烧1t垃圾,A发电厂和B发电厂各发电多少千瓦时;
解:设焚烧 1 t 垃圾,A 发电厂发电 a kW·h,B 发电厂发电 b kW·h,
根据题意得
a-b=40, 30b-20a=1
800,解得ab==320600,.
ห้องสมุดไป่ตู้
答:焚烧 1 t 垃圾,A 发电厂发电 300 kW·h,B 发电厂发电
260 kW·h.
*9.【中考·聊城】某快递公司每天上午9:00-10:00为集 中揽件和派件时段,甲仓库用来揽收快件,乙仓库用 来派发快件,该时段内甲、乙两仓库的快件数量y(件) 与时间x(分)之间的函数图像如图所示,那么当两仓库 快递件数相同时,此刻的时间为( ) A.9:15 B.9:20
C.9:25 D.9:30
B,则△AOB的面积为( )

难点解析冀教版八年级数学下册第二十一章一次函数专题练习试题(含答案解析)

难点解析冀教版八年级数学下册第二十一章一次函数专题练习试题(含答案解析)

八年级数学下册第二十一章一次函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一次函数y 1=kx +1和y 2=x ﹣2.当x <1时,y 1>y 2,则k 的值可以是( )A .-3B .-1C .2D .42、已知正比例函数y kx =的图像经过点(2,-4)、(1,1y )、(-1,2y ),那么1y 与2y 的大小关系是( )A . 12y y <B . 12y y =C . 12y y >D .无法确定3、已知点()1,3x -,()2,4x 都在直线21y x =-+上,则1x 与2x 的大小关系为( )A .12x x >B .12x x =C .12x x <D .无法比较4、甲、乙两地相距120千米,A 车从甲地到乙地,B 车从乙地到甲地,A 车的速度为60千米/小时,B 车的速度为90千米/小时,A ,B 两车同时出发.设A 车的行驶时间为x (小时),两车之间的路程为y (千米),则能大致表示y 与x 之间函数关系的图象是( )A.B.C.D.5、如图,一个小球由静止开始沿一个斜坡滚下,其速度每秒增加的值相同.用t表示小球滚动的时间,v表示小球的速度.下列能表示小球在斜坡上滚下时v与t的函数关系的图象大致是()A.B.C .D .6、关于一次函数31y x =-+,下列结论不正确的是( )A .图象与直线3y x =-平行B .图象与y 轴的交点坐标是(0,1)C .y 随自变量x 的增大而减小D .图象经过第二、三、四象限7、下列函数中,y 是x 的一次函数的是( )A .y =1x B .y =﹣3x +1 C .y =2 D .y =x 2+18、点()11,A x y 和()22,B x y 都在直线y x m =-+上,且12x x ≥,则1y 与2y 的关系是( )A .12y y ≤B .12y y ≥C .12y y <D .12y y >9、若一次函数y kx b =+(k ,b 为常数,0k ≠)的图象不经过第三象限,那么k ,b 应满足的条件是( )A .0k <且0b >B .0k >且0b >C .0k >且0b ≥D .0k <且0b ≥10、点A (﹣1,y 1)和点B (﹣4,y 2)都在直线y =﹣2x 上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .y 1≥y 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若y=mx|m﹣1|是正比例函数,则m的值______.2、用待定系数法确定一次函数表达式所需要的步骤是什么?①设——设函数表达式y=___,②代——将点的坐标代入y=kx+b中,列出关于___、___的方程③求——解方程,求k、b④写——把求出的k、b值代回到表达式中即可.3、如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组y ax by kx=+⎧⎨=⎩的解是________;当ax+b≤kx时,x的取值范围是____________.4、画出函数y=-6x与y=-6x+5的图象.(1)这两个函数的图象形状都是______,并且倾斜程度______.(2)函数y=-6x的图象经过______,函数y=-6x+5的图象与y轴交于点______,即它可以看作由直线y=-6x向______平移______个单位长度而得到.5、如图,在平面直角坐标系xOy 中,直线l 1,l 2分别是关于x ,y 的二元一次方程a 1x +b 1y =c 1,a 2x +b 2y =c 2的图象,则二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为___.三、解答题(5小题,每小题10分,共计50分)1、已知A ,B 两地相距的路程为12km ,甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图的折线OCD 和线段EF ,分别表示甲、乙两人与A 地的路程y 甲、y 乙与他们所行时间x (h )之间的函数关系,且OC 与EF 相交于点P .(1)求y 乙与x 的函数关系式以及两人相遇地点P 与A 地的路程;(2)求线段OC 对应的y 甲与x 的函数关系式;(3)求经过多少h ,甲、乙两人相距的路程为6km .2、-辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km ;两车相遇后休息了24分钟,再同时继续行驶,设两车之间的距离为y (km ),货车行驶时间为x (h ),请结合图像信息解答下列问题:(1)货车的速度为______km/h,轿车的速度为______km/h;(2)求y与x之间的函数关系式(写出x的取值范围),并把函数图像画完整;(3)货车出发______h,与轿车相距30km.3、平面直角坐标系中,已知直线l1经过原点与点P(m,2m),直线l2:y=mx+2m﹣3(m≠0).(1)求证:点(﹣2,﹣3)在直线l2上;(2)当m=2时,请判断直线l1与l2是否相交?4、一个皮球从16m的高处落下,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半,h表示反弹高度(单位:m),n表示落地次数.(1)写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式;(2)求皮球第几次落地后的反弹高度为18 m.5、已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.(1)当线段PC 与线段AB 平行时,求点P 的坐标,并求此时△POC 的面积与△AOB 的面积的比值.(2)当△AOB 被线段PC 分成的两部分面积相等时,求线段PC 所在直线的解析式;(3)若△AOB 被线段PC 分成的两部分面积比为1:5时,求线段PC 所在直线的解析式.-参考答案-一、单选题1、B【解析】【分析】先求出不等式的解集,结合x <1,即可得到k 的取值范围,即可得到答案.【详解】解:根据题意,∵y 1>y 2,∴12kx x +>-,解得:(1)3k x ->-,∴10k -<,∴1k <;31x k <--, ∵当x <1时,y 1>y 2, ∴311k -<- ∴2k >-,∴21k -<<;∴k 的值可以是-1;故选:B .【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.2、A【解析】【分析】先求出正比例函数解析式2y x =-根据正比例函数2y x =-的图象性质,当k <0时,函数随x 的增大而减小,可得y 1与y 2的大小.【详解】解:∵正比例函数y kx =的图像经过点(2,-4)、代入解析式得42k -=解得2k =-∴正比例函数为2y x =-∵2k =-<0,∴y 随x 的增大而减小,由于-1<1,故y 1<y 2.故选:A .【点睛】本题考查了正比例函数图象上点的坐标特征,用到的知识点为:正比例函数y kx =的图象,当k <0时,y 随x 的增大而减小是解题关键.3、A【解析】【分析】根据一次函数的增减性分析,即可得到答案.【详解】∵直线21y x =-+上,y 随着x 的增大而减小又∵34-<∴12x x >故选:A .【点睛】本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.4、C【解析】【分析】分别求出两车相遇、B 车到达甲地、A 车到达乙地时间,分0≤x ≤45、45<x ≤43、43<x ≤2三段求出函数关系式,进而得到当x =43时,y =80,结合函数图象即可求解. 【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B车到达甲地时间为120÷90=43小时,A车到达乙地时间为120÷60=2小时,∴当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x≤43时,y=60(x-45)+90(x-45)=150x-120;当43<x≤2是,y=60x;由函数解析式的当x=43时,y=150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.5、C【解析】【分析】静止开始沿一个斜坡滚下,其速度每秒增加的值相同即可判断.【详解】解:由题意得,小球从静止开始,设速度每秒增加的值相同为a.00v v at a t∴=+=+⨯,即v at=.故是正比例函数图象的一部分.故选:C .【点睛】本题考查了函数关系式,这是一个跨学科的题目,实际上是利用“即时速度=初始速度+加速度⨯时间”,解题的关键是列出函数关系式.6、D【解析】【分析】根据一次函数的性质对A 、C 、D 进行判断;根据一次函数图象上点的坐标特征对D 进行判断,0k >,y 随x 的增大而增大,函数从左到右上升;0k <,y 随x 的增大而减小,函数从左到右下降.由于y kx b =+与y 轴交于(0,)b ,当0b >时,(0,)b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,(0,)b 在y 轴的负半轴,直线与y 轴交于负半轴.【详解】解:A 、函数31y x =-+的图象与直线3y x =-平行,故本选项说法正确;B 、把0x =代入311y x =-+=,所以它的图象与y 轴的交点坐标是(0,1),故本选项说法正确;C 、30k =-<,所以y 随自变量x 的增大而减小,故本选项说法正确;D 、30k =-<,10b =>,函数图象经过第一、二、四象限,故本选项说法不正确;故选:D .【点睛】本题考查了一次函数的性质,以及k 对自变量和因变量间的关系的影响,熟练掌握k 的取值对函数的影响是解决本题的关键.7、B【解析】【分析】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:∵y=1x不符合一次函数的形式,故不是一次函数,∴选项A不符合题意;∵形如y=kx+b(k,b为常数).∴y=﹣3x+1中,y是x的一次函数.故选项B符合题意;∵y=2是常数函数,∴选项C不符合题意;∵y=x2+1不符合一次函数的形式,故不是一次函数,∴选项D不符合题意;综上,y是x的一次函数的是选项B.故选:B.【点睛】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.8、A【解析】【分析】根据一次函数图象的增减性,结合横坐标的大小关系,即可得到答案.【详解】解:∵直线y=-x+m的图象y随着x的增大而减小,又∵x1≥x2,点A(x1,y1)和B(x2,y2)都在直线y=-x+m上,故选:A .【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.9、D【解析】【分析】根据一次函数图象与系数的关系解答即可.【详解】 解:一次函数(y kx b k =+、b 是常数,0)k ≠的图象不经过第三象限,0k ∴<且0b ≥,故选:D .【点睛】本题主要考查了一次函数图象与系数的关系,直线y =kx +b 所在的位置与k 、b 的符号有直接的关系为:k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b =0时,直线过原点;b <0时,直线与y 轴负半轴相交.10、B【解析】【分析】由直线y =-2x 的解析式判断k =−2<0,y 随x 的增大而减小,再结合点的坐标特征解题即可.【详解】解:∵一次函数中一次项系数k =-2<0,∴y 随x 的增大而减小,∴y1<y2.故选B.【点睛】本题考查一次函数的增减性,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题1、2【解析】【分析】根据次数等于1,且系数不等于零求解即可.【详解】解:由题意得|m-1|=1,且m≠0,解得m=2,故答案为:2.【点睛】本题主要考查了正比例函数的定义,正比例函数的定义是形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.2、kx+b k b【解析】略3、42xy=-⎧⎨=⎩x≥-4【分析】根据图像可知,函数y ax b =+和y kx =交于点P (-4,-2),即可得二元一次方程组y ax b y kx =+⎧⎨=⎩的解;根据函数图像可知,当4x ≥-时,ax b kx +≤.【详解】解:根据图像可知,函数y ax b =+和y kx =交于点P (-4,-2),则二元一次方程组y ax b y kx =+⎧⎨=⎩的解是=4=2x y -⎧⎨-⎩, 由图像可知,当4x ≥-时,ax b kx +≤,故答案为:=4=2x y -⎧⎨-⎩;4x ≥-. 【点睛】本题考查了一次函数与二元一次方程组,解题的关键是掌握一次函数的性质.4、 一条直线 相同 原点 (0,5) 上 5【解析】略5、21x y =-⎧⎨=⎩【解析】【分析】本题可以通过直线与方程的关系得到方程组的解.【详解】解:因为直线l 1,l 2分别是关于x ,y 的二元一次方程a 1x +b 1y =c 1,a 2x +b 2y =c 2的图象,其交点为(-2,1),所以二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解为21x y =-⎧⎨=⎩, 故答案为:21x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.三、解答题1、 (1)612y x 乙,9km(2)18y x 甲(3)经过14小时或1小时,甲、乙两人相距6km . 【解析】【分析】(1)根据题意和函数图象中的数据,可以得到y 乙与x 的函数关系式以及两人相遇地点与A 地的距离;(2)根据函数图象中的数据,可以计算出线段OP 对应的y 甲与x 的函数关系式;(3)根据(1)和(2)中的结果,分两种情况讨论,可以得到经过多少小时,甲、乙两人相距6km .(1)解:设y 乙与x 的函数关系式是y kx b =+乙,∵点E (0,12),F (2,0)在函数y 乙=kx +b 的图象上,∴2012k b b ,解得612k b ,即y 乙与x 的函数关系式是612y x 乙,当x =0.5时,60.512=9y 乙,即两人相遇地点P 与A 地的距离是9km ;(2)解:设线段OC 对应的y 甲与x 的函数关系式是y 甲=ax ,∵点(0.5,9)在函数y 甲=ax 的图象上,∴9=0.5a , 解得a =18,即线段OP 对应的y 甲与x 的函数关系式是y 甲=18x ;(3) 解:①令186126,x x 即24126,x 24126x 或24126,x 解得:34x =或1,4x = 甲从A 地到达B 地的时间为:122=183小时, 经检验:34x =不符合题意,舍去, ②当甲到达B 地时,乙离B 地6千米所走时间为:6=16(小时), 综上所述,经过14小时或1小时,甲、乙两人相距6km .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.其中第三问要注意进行分类讨论.2、 (1)80,100(2)当02x ≤≤时,180360y x =-+;当2 2.4x <≤时,0y =;当2.44x <≤时,180432y x =-;当4 4.9x <≤时,8032y x =-,图见解析 (3)116或7730【解析】【分析】(1)结合图象可得经过两个小时,两车相遇,设货车的速度为/xkm h ,则轿车的速度为()20/x km h +,根据题意列出方程求解即可得;(2)分别求出各个时间段的函数解析式,然后再函数图象中作出相应直线即可;(3)将30y =代入(2)中各个时间段的函数解析式,求解,同时考虑解是否在相应时间段内即可.(1)解:由图象可得:经过两个小时,两车相遇,设货车的速度为/xkm h ,则轿车的速度为()20/x km h +,∴()202360x x ++⨯=,解得:80x =,20100x +=,∴货车的速度为80/km h ,则轿车的速度为100/km h ,故答案为:80;100;(2)当02x ≤≤时,图象经过()0,360,()2,0点,设直线解析式为:()0y kx b k =+≠,代入得:36002b k b =⎧⎨=+⎩, 解得:360180b k =⎧⎨=-⎩, ∴当02x ≤≤时,180360y x =-+;24分钟0.4=小时,∵两车相遇后休息了24分钟,∴当2 2.4x <≤时,0y =;当 2.4x =时,轿车距离甲地的路程为:802160km ⨯=,货车距离乙地的路程为:1002200km ⨯=, 轿车到达甲地还需要:160100 1.6h ÷=,货车到达乙地还需要:20080 2.5h ÷=,∴当2.44x <≤时,()()80 2.4100 2.4180432y x x x =-+-=-;当4 4.9x <≤时,()16080 2.48032y x x =+-=-;当 2.4x =时,0y =;当4x =时,288y =;当 4.9x =时,360y =;∴函数图象分别经过点()2.4,0,()4,288,()4.9,360,作图如下:(3)①当02x ≤≤时,令30y =可得:30180360x =-+, 解得:116x h =; ②当2.44x <≤时,令30y =可得:30180432x =-, 解得:7730x h =; ③当4 4.9x <≤时,令30y =可得:308032x =-;解得::31440x =<,不符合题意,舍去; 综上可得:货车出发116h 或7730h ,与轿车相距30km , 故答案为:116或7730.【点睛】题目主要考查一元一次方程的应用,一次函数的应用,利用待定系数法确定一次函数解析式,作函数图象等,理解题意,熟练掌握运用一次函数的基本性质是解题关键.3、 (1)见解析(2)直线l1与l2不相交【解析】【分析】(1)将所给点代入直线2l中,看等式是否成立,再判断该点是否在直线上;(2)求出1l解析式与2l比较,发现系数相同,故不可能相交.【详解】(1)把x=﹣2代入y=mx+2m﹣3得,y=﹣2m+2m﹣3=﹣3,∴点(﹣2,﹣3)在直线l2上;(2)∵直线l1经过原点与点P(m,2m),∴直线l1为y=2x,当m=2时,则直线l2:y=2x+1,∵x的系数相同,∴直线l1与l2不相交.【点睛】本题考查平面直角坐标系中的直线解析式求法、点是否在直线上的判断、两直线是否相交,掌握这些是解题关键.4、 (1)h162n(n为正整数);(2)皮球第7次落地后的反弹高度为18 m.【解析】【分析】(1)由题意可知,每次落地后的反弹高度都减半,依次可得表示反弹高度与落地次数的对应函数关系;(2)把h18=代入(1)中解析式即可解题.(1)解:根据题意得,表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式:h162n=(n为正整数);(2)把h18=代入h162n=,得116 82n =,2n=16×8=27,n=7故皮球第7次落地后的反弹高度为18 m.【点睛】本题考查一次函数的应用,是基础考点,掌握相关知识是解题关键.5、 (1)P(0,1);△POC的面积与△AOB的面积的比值为14;(2)y=﹣2x+2;(3)线段PC所在直线的解析式为:y=4x﹣4或y=45-x+45【解析】【分析】(1)先求出A、B坐标,进而求出△ABC的面积,再利用待定系数法求得PC所在直线解析式,进而求得点P坐标和△POC的面积即可;(2)根据三角形一边上的中线将三角形面积平分可得点P与点B重合,此时P(0,2),利用待定系数法求得PC所在直线解析式即可;(3)分①当点P在线段AB上时和②当点P在线段OB上时两种情况,根据三角形面积公式求出点P 纵坐标,进而求得点P坐标,再利用待定系数法求PC所在直线的解析式即可.(1)解:∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,∴A(2,0),B(0,2),∴OA=OB=2,∴∠OAB=∠OBA=45°,∴1122222AOBS OA OB∆=⋅⋅=⨯⨯=.当线段PC与线段AB平行时,可画出图形,设PC所在直线的解析式为y=﹣x+m,∵C(1,0),∴﹣1+m=0,解得,m=1,∴PC所在直线的解析式为:y=﹣x+1,∴P(0,1);此时,11111222 OPCS OP OC∆=⋅⋅=⨯⨯=,∴1::21:42OPC AOBS S∆∆==.即P(0,1);△POC的面积与△AOB的面积的比值为14;(2)解:由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B 重合,此时P(0,2),设PC所在直线的解析式为:y=kx+b,∴2k bb+=⎧⎨=⎩,解得,22kb=-⎧⎨=⎩,∴线段PC所在直线的解析式为:y=﹣2x+2.(3)解:根据题意,需要分类讨论:①当点P在线段AB上时,如图所示,此时1255 APC AOBS S∆∆==,过点P作PD⊥x轴于点D,∴1225APC S AC PD ∆=⋅⋅=,解得:45PD =,∴AD =PD =45,∴OD =OA ﹣AD =2﹣45=65,∴P (45,65),设线段PC 所在直线的解析式:y =k 1x +b 1,∴111106455k b k b +=⎧⎪⎨+=⎪⎩,解得,1144k b =⎧⎨=-⎩, ∴线段PC 所在直线的解析式:y =4x ﹣4;②当点P 在线段OB 上时,如图所示,此时1255POC AOB S S ∆∆==,∴1225POC S OP OC ∆=⋅⋅=,解得,45OP =, ∴P (0,45),设线段PC 所在直线的解析式:y =k 2x +b 2,∴222045k b b +=⎧⎪⎨=⎪⎩,解得,224545k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴线段PC所在直线的解析式:y=45-x+45;综上可知,线段PC所在直线的解析式为:y=4x﹣4或y=45-x+45.【点睛】本题考查待定系数法求一次函数的解析式、一次函数图象与坐标轴交点问题、坐标与图形、三角形的面积公式、三角形的中线性质,熟练掌握待定系数法求一次函数的解析式,利用数形结合和分类讨论思想求解是解答的关键.。

冀教版八年级下册数学第21章 一次函数 一次函数与二元一次方程的关系

冀教版八年级下册数学第21章 一次函数  一次函数与二元一次方程的关系
冀教版八年级下
第21章一次函数
21.5 一次函数与二元一次方程的关系
提示:点击 进入习题
1B 2C 3B 4B 5A
6A 7D
8C
9 (-4,1)
10
x=2, y=1
答案显示
11 B 12 D 13 一 14 见习题 15 见习题
16 (2,5)
答案显示
1.以关于x,y的二元一次方程3x-2y=1的解为坐标的点都在直线l上,则 下列各点不在直线l上的是( ) B
1
2
2
16.【创新考法】中国古代数学专著《九章算术》“方程”一章记载用算筹(方阵) 表示二元一次方程组的方法,发展到现代就是用矩阵式来表示二元一次方 程组而该方程组的解就是对应两直线(不
a1 a2
Байду номын сангаас
bb21xy=cc12
a1x+b1y=c1, a2x+b2y=c2,
平行)a1x+b1y=c1与a2x+b2y=c2的交点坐标P(x,y).据此,则矩阵式所 对应两直线的交点坐标是____________.
4-3-11xy=-31
【点拨】根据题意得
4x-y=①3+①②,,得x=2,
把x=2代入①,得8-y=3,解-得3y=x+5,y=-1②,
所以方程组的解为
x=2, 所以两直线交点坐标是(2, 5). y=5,
【答案】 (2,5)
(2)直接写出方程组yy==k-x+x+b,4 的解:__xy_==__22_,__;
(3)若点P(3,n)在直线l1的下方,直线l2的上方,求出n的取值范围.
解:由题意可知, 当x=3时,2×3-2>n>-3+4, 所以1<n<4.
15.如图,已知点A(0,4)、C(-2,0)在直线l:y=kx+b上,l和函数y=-4x +a的图像交于点B.

冀教版数学八年级下册 21.5一次函数与二元一次方程的关系 教案设计

冀教版数学八年级下册  21.5一次函数与二元一次方程的关系 教案设计

一次函数与二元一次方程的关系【教学目标】1.掌握理解一次函数与二元一次方程的关系,学会用图像法解二元一次方程组。

2.熟练运用函数的观点看待方程组的方法,进一步感受数形结合的思想方法。

3.亲历图像法解方程组的探索过程,体验分析归纳得出具体问题的结果,进一步发展学生的探究、交流能力。

【教学重难点】重点:掌握对应关系的理解及实际问题的探究建模。

难点:二元一次方程组的解与两直线交点坐标之间的对应关系在具体题中的实际应用。

【教学过程】一、直接引入师:今天这节课我们主要学习二元一次方程与一次函数的关系,这节课的主要内容有探究二元一次方程与一次函数的关系,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。

二、讲授新课(1)教师引导学生在预习的基础上了解二元一次方程和一次函数的相关知识内容,形成初步感知。

(2)首先,我们先来学习二元一次方程与一次函数的关系,它的具体内容是:一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线。

它是如何在题目中应用的呢?我们通过一道例题来具体说明。

例:(1)方程5x y+=的解有多少个?写出其中几个。

(2)在直角坐标系中分别扫出以这些点为坐标的点,它们在一次函数5=-的图像上吗?y x (3)在一次函数5+=吗?x yy x=-的图像上任取一点,它的坐标适合方程5(4)以方程5=-的图像相同吗?y x+=的解为坐标的所有点组成的图像与一次函数5x y根据例题的解题方法,让学生自己动手练习。

练习:1.下列说法正确的是().(A)二元一次方程325-=的解为有限个x y(B ) 方程3+27x y =的解x y ,为自然数的有无数对(C ) 方程组00x y x y -=⎧⎨+=⎩的解为0 (D ) 方程组中各个方程的公共解叫做这个方程组的解2.在等式=y kx b +中,当1x =-时,2y =-,当2x =-时,7y =则这个等式是( )(A )31y x =-+(B )31y x =+(C )23y x =+(D )31y x =-- 3.接着,我们再来看下求两个一次函数的交点内容:它是如何在题目中应用的呢?我们也通过一道例题来具体说明。

八年级数学上册《一次函数与二元一次方程组的关系》教案、教学设计

八年级数学上册《一次函数与二元一次方程组的关系》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一次函数的定义,掌握一次函数的图像特点及其性质。
2.学会运用一次函数解决实际问题,提高学生的数学应用能力。
3.掌握二元一次方程组的解法,理解一次函数与二元一次方程组之间的关系。
4.能够运用一次函数与二元一次方程组的知识,解决一些简单的实际问题。
2.对于习题,要求同学们独立思考,尽量不依赖他人;
3.对于拓展题,同学们可以查阅资料、讨论交流,提高自己的解题能力;
4.提交作业时,请附上解题思路和心得体会,以便教师了解同学们的学习情况。
4.关注学生的情感态度,激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神,从而提高学生的数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.重点:一次函数与二元一次方程组的关系,以及在实际问题中的应用。
2.难点:
(1)理解一次函数图像与二元一次方程组解的对应关系;
(2)灵活运用一次函数与二元一次方程组解决实际问题。
3.强调本章节的重点和难点,提醒学生课后加强巩固。
4.激发学生学习兴趣,鼓励学生在日常生活中发现数学、运用数学。
5.布置课后作业,让学生在课后继续巩固所学知识,提高解题能力。
五、作业布置
为了巩固本章节所学知识,培养学生的数学应用能力,特布置以下作业:
1.请同学们完成课本第chapter页的习题,包括以下题目:
-第1题:根据给定的二元一次方程组,绘制相应的一次函数图像,并分析其解;
-第2题:已知一次函数的图像,求解对应的二元一次方程组;
-第3题:运用一次函数与二元一次方程组解决实际问题,并总结解题步骤。

冀教版八年级数学下册第二十一章一次函数测试题含答案

y=2(x+1)﹣1,即y=2x+1,
故选B.
考点:一次函数图象与几何变换
8.B
【解析】
【分析】
根据正比例函数的定义,知1-m=0,即可求出m的值.
【详解】
依题意得1-m=0,2m+6 0,求得m=1,故选B.
【点睛】
此题主要考察正比例函数的定义.
9.A
【解析】
由题意可得: ,即: .
故选A.
10.C
(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.
(2)求甲、乙第一次相遇的时间.
(3)直接写出乙回到侧门时,甲到侧门的路程.
参考答案
1.C
【解析】
【分析】
根据一次函数的定义即可判断.
【详解】
①y=x;②y=2x-1是一次函数;;③y= ;④y=x2-1不是一次函数,
故选C.
∴它是递增的一次函数,与x、y轴的交点分别是(1,0)、(0,1)
∴它的图象经过第一、二、四象限
5.D
【解析】
试题分析:根据正比例函数图象的特点可直接解答.
解:∵正比例函数y=(k+5)x中若y随x的增大而减小,
∴k+5<0.
∴k<﹣5,
故选D.
6.B
【解析】
【分析】
把(-2,-6),(0,4)代入一次函数解析式,求出k、b的值,即可知解析式,再令y=0,求得x即可.
【详解】
把(-2,-6),(0,4)代入y=kx+b,得 ,
解得 ,∴y=5x+4,
当y=0时,即5x+4=0,解得x=- ,故选B.
【点睛】
此题主要考察待定系数法确定函数关系式,熟练利用二元一次方程组是解题的关键.

冀教版八年级下册数学第21章 一次函数 一次函数与二元一次方程的关系


感悟新知
[例中1考·呼和浩特]如图所示的四条直线,其中直线上每 个点的坐标都是二元一次方程x-2y=2的解的是
() C
知1-讲
感悟新知
知1-讲
导引:对于二元一次方程x-2y=2,当x=0时, y=-1;当y=0时,x=2,故直线x-2y=2与 两坐标轴的交点坐标是(0,-1),(2,0).对 照四个选项中的直线,可知选C.
(2)求a,b的值.
y+x=b
解:(1) x=1,
(2)将y代=入2. 可得 所以a=x-=13,,b=3. ax y= 5,
y=2.
y+x=b
a 2= 5, 2+1=b
感悟新知
知2-练
2. 解方程组并由2x此指y=出2,在同一直角坐标系内,一次函 y+2x=6,
数y=2x-2与y=-2x+6图像交点的坐标.
b 1,
b 1. 1
2
感悟新知
归纳
知2-讲
“交点”是解决问题的关键,从“形”的角度讲, 它是两个函数图像的公共点即自变量值相等时函数值 也相等的点;从“数”的角度讲,它是两个函数表达 式的公共解,即二元一次方程组的解.
感悟新知
1. 已知关于x,y的方程组的x解+为y=1,
x= 1, 知2-练
(1)写出一次函数y=-x+1和的a图x+像3y交=8点P的坐标y.=2.
感悟新知
解:因为方程组的y解=为ax+2, 所以交点A的坐y=标k为x+(2b,,1),
x=2, y=1.
知2-讲
所以2a+2=1,解得a=-.
又因为函数y=kx+b的图像1过交点A(2,1)和点B
(0,-1),所以解得

《二元一次方程与一次函数》教学设计

《二元一次方程与一次函数》教学设计一、学情分析:学生能够正确解方程(组),掌握了一次函数及其图像的基础知识,能够根据已知条件准确画出一次函数图象,已经具备了函数的初步思想,在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.二、学习目标:本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:1.初步理解二元一次方程和一次函数两种数学模型之间的关系;2.掌握二元一次方程组和对应的两条直线交点之间的关系,通过对两种模型关系的理解解决问题;教学重点二元一次方程和一次函数的关系,二元一次方程组和对应的两条直线交点之间的关系;教学难点通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识.四、教法学法1.教法学法启发引导与自主探索相结合.2.课前准备教具:多媒体课件、三角板.学具:铅笔、直尺、练习本、坐标纸.五、教学过程第一环节: 探究二元一次方程和一次函数两种数学模型之间的关系1. 水箱有5吨水,若用水管向外排水,每小时排水1吨,则X小时后还剩余Y吨水.(1)请找出自变量和因变量(2)你能列出X,Y的关系式吗?(3) X,Y的取值范围是什么?(4)在平面直角坐标系中画出这个函数的图形.(注意XY的取值范围). 2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?(2).在直角坐标系内分别描出以这些解为坐标的点,它们在一次函数Y=5-X的图象上吗?(3).在一次函数y=?x?5的图像上任取一点,它的坐标适合方程x+y=5吗?(4).以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=?x?5的图像相同吗?x+y=5与 y=?x?5表示的关系相同一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.目的:通过设置问题情景,让学生感受方程x+y=5和一次函数y=?x?5相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.第二环节自主探索方程组与一次函数两种数学模型之间的关系探究方程与函数的相互转化1.两个一次函数图象的交点坐标是相应的二元一次方程组的解(1)一次函数y=5-x图象上点的坐标适合方程x+y=5,那么一次函数y=2x-1图象上点的坐标适合哪个方程?(2)两个函数的交点坐标适合哪个方程?xy5(3).解方程组?验证一下你的发现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.5 一次函数和二元一次方程的关系
一.选择题
1.如二元一次方程组无解,则一次函数y=3x﹣5与y=3x+1的位置关系为()A.平行B.垂直C.相交D.重合
2.一次函数y=2x+4的图象如图所示,则下列说法中错误的是()
(第2题图)
A.x=﹣2,y=0是方程y=2x+4的解
B.直线y=2x+4经过点(﹣1,2)
C.当x<﹣2时,y>0
D.当x>0时,y>4
3.若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,则常数b=()
A.B.2 C.﹣1 D.1
4.如图,过点Q(0,3)的一次函数与正比例函数y=2x的图象交于点P,能表示这个一次函数图象的方程是()
(第4题图)
A.3x﹣2y+3=0 B.3x﹣2y﹣3=0 C.x﹣y+3=0 D.x+y﹣3=0
5.已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()
A.B.C.D.
6.一次函数y=﹣2x+3的图象和y=kx﹣b的图象相交于点A(m,1),则关于x,y的二元一次方程的解为()
A.B.C.D.
7.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()
(第7题图)
A.B.C.D.
8.用图象法解二元一次方程组时,小英所画图象如图所示,则方程组的解为()
(第8题图)
A.B.C.D.
9.已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x与y的二元一次方程组的解的个数为()
(第9题图)
A.0个B.1个C.2个D.无数个
10.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()
(第10题图)
A.B.C.D.
二.填空题(共16小题)
11.如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是.
(第11题图)
12.若一次函数y=3x﹣5与y=2x+7的交点P的坐标为(12,31),则方程组的解为.
13.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则二元一次方程组的解为.
(第13题图)
14.如图,利用函数图象可知方程组的解为.
(第14题图)
15.若一次函数y=ax+b、y=cx+d的图象相交于(﹣1,3),则关于x、y的方程组的解为.
三.解答题(共16小题)
16.如图,直线的函数解析式为y=2x﹣2,直线l1与x轴交于点D.直线l2:y=kx+b与x轴交于点A,且经过点B(3,1),如图所示.直线l1、l2交于点C(m,2).
(1)求点D、点C的坐标;
(2)求直线l2的函数解析式;
(3)利用函数图象写出关于x、y的二元一次方程组的解.
(第16题图)
17.如图,直线l1:y=x﹣1与直线l2:y=﹣x+2在同一直角坐标中交于点A(2,1).(1)直接写出方程组的解是.
(2)请判断三条直线y=x﹣1,y=﹣x+2,y=x+是否经过同一个点,请说明理由.
(第17题图)
参考答案
一.1.A【解析】因为二元一次方程组无解,则一次函数y=3x﹣5与y=3x+1的位置关系是平行.故选A.
2.C【解析】观察图象可知直线y=2x+4经过(﹣2,0)和(0,4),∴x=﹣2,y=0是方程y=2x+4的解,故A正确;∵x=﹣1时,y=2,∴直线y=2x+4经过点(﹣1,2),故B正确;
当x>0时,y>4,故D正确;当x<﹣2时,y<0,故C错误.故选C.
3.B【解析】因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b ﹣1上,直线解析式乘2,得2y=﹣x+2b﹣2,变形为x+2y﹣2b+2=0.所以﹣b=﹣2b+2,
解得b=2.故选B.
4.D【解析】设这个一次函数的解析式为y=kx+b.∵这条直线经过点P(1,2)和点Q(0,3),∴,解得.故这个一次函数的解析式为y=﹣x+3,即x+y﹣3=0.
故选D.
5.A【解析】∵直线y=2x经过(1,a)∴a=2,∴交点坐标为(1,2).∵方程组的解就是两个一次函数的交点坐标,∴方程组的解.故选A.
6.C【解析】∵一次函数y=﹣2x+3的图象和y=kx﹣b的图象相交于点A(m,1),∴1=﹣2m+3,解得m=1,∴A(1,1),∴二元一次方程的解为.故选C.
7.A【解析】∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组的解为.故选A.
8.D【解析】∵直线y=kx+b与y=x+2的交点坐标为(1,3),∴二元一次方程组的解为.故选D.
9.A【解析】∵一次函数y1=2x+m与y2=2x+n(m≠n)是两条互相平行的直线,∴关于x与y 的二元一次方程组无解.故选A.
10.A【解析】∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组的解为.故选A.
二.11.【解析】把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组
的解是.
12.【解析】∵一次函数y=3x﹣5与y=2x+7的交点P的坐标为(12,31),根据一次函数和二元一次方程组的关系可知一次函数y=3x﹣5与y=2x+7的交点坐标正好是它们组成的方程组的解,∴方程组的解为.
13.【解析】∵一次函数y=kx和y=﹣x+3的图象交于点(1,2),∴二元一次方程组的解为.
观察图象可知,x+y=3与y=2x相交于(1,2),可求出方方程组
14.
【解析】
的解为.
由图可知:直线y=ax+b和直线y=cx+d的交点坐标为(﹣1,3);15.
【解析】
因此方程组的解为.
三.16.解:(1)∵点D为直线l1:y=2x﹣2与x轴的交点,
∴y=0,0=2x﹣2,解得x=1,
∴D(1,0).
∵点C在直线l1:y=2x﹣2上,
∴2=2m﹣2,解得m=2,
∴点C的坐标为(2,2).
(2)∵点C(2,2)、B(3,1)在直线l2上,
∴,解得,
∴直线l2的解析式为y=﹣x+4.
(3)由图可知二元一次方程组的解为.
17.解:(1)由图可得,直线l1:y=x﹣1与直线l2:y=﹣x+2在同一直角坐标中交于点A (2,1),
∴出方程组的解是,
(2)解方程组,可得,
把代入y=x+成立,
∴三条直线y=x﹣1,y=﹣x+2,y=x+经过同一个点(2,1).。

相关文档
最新文档