山东省烟台市2020届初中毕业班下学期第2周中考数学复习:§2.3因式分解+教案

合集下载

初中中考数学因式分解的九种方法解析

初中中考数学因式分解的九种方法解析

初中中考数学因式分解的九种方法解析初中中考数学因式分解的九种方法解析把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

xx小编整理了初中中考数学因式分解的九种方法,希望能帮助到您。

一、运用公式法我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

二、平方差公式1、式子:a^2-b^2=(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

四、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2 和(a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2=(a+b)^2 和 a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。

2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。

3、当多项式中有公因式时,应该先提出公因式,再用公式分解。

4、完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

5、分解因式,必须分解到每一个多项式因式都不能再分解为止。

五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

2020年中考数学专题复习 因式分解课件3

2020年中考数学专题复习 因式分解课件3

归纳小结——因式分解的一般步骤
一“提”、二“套”、三“分”、四“查”:
口决: 首先提取公因式, 然后考虑用公式, 十字相乘试一试, 分组分得要合适, 因式分解要彻底, 最后结果是积形式。
三、灵活应用
例3、设 x y 2 , 3
求(x2 y2)2 4xy (x2 y2 ) 4(2xx2 y)22的值。
四、能力提升
变式题:已知a、b、c为三角形的三边长,试
说明 b2 c2 a2 2bc 0恒成立。 解: b2 c2 a2 2bc (b2 c2 2bc) a2
(b c)2 a2 (b c a)(b c a)
∵ a、b、c为三角形的三边长
bca0 bca0 b2 c2 a2 2bc 0恒成立
例2、选择恰当的方法分解因式
(1) 3x3 12 x2 y 12 xy2 (2) 2ax3 16ax2 18ax
解:(1)原式 = 3x(x2 4xy 4 y2 ) 3x(x 2y)2
(2)原式 = 2ax(x2 8x 9)
2ax(x 9)(x 1)
三、灵活应用
例2、选择恰当的方法分解因式
2、运用公式法
a2 2ab b2 (a b)2
完全平方公式:
a2 2ab b2 (a b)2
3、十字相乘法
x2 ( p q)x pq ( x p)( x q)
三、灵活应用
例1、选择恰当的方法分解因式
(1) 2x2 4x 2 解:原式 2(x2 2x 1)
2(x 1)2
(1)a(a+1)=a2+a
√(2) x2+2xy+y2=(x+y)2
(3) 3ab2-2a2b+ab=ab(3b-2a)

山东省烟台市2020届九初中毕业班下学期第3周中考数学复习:§3.3分式方程+导学案

山东省烟台市2020届九初中毕业班下学期第3周中考数学复习:§3.3分式方程+导学案

§3.4分式方程 导学案班级:_ __ 组别:_____ 姓名: ______评价等级:___ _【学习目标】:1、 理解分式方程的有关概念。

2、 熟练掌握分式方程的解法,会验根。

3、 能解决分式方程的应用。

【学习重点与难点】:分式方程的解法,分式方程的应用。

【导学过程】一、知识再现:(阅读教材,理解记忆)1、分式方程:2、分式方程的解法: 分式方程的增根3、含字母系数的分式方程的根的讨论.4、分式方程的应用.二、典例分析1、分式方程的解法例1、解方程 )2)(1(311-+=-+x x x x 变式1、分式方程2142=+-x x 的解是 变式2、解方程)3(19632-=-++x x x x2、含字母系数的分式方程的根的讨论例2、若分式方程:x x kx -=--+21212有增根,则k = 变式3、分式方程11(1)(2)x m x x x -=--+有增根,则m 的值为( ) A . 0和3 B . 1 C . l 和2- D .3 变式4、若关于x 的分式方程2213m x x x +-=-无解,则m 的值为( ) A .一l .5 B .1 C .一l .5或2 D .一0.5或一l .53、分式方程的应用例3、冬冬全家周末一起去海阳山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元?变式5、某班有45名同学参加紧急疏散演练,对比发现:经专家指导后,平均每秒撤离的人数是指导前的3倍,这45名同学全部撤离的时间比指导前快30秒.求指导前平均每秒撤离的人数.三、巩固提高1. 分式方程 1 x = 5 x +4的解是( ) A .1 B . 2 3C .-1D .无解 2、若关于x 的方程2x-2 +x+m 2-x=2有增根,则m 的值是____ _ 3、今年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条列实施后,每购买一台,客户可获财政补贴200元, 若同样用1万元所购买 的此款空调台数,条例实施后比条例实施前多10%, 则条例实施前此款空调的售价 为 元。

2020年初一数学(下)期中复习《因式分解》含答案

2020年初一数学(下)期中复习《因式分解》含答案

初一下数学期中复习因式分解一.因式分解-提公因式法1.把下列各式分解因式:(1)ax﹣ay+az;(2)6a2b﹣15ab2+30a2b2;(3)10a(x﹣y)2﹣5b(y﹣x);(4)x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a).2.因式分解:(x+1)(x+3)﹣33.(2019秋•徐汇区校级期中)(x﹣3y)(x﹣y)﹣(﹣x﹣y)24.因式分解:2m(a﹣b)﹣3n(b﹣a)6.(2018秋•如皋市期中)因式分解:(1)x2﹣10x (2)﹣8ax2+16axy﹣8ay2 6.(2017春•天宁区校级月考)因式分解:2x2﹣4x.8.(2017春•滨海县期末)因式分解:(1)3a(x﹣y)﹣5b(y﹣x)(2)x6﹣x2y4.9.(2015春•新沂市期中)分解因式:3x(a﹣b)﹣6y(b﹣a)10.(2013春•常州期中)因式分解:3a2﹣6a2b+2ab.二.因式分解-运用公式法12.分解因式:(1)16x2﹣8xy+y2;(2)a2(x﹣y)﹣b2(x﹣y).13.(2019春•泰兴市期中)因式分解.(1)4x2﹣9y2 (2)x2+2xy+2y214.分解因式:(a2+1)2﹣4a2.15.(2018春•江宁区校级月考)分解因式.(1)(m+1)(m﹣9)+8m (2)(x2﹣x)2﹣(x﹣1)2 15.(2018春•工业园区期末)分解因式:x4﹣2x2+1.17.(2020春•灌云县期中)因式分解:(1)2m(a﹣b)﹣3n(b﹣a)(2)8a2﹣2b2 (3)4+12(x﹣y)+9(x﹣y)218.(2019秋•崇川区校级期末)分解因式:(1)4x2y﹣9y (2)(a2+4)2﹣16a219.因式分解(1)4a2﹣9;(2)3ax2+6axy+3ay2.20.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.21.(2020春•东台市期中)因式分解①2x2﹣8 ②x3﹣2x2y+xy2 ③(x2+4)2﹣16x2.四.因式分解-分组分解法23.分解因式:x2+y2+2xy﹣1.24.(2018春•玄武区校级期中)因式分解(1)m2(x﹣2)+m(2﹣x)(2)(x+y)2﹣4(x+y﹣1);(3)(x2+y2)2﹣4x2y2;(4)x3+x2y﹣xy2﹣y3.25.(2018秋•启东市期中)分解因式(1)16﹣a4 (2)y3﹣6xy2+9x2y(3)(m+n)2﹣4m(m+n)+4m2 (4)9﹣a2+4ab﹣4b2(1)a4﹣16 (2)x2﹣2xy+y2﹣9 (3)n2(m﹣2 )+(2﹣m)27.(2017春•苏州期中)分解因式:(1)2a3﹣8a(2)4a(x﹣y)﹣2b(y﹣x)(4)(x2+4)2﹣16x2(4)2xy﹣x2+1﹣y2.28.(2017春•江阴市校级月考)因式分解(1)x3﹣4x (2)﹣2a2+4a﹣2(3)x2﹣5x﹣6 (4)x2﹣4y2+x+2y.29.(2016春•鼓楼区校级期中)分解因式(1)4x2﹣36;(2)﹣4m3+8m2+32m;(4)(y2﹣1)2﹣6(y2﹣1)+9;(4)a2+ac﹣bc﹣b2.(1)3x﹣12x3 (2)a3﹣4ab2(3)(2x+y)2﹣(x+2y)2 (4)a2﹣4a+4﹣c2.31.(2016秋•张家港市校级月考)因式分解:(1)3ax﹣3ay2(2)(a+b)2﹣a2 (3)3a(x﹣y)+9(y﹣x)(4)x4﹣18x2+81 (5)x2﹣5x+6 (6)a2+2a+1﹣b2.32.(2016春•江阴市校级月考)因式分解:(1)3a5﹣12a4+9a3(2)3a2﹣6ab+3b2﹣12c2.五.因式分解-十字相乘法等33.(2019春•常熟市期末)将下列各式分解因式:(1)x2﹣5x﹣6;(2)8x2﹣8x+2;(3)a2(x﹣y)+b2(y﹣x).(1)9x2﹣25 (2)x4y4﹣8x2y2+16(3)a2(x﹣y)﹣b2(x﹣y)(4)x2﹣xy﹣6y235.(2019春•吴江区期中)分解因式:(1)ax2﹣6ax+9a (2)(m+1)(m﹣9)+8m (3)a4+3a2﹣436.(2019春•丹阳市期中)分解因式(1)6xz﹣9xy (2)8a3﹣8a2+2a(3)2ax2﹣18a3 (4)x2﹣4x﹣1237.(2019春•常熟市期中)分解因式:(1)3a2﹣6a+3;(2)a2﹣ab﹣6b2;(3)9a2(2x﹣y)+(y﹣2x)(1)x4﹣81 (2)x2﹣x﹣2 (3)2x2y﹣8xy+8y 39.分解因式:(a2+a)2﹣8(a2+a)+12.40.(2018春•玄武区校级月考)分解下列因式(1)a2(x﹣y)+b2(y﹣x)(2)16x4﹣8x2y2+y4 (3)(x2+4)2﹣16x2 (4)36(a+b)2﹣4(a﹣b)2 (5)x2﹣6x﹣1641.(2018春•常熟市期末)将下列各式分解因式(1)3x(a﹣b)﹣9y(b﹣a);(2)a2﹣4a﹣12;(3)81x4﹣72x2y2+16y442.(2018春•相城区期中)将下列各式分解因式:(1)2ax2﹣8a (2)x2﹣6xy+5y2(3)(2m﹣n)2﹣6n(2m﹣n)+9n2 (4)a2﹣b2+2b﹣1一.因式分解-提公因式法1.(1)ax﹣ay+az=a(x﹣y+z);(2)6a2b﹣15ab2+30a2b2=3ab(2a﹣5b+10ab);(3)10a(x﹣y)2﹣5b(y﹣x)=10a(x﹣y)2+5b(x﹣y)=5(x﹣y)[2a(x﹣y)+b] =5(x﹣y)(2ax﹣2ay+b);(4)x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a)=x(a﹣x)(a﹣y)﹣y(a﹣x)(a﹣y)=(a﹣x)(a﹣y)(x﹣y).2.(x+1)(x+3)﹣3=x2+4x+3﹣3=x2+4x=x(x+4),3.(x﹣3y)(x﹣y)﹣(﹣x﹣y)2=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).4.2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n).5.3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)=3x2(x﹣2y)﹣18x(x﹣2y)+27(x﹣2y)=3(x﹣2y)(x2﹣6x+9)=3(x﹣2y)(x﹣3)2.6.(1)x2﹣10x=x(x﹣10);(2)﹣8ax2+16axy﹣8ay2=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.7.2x2﹣4x=2x(x﹣2).8.(1)3a(x﹣y)﹣5b(y﹣x)=(x﹣y)(3a+5b)(2)x6﹣x2y4=x2(x4﹣y4)=x2(x2﹣y2)(x2+y2)=x2(x﹣y)(x+y)(x2+y2)9.3x(a﹣b)﹣6y(b﹣a)=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y).10.3a2﹣6a2b+2ab=a(3a﹣6ab+2b).11.6a(b﹣1)2﹣2(1﹣b)2=2(b﹣1)2(3a﹣1).二.因式分解-运用公式法12.(1)16x2﹣8xy+y2=(4x﹣y)2(2)a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b).13.(1)4x2﹣9y2=(2x+3y)(2x﹣3y)(2)x2+2xy+2y2=(x2+4xy+4y2)=(x+2y)2.14.(a2+1)2﹣4a2.=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.15.(1)(m+1)(m﹣9)+8m=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3);=(x+1)(x﹣1)3.16.x4﹣2x2+1=(x2﹣1)2=(x+1)2(x﹣1)2.三.提公因式法与公式法的综合运用17.(1)2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n)(2)8a2﹣2b2=2(4a2﹣b2)=2(2a+b)(2a﹣b)(3)4+12(x﹣y)+9(x﹣y)2=[2+3(x﹣y)]2=(2+3x﹣3y)218.(1)4x2y﹣9y=y(4x2﹣9)=y(2x+3)(2x﹣3)(2)(a2+4)2﹣16a2=(a2+4﹣4a)(a2+4+4a)=(a+2)2(a﹣2)219.(1)4a2﹣9=(2a+3)(2a﹣3)(2)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)220.(1)9ax2﹣ay2=a(9x2﹣y2)=a(3x+y)(3x﹣y)(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)221.①2x2﹣8=2(x2﹣4)=2(x﹣2)(x+2)②x3﹣2x2y+xy2═x(x2﹣2xy+y2)=x(x﹣y)2③(x2+4)2﹣16x2=(x2+4x+4)(x2﹣4x+4)=(x+2)2(x﹣2)222.(1)x2﹣4=(x+2)(x﹣2);(2)x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.四.因式分解-分组分解法23.x2+y2+2xy﹣1=(x+y)2﹣1=(x+y﹣1)(x+y+1).24.(1)m2(x﹣2)+m(2﹣x)=m2(x﹣2)﹣m(x﹣2)=(x﹣2)(m2﹣m)=m(x﹣2)(m﹣1);(2)(x+y)2﹣4(x+y﹣1)=(x+y)2﹣4(x+y)+4=(x+y﹣2)2;(3)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2;(4)x3+x2y﹣xy2﹣y3=x2(x+y)﹣y2(x+y)=(x+y)(x2﹣y2)=(x+y)2(x﹣y).25.(1)16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(2)y3﹣6xy2+9x2y=y(y2﹣6xy+9x2)=y(y﹣3x)2(3)(m+n)2﹣4m(m+n)+4m2=(m+n﹣2m)2=(n﹣m)2(4)9﹣a2+4ab﹣4b2=9﹣(a﹣2b)2=(3﹣a+2b)(3+a﹣2b)26.(1)a4﹣16=(a2+4)(a2﹣4)=(a2+4)(a+2)(a﹣2)(2)x2﹣2xy+y2﹣9=(x﹣y)2﹣32=(x﹣y+3)(x﹣y﹣3)(3)n2(m﹣2 )+(2﹣m)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1)27.(1)2a3﹣8a=2a(a2﹣4)=2a(a+2)(a﹣2);(2)4a(x﹣y)﹣2b(y﹣x)=2(x﹣y)(2a+b);(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)2xy﹣x2+1﹣y2=1﹣(x﹣y)2=(1+x﹣y)(1﹣x+y).28.(1)x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2)(2)﹣2a2+4a﹣2=﹣2(a2﹣2a+1)=﹣2(a﹣1)2(3)x2﹣5x﹣6=(x﹣6)(x+1)(4)x2﹣4y2+x+2y=(x+2y)(x﹣2y)+(x+2y)=(x+2y)(x﹣2y+1)29.(1)4x2﹣36=4(x2﹣9)=4(x+3)(x﹣3)(2)﹣4m3+8m2+32m=﹣4m(m2﹣2m﹣8)=﹣4m(m+2)(m﹣4)(3)(y2﹣1)2﹣6(y2﹣1)+9=(y2﹣1﹣3)2=[(y+2)(y﹣2)]2=(y+2)2(y﹣2)2(4)a2+ac﹣bc﹣b2=(a+b)(a﹣b)+c(a﹣b)=(a﹣b)(a+b+c)30.(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x)(2)a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b);(3)(2x+y)2﹣(x+2y)2=(2x+y﹣x﹣2y)(2x+y+x+2y)=(x﹣y)(3x+3y)=3(x﹣y)(x+y);(4)a2﹣4a+4﹣c2=(a﹣2)2﹣c2=(a﹣2+c)(a﹣2﹣c).31.(1)3ax﹣3ay2=3a(x﹣y2);(2)(a+b)2﹣a2=(a+b﹣a)(a+b+a)=b(2a+b);(3)3a(x﹣y)+9(y﹣x)=3(x﹣y)(a﹣3);(4)x4﹣18x2+81=(x2﹣9)2=(x+3)2(x﹣3)2;(5)x2﹣5x+6=(x﹣3)(x﹣2);(6)a2+2a+1﹣b2=(a+1)2﹣b2=(a+1+b)(a+1﹣b).32.(1)3a5﹣12a4+9a3=3a3(a2﹣4a+3)=3a3(a﹣3)(a﹣1)(2)3a2﹣6ab+3b2﹣12c2=3(a2﹣2ab+b2﹣4c2)=3[(a﹣b)2﹣4c2]=3(a﹣b+2c)(a﹣b﹣2c)五.因式分解-十字相乘法等33.(1)x2﹣5x﹣6=(x﹣6)(x+1)(2)8x2﹣8x+2=2(4x2﹣4x+1)=2(2x﹣1)2(3)a2(x﹣y)+b2(y﹣x)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b)34.(1)9x2﹣25=(3x+5)(3x﹣5)(2)x4y4﹣8x2y2+16=(x2y2﹣4)2=(xy+2)2(xy﹣2)2(3)a2(x﹣y)﹣b2(x﹣y)=(a2﹣b2)(x﹣y)=(a+b)(a﹣b)(x﹣y)(4)x2﹣xy﹣6y2=(x﹣3y)(x+2y)35.(1)ax2﹣6ax+9a=a(x2﹣6x+9)=a(x﹣3)2;(2)(m+1)(m﹣9)+8m=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3);(3)a4+3a2﹣4=(a2﹣1)(a2+4)=(a﹣1)(a+1)(a2+4).36.(1)6xz﹣9xy=3x(2z﹣3y)(2)8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2(3)2ax2﹣18a3=2a(x2﹣9a2)=2a(x+3a)(x﹣3a)(4)x2﹣4x﹣12=(x﹣6)(x+2)37.(1)3a2﹣6a+3=3(a2﹣2a+1)=3(a﹣1)2;(2)a2﹣ab﹣6b2=(a﹣3b)(a+2b);(3)9a2(2x﹣y)+(y﹣2x)=9a2(2x﹣y)﹣(2x﹣y)=(2x﹣y)(9a2﹣1)=(2x﹣y)(3a+1)(3a﹣1).38.(1)x4﹣81=(x2+9)(x2﹣9)=(x2+9)(x+3)(x﹣3);(2)x2﹣x﹣2=(x+1)(x﹣2);(3)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.39.(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).40.(1)a2(x﹣y)+b2(y﹣x)=a2(x﹣y)﹣b2(x﹣y)=(a2﹣b2)(x﹣y)=(x﹣y)(a+b)(a﹣b);(2)16x4﹣8x2y2+y4=(4x2﹣y2)2=(2x+y)2(2x﹣y)2;(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)36(a+b)2﹣4(a﹣b)2=(6a+6b)2﹣(2a﹣2b)2=(6a+6b+2a﹣2b)(6a+6b﹣2a+2b)=(8a+4b)(4a+8b)=16(2a+b)(a+2b);(5)x2﹣6x﹣16=(x﹣8)(x+2).41.(1)3x(a﹣b)﹣9y(b﹣a)=3x(a﹣b)+9y(a﹣b)=3(a﹣b)(x+3y);(2)a2﹣4a﹣12=(a﹣6)(a+2);(3)81x4﹣72x2y2+16y4=(9x2﹣4y2)2=(3x+2y)2(3x﹣2y)2.42.(1)2ax2﹣8a=2a(x2﹣4)=2a(x+2)(x﹣2);(2)x2﹣6xy+5y2=(x﹣y)(x﹣5y);(3)(2m﹣n)2﹣6n(2m﹣n)+9n2=(2m﹣n﹣3n)2=4(m﹣2n)2;(4)a2﹣b2+2b﹣1=a2﹣(b﹣1)2=(a+b﹣1)(a﹣b+1).。

因式分解专题复习及讲解(很详细)

因式分解专题复习及讲解(很详细)

因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a 2-b 2=(a+b)(a -b);(2) a 2±2ab+b 2=(a ±b)2;(3) a 3+b 3=(a+b)(a 2-ab+b 2);(4) a 3-b 3=(a -b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6) a 3±3a 2b+3ab 2±b 3=(a±b)3.例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

4 2020年中考数学复习第四讲:因式分解

4    2020年中考数学复习第四讲:因式分解

2020年中考数学复习第四讲:因式分解【基础知识回顾】一、因式分解的定义:1、把一个式化为几个整式的形式,叫做把一个多项式因式分解。

2、因式分解与整式乘法是运算。

【判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为的形式。

】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。

提公因式法分解因式可表示为:ma+mb+mc= 。

【1、公因式的选择可以是单项式,也可以是,都遵循一个原则:取系数的,相同字母的。

2、提公因式时,若有一项被全部提出,则括号内该项为,不能漏掉。

3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要。

】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。

①平方差公式:a2-b2= , ②完全平方公式:a2±2ab+b2= 。

【1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面a与b。

如:x2-12x+14即是完全平方公式形式而x2- x+12就不符合该公式。

】一、公式分解的一般步骤1、一提:如果多项式即各项有公因式,即分要先2、二用:如果多项没有公因式,即可以尝试运用法来分解。

3、三查:分解因式必须进行到每一个因式都解因为止。

【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两点,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (2020•安徽)下面的多项式中,能因式分解的是()A.m2+n B.m2-m+1 C.m2-n D.m2-2m+1点评:本题主要考查了因式分解的意义,熟练掌握公式的结构特点是解题的关键.对应训练1.(2020•凉山州)下列多项式能分解因式的是()A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y2考点二:因式分解例2 (2020•天门)分解因式:3a2b+6ab2= .点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (2020•广元)分解因式:3m3-18m2n+27mn2= .点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(2020•温州)把a2-4a多项式分解因式,结果正确的是()A.a(a-4)B.(a+2)(a-2)C.a(a+2)(a-2)D.(a-2)2-43.(2020•恩施州)a4b-6a3b+9a2b分解因式得正确结果为()A.a2b(a2-6a+9)B.a2b(a-3)(a+3)C.b(a2-3)2 D.a2b(a-3)2考点三:因式分解的应用例4 8.(2020•随州)设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,则点评:本题考查了因式分解、根与系数的关系及根的判别式,解题关键是注意1-ab2≠0的运用.对应训练4.(2020•苏州)若a=2,a+b=3,则a2+ab= .【聚焦山东中考】1.(2020•济宁)下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6 B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6 D.x2-5x+6=(x+2)(x+3)2.(2020•临沂)分解因式:a-6ab+9ab2= .3.(2020•点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。

2020年山东省烟台中考数学试卷附答案解析版


则这个旋转中心的坐标为



18.二次函数 y = ax2 bx c 的图象如图所示,下列结论:
① ab>0 ;② a b 1= 0 ;③ a>1;④关于 x 的一元二次方程ax2 bx c = 0 的一个

根为 1,另一个根为 1 .
a
其中正确结论的序号是


效 数学试卷 第 5 页(共 10 页)
D ()
A.众数改变,方差改变
B.众数不变,平均数改变
C.中位数改变,方差不变
D.中位数不变,平均数不变
6.利用如图所示的计算器进行计算,按键操作不正确的是
()
A.按键
即可进入统计计算状态
B.计算 8 的值,按键顺序为:
C.计算结果以“度”为单位,按键
可显示以“度”“分”“秒”为单位的结果
D.计算器显示结果为 1 时,若按外角的性质 9.【答案】D
2 / 11
【解析】解:最小的等腰直角三角形的面积 1 1 42 1( cm2 ),平行四边形面积为2 cm2 ,中等的等腰 82
直角三角形的面积为2 cm2 ,最大的等腰直角三角形的面积为4 cm2 ,则 A、阴影部分的面积为2 + 2 4 ( cm2 ),不符合题意; B、阴影部分的面积为1+ 2 3 ( cm2 ),不符合题意; C、阴影部分的面积为4 + 2 6 ( cm2 ),不符合题意; D、阴影部分的面积为4 +1 5 ( cm2 ),符合题意. 故选:D.
一水 平线上,BC = 100 厘米,点 C 在点 P 的正下方 5 厘米处.若两臂杆长度
相等, 求两臂杆的夹角.
(参考数据表)#DLQZ
计算器按键顺序

烟台市初中数学因式分解知识点总复习有解析

烟台市初中数学因式分解知识点总复习有解析一、选择题1.将多项式x2+2xy+y2﹣2x﹣2y+1分解因式,正确的是()A.(x+y)2B.(x+y﹣1)2C.(x+y+1)2D.(x﹣y﹣1)2【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x2+2xy+y2﹣2x﹣2y+1=(x2+2xy+y2)﹣(2x+2y)+1=(x+y)2﹣2(x+y)+1=(x+y﹣1)2.故选:B2.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4 D.4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4x2+1结合,然后判断是否为完全平方式即可得答案.【详解】A、4x2+1+2x,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B、4x2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;C、4x2+1+4x4=(2x2+1)2,能利用完全平方公式进行因式分解,故不符合题意;D 、4x2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.3.下列等式从左到右的变形属于因式分解的是()A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣aC.6x2y3=2x2•3y3D.mx﹣my+1=m(x﹣y)+1【答案】A【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】解:A、a2﹣2a+1=(a﹣1)2,从左到右的变形属于因式分解,符合题意;B 、a (a+1)(a ﹣1)=a 3﹣a ,从左到右的变形是整式乘法,不合题意;C 、6x 2y 3=2x 2•3y 3,不符合因式分解的定义,不合题意;D 、mx ﹣my+1=m (x ﹣y )+1不符合因式分解的定义,不合题意;故选:A .【点睛】本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.4.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.5.下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a+1=2a (a ﹣1)+1B .(x+y )(x ﹣y )=x 2﹣y 2C .x 2﹣6x+5=(x ﹣5)(x ﹣1)D .x 2+y 2=(x ﹣y )2+2x【答案】C【解析】【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A 、2a 2-2a+1=2a (a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B 、(x+y )(x-y )=x 2-y 2,这是整式的乘法,故此选项不符合题意;C 、x 2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D 、x 2+y 2=(x-y )2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意; 故选C .【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.6.下列各式分解因式正确的是( )A .2112(12)(12)22a a a -=+-B .2224(2)x y x y +=+C .2239(3)x x x -+=-D .222()x y x y -=-【答案】A【解析】【分析】 根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解.【详解】 A. 2112(12)(12)22a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误;C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误;D. ()22()x y x y x y -=-+,故本选项错误. 故选A.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.7.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ yB .x ≥ yC .x < yD .x > y【答案】D【解析】【分析】判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系.【详解】解:22222202()x y a b ab a a b a -=++-+=-++20, 2()0a b -≥Q ,20a ≥,200>,0x y ∴->,x y ∴>,故选:D .【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.8.若a 2-b 2=14,a-b=12,则a+b 的值为( ) A .-12 B .1 C .12 D .2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a 2-b 2=(a+b )(a-b)=12(a+b)=14∴a+b=12故选C. 点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.10.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】将各项分解得到结果,即可作出判断.【详解】①322(2+1)x xy x x x y ++=+,故①错误;②2244(2)x x x ++=+,故②正确;③2222()()x y y x x y y x -+=-=+-,故③正确;④39(+3)(3)x x x x x -=-故④错误.则正确的有2个.故选:B.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.不论x ,y 为任何实数,22428x y x y +--+ 的值总是( )A .正数B .负数C .非负数D .非正数【答案】A【解析】x²+y²-4x-2y+8=(x²-4x+4)+(y²-2y+1)+3=(x-2)2+(y-1)2+3≥3,不论x,y 为任何实数,x²+y²-4x-2y+8的值总是大于等于3,故选A.【点睛】本题考查了因式分解的应用,解题的关键是要明确要判断一个算式是正数时总是将其整理成一个完全平方公式加正数的形式.12.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+ 【答案】B【解析】【分析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+13.下列式子从左到右变形是因式分解的是( )A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.14.下列等式从左到右的变形,属于因式分解的是()A.8x2y3=2x2⋅4 y3B.(x+1)(x﹣1)=x2﹣1C.3x﹣3y﹣1=3(x﹣y)﹣1 D.x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.15.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【答案】C【解析】【分析】根据a﹣2b+c<0,a+2b+c=0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况.【详解】∵a﹣2b+c<0,a+2b+c=0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】 此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.16.下列等式从左到右的变形,属于因式分解的是( )A .()21x x x x -=- B .()22121x x x x -+=-+ C .()()21323x x x x -+=+- D .()a b c ab ac -=-【答案】A【解析】【分析】根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案.【详解】解:A 、把一个多项式转化成几个整式积的形式,符合题意;B 、右边不是整式积的形式,不符合题意;C 、是整式的乘法,不是因式分解,不符合题意;D 、是整式的乘法,不是因式分解,不符合题意;故选:A .【点睛】本题考查了因式分解的意义,掌握因式分解的意义是解题关键.17.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.18.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 【答案】A【解析】试题分析:把多项式分别进行因式分解,多项式2mx m -=m (x+1)(x-1),多项式221x x -+=()21x -,因此可以求得它们的公因式为(x-1).故选A考点:因式分解19.下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 【答案】D【解析】【分析】因式分解,常用的方法有:(1)提取公因式;(2)利用乘法公式进行因式分解【详解】A 中,需要提取公因式:()26223+1x y x y +=--,A 错误;B 中,利用乘法公式:()2221x x x +=--1,B 错误;C 中,利用乘法公式:2()4()22x x x =-+-,C 错误;D 中,先提取公因式,再利用乘法公式:()()311x x x x x -=+-,正确 故选:D【点睛】在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩下部分是否还可进行因式分解.20.三角形的三边a 、b 、c 满足a (b ﹣c )+2(b ﹣c )=0,则这个三角形的形状是( )A .等腰三角形B .等边三角形C.直角三角形D.等腰直角三角形【答案】A【解析】【分析】首先利用提取公因式法因式分解,再进一步分析探讨得出答案即可【详解】解:∵a(b-c)+2(b-c)=0,∴(a+2)(b-c)=0,∵a、b、c为三角形的三边,∴b-c=0,则b=c,∴这个三角形的形状是等腰三角形.故选:A.【点睛】本题考查了用提取公因式法进行因式分解,熟练掌握并准确分析是解题的关键.。

《因式分解》全章复习与巩固(基础)知识讲解

《因式分解》全章复习与巩固(基础)【学习目标】1. 理解因式分解的意义,了解分解因式与整式乘法的关系; 2.掌握提公因式法分解因式,理解添括号法则; 3. 会用公式法分解因式;4. 综合运用因式分解知识解决一些简单的数学问题. 【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算. 要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律. 要点三、添括号的法则括号前面是“﹢”号,括到括号里的各项都不变号;括号前面是“﹣”号,括到括号里的各项都变号. 要点四、公式法 1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-.形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点五、十字相乘法和分组分解法 十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq cp q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点六、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解. (4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、已知21x x +-=0,求3223x x ++的值.【思路点拨】观察题意可知21x x +=,将原式化简可得出答案. 【答案与解析】解:依题意得:21x x +=, ∴3223x x ++, =3223x x x +++, =22()3x x x x +++, =23x x ++,=4;【总结升华】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.类型二、公式法分解因式2、已知2x -3=0,求代数式()()2259x x x x x -+--的值. 【思路点拨】对所求的代数式先进行整理,再利用整体代入法代入求解. 【答案与解析】解:()()2259x x x x x -+--,=322359x x x x -+--, =249x -.当2x -3=0时,原式=()()2492323x x x -=+-=0.【总结升华】本题考查了提公因式法分解因式,观察题目,先进行整理再利用整体代入法求解,不要盲目的求出求知数的值再利用代入法求解. 举一反三:【变式】()()33a y a y -+是下列哪一个多项式因式分解的结果( )A .229a y+B .229a y-+C .229a y-D .229a y--【答案】C ;3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式324x xy -,取x =10,y =10,用上述方法产生密码是什么?【思路点拨】首先将多项式324x xy -进行因式分解,得到()()32422x xy x x y x y -=+-,然后把x =10,y =10代入,分别计算出()2x y +及()2x y -的值,从而得出密码. 【答案与解析】解:()()()32224422x xy x x yx x y x y -=-=+-,当x =10,y =10时,x =10,2x +y =30,2x -y =10, 故密码为103010或101030或301010.【总结升华】本题是中考中的新题型.考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键. 举一反三:【变式】利用因式分解计算 (1)16.9×18+15.1×18(2) 22683317- 【答案】 解:(1)16.9×18+15.1×18=()116.915.18⨯+=13248⨯= (2)22683317-=()()683317683317+⨯- =1000×366 =366000. 4、因式分解:(1)()()269a b a b ++++; (2)222xy x y ---(3)()()22224222x xyy x xy y -+-+.【思路点拨】都是完全平方式,所以都可以运用完全平方公式分解.完全平方公式法:()2222a b a ab b ±=±+.【答案与解析】解:(1)()()()22693a b a b a b ++++=++(2)()()2222222xy x y xy x y x y ---=-++=-+(3)()()22224222x xyy x xy y -+-+=()()24222x xy yx y -+=-【总结升华】本题考查了完全平方公式法因式分解,(3)要两次分解,注意要分解完全. 举一反三:【变式】下列各式能用完全平方公式进行分解因式的是( )A .21x + B .221x x +- C .21x x ++ D .244x x ++【答案】D ;5、先阅读,再分解因式:()24422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.【思路点拨】根据材料,找出规律,再解答. 【答案与解析】解:442264166416x x x x +=++-=()222816x x +-=()()228484x xxx +++-.【总结升华】此题要综合运用配方法,完全平方公式,平方差公式,熟练掌握公式并读懂题目信息是解题的关键.类型三、十字相乘法或分组分解法分解因式6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系.(1)根据你发现的规律填空:2x px qx pq +++=()2x p q x pq +++=______;(2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2712y y -+.【思路点拨】(1)根据一个正方形和三个长方形的面积和等于由它们拼成的这个大长方形的面积作答; (2)根据(1)的结论直接作答. 【答案与解析】解:(1)()()x p x q +⨯+(2)①()()271025x x x x ++=++②()()271234y y x x -+=--【总结升华】本题实际上考查了利用十字相乘法分解因式.运用这种方法的关键是把二次项系数a 分解成两个因数12,a a 的积12a a ,把常数项c 分解成两个因数12c c 的积12,c c ,并使1221a c a c +正好是一次项b ,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号. 举一反三:【变式】已知A =2a +,B =25a a -+,C =2519a a +-,其中a >2. (1)求证:B -A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 解:(1)B -A =()21a -+2>0,所以B >A ;(2)C -A =25192a a a +---,=2421a a +-, =()()73a a +-.因为a >2,所以a +7>0,从而当2<a <3时,A >C ;当a =3时,A =C ;当a >3时,A <C .【巩固练习】 一.选择题1.下列各式从左到右的变化中属于因式分解的是( ). A .()()22422m n m n m n -=+- B .()()2111m m m +-=-C .()23434m m m m --=-- D .()224529m m m --=--2. 把24a a -多项式分解因式,结果正确的是( )A .()4a a -B .()()22a a +-C .()()22a a a +-D .()224a -- 3. 下列多项式能分解因式的是( ) A .22x y +B .22x y--C .222x xy y-+-D .22x xy y-+4. 将2m()2a -+()2m a -分解因式,正确的是()A .()2a -()2m m - B .()()21m a m -+ C .()()21m a m -- D .()()21m a m --5. 下列四个选项中,哪一个为多项式28102x x -+的因式?( )A .2x -2B .2x +2C .4x +1D .4x +2 6. 若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A.-15B.-2C.8D.2 7. 2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是()A .2)5(b a - B .2)5(b a + C .)23)(23(b a b a +- D .2)25(b a - 8. 下列多项式中能用平方差公式分解的有( )①22a b --; ②2224x y -; ③224x y -; ④()()22m n ---; ⑤22144121a b -+;⑥22122m n -+. A .1个 B .2个 C .3个 D .4个 二.填空题9.分解因式:()241x x -- =________.10.把23x x c ++分解因式得:23x x c ++=()()12x x ++,则c 的值为________.11.若221x y -=,化简()()20122012x y x y +-=________.12. 若2330x x +-=,32266x x x +-=__________. 13.把()()2011201222-+-分解因式后是___________.14.把多项式22ax ax a --分解因式,下列结果正确的是_________.15. 当10x =,9y =时,代数式22x y -的值是________.16.把2221x y y ---分解因式结果正确的是_____________. 三.解答题 17.分解因式:(1)234()12()x x y x y ---; (2)2292416a ab b -+; (3)21840ma ma m --.18. 已知10a b +=,6ab =,求:(1)22a b +的值;(2)32232a b a b ab -+的值. 19.已知关于x 的二次三项式2x mx n ++有一个因式()5x +,且17m n +=,试求m 、n 的值.20. 两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成()()219x x --,另一位同学因看错了常数项而分解成()()224x x --,请将原多项式分解因式.【答案与解析】 一.选择题1. 【答案】A ;【解析】因式分解是把多项式化成整式乘积的形式. 2. 【答案】A ;【解析】()244a a a a -=-. 3. 【答案】C ;【解析】A .不能分解;B .2222()x y x y --=-+,不能分解;C .()2222x xy y x y -+-=--,故能够分解;D .不能分解.4. 【答案】C ; 【解析】2m()2a -+()2m a -=2m ()2a -()2m a --=()()21m a m --.5. 【答案】A ;【解析】将28102x x -+进行分解因式得出()()281024122x x x x -+=--,进而得出答案即可.6. 【答案】D ;【解析】2(3)(5)28x x x x -+=+-. 7. 【答案】A【解析】2222)(4)(12)(9b a b a b a ++-+-=()()()22325a b a b a b -++=-⎡⎤⎣⎦.8. 【答案】D ;【解析】③④⑤⑥能用平方差公式分解. 二.填空题9. 【答案】()22x -;【解析】()()22241442x x x x x --=-+=-.10.【答案】2;【解析】()()21232x x x x ++=++.11.【答案】1; 【解析】()()()()()201220122012201222201211x y x y x y x y x y+-=+-=-==⎡⎤⎣⎦.12.【答案】0;【解析】()3222662362360x x x x x x x x x +-=+-=⨯-=. 13.【答案】20112; 【解析】()()()()()201120122011201120112221222-+-=--=--=.14.【答案】()()21a x x -+;【解析】22ax ax a --=()()2(2)21a x x a x x --=-+.15.【答案】19;【解析】()()()()2210910919x y x y x y -=+-=+-=.16.【答案】()()11x y x y ++--;【解析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.三.解答题 17.【解析】解:(1)234()12()x x y x y ---=224()[3()]4()(32)x y x x y x y y x ---=--; (2)22292416(34)a ab b a b -+=-;(3)()()()2218401840202ma ma m m a a m a a --=--=-+. 18.【解析】解:∵10a b +=,6ab =,则(1)()2222a b a b ab +=+-=100-12=88;(2)()()2322322224a b a b ab ab a ab b ab a b ab ⎡⎤-+=-+=+-⎣⎦=6×(100-24)=456. 19.【解析】解:设另一个因式是x a +,则有()()5x x a ++=()255x a x a +++=2x mx n ++∴5a m +=,5a n =,这样就得到一个方程组5517a ma nm n +=⎧⎪=⎨⎪+=⎩,解得2107a n m =⎧⎪=⎨⎪=⎩.∴m 、n 的值分别是7、10. 20.【解析】解:设原多项式为2ax bx c ++(其中a 、b 、c 均为常数,且abc ≠0).∵()()()22219210922018x x x x x x --=-+=-+, ∴a =2,c =18;又∵()()()2222426821216x x x x x x --=-+=-+, ∴b =-12.∴原多项式为221218x x -+,将它分解因式,得()()2222121826923x x x x x -+=-+=-.。

山东省烟台市2020届初中毕业班下学期第1周中考数学复习:§1.1实数的有关概念+导学案

§1.1实数的有关概念 导学案班级:_ __ 组别:_____ 姓名: ______评价等级:___ _学习目标:1、 熟练掌握实数、数轴、相反数、绝对值、科学记数法等概念。

2、 利用其有关性质解题,会利用数形结合的方法解决有关问题。

3、 熟练掌握平方根、算术平方根、立方根的概念及应用。

学习重点与难点:实数的有关概念的掌握,利用其性质解决问题。

导学过程一、知识再现:(阅读教材,理解记忆)1、实数: 和 统称为实数。

2、实数的分类按定义分类 按正负分类3、数轴:规定了_______、 _______ 、 _________的直线,叫做数轴. _______和数轴上的点是一一对应的.4、相反数:如果两个数只有符号不同,那么我们称其中的一个数为另一个数的 。

也称这两个数 。

相反数的几何意义:在数轴上,表示相反数的两个点位于原点的两侧,且到原点的距离____.这两个点关于_______对称. 3.倒数:乘积为 的两个数互为倒数。

4、绝对值:在数轴上表示一个数的点离开______的距离叫做这个数的绝对值.即一个正数的绝对值是它_____,0的绝对值是 ,负数的绝对值是它的_________.5、科学记数法:把一个数N 表示成a ×10n(1≤|a |<10,n 是整数)的形式叫 . 近似数与有效数字:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时从左边第 个非零数字起,到末位数字为止,所有的数字都叫做这个近似数的有效数字. 6、平方根、算术平方根、立方根平方根:若a x =2,则x 叫a 的 记作 。

求一个数a 的平方根的运算,叫做 立方根:若a x =3,则x 叫a 的 记作 。

求一个数a 的立方根的运算,叫做 它们的性质: 二、典例分析 1、实数分类在cos30°,3.14,3π,4-这四个实数中,无理数是变式1、下列四个数中,负数是A. -2B. ()2-2C. (变式2、在“()05,3.14 ,()33,()23-,cos 600sin 450”这6个数中,无理数的个数是( )A .2个 B . 3个 C .4个 D .5个 2、有理数的意义例2、如果零上2℃记作+2℃,那么零下3℃记作( ) A .-3℃ B .-2℃ C .+3℃ D .+2℃变式3、如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作() A .﹣500元 B .﹣237元 C .237元 D .500元变式4、如果60m 表示“向北走60m”,那么“向南走40m”可以表示为( ) A .-20m B .-40m C .20m D .40m 3、数轴例3、如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A .-4B .-2C .0D .4变式5、在数轴上到原点距离等于2的点所标示的数是( )A .-2B .2C .±2D .不能确定 变式6、在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是和﹣1,则点C 所对应的实数是( )A .1+B .2+C .2﹣1 D .2+14、相反数、绝对值、倒数例4、(-2)0的相反数等于( )A.1 B.-1 C.2 D.-2变式7、2012的相反数是( )A .2012 B .-2012 C .|-2012| D . 12012变式8、16-的倒数是( )A .6 B .﹣6 C .16 D .16-5、科学记数法、近似值、有效数字例5、某星球的体积约为6635421km 3,用科学记数法(保留三个有效数字)表示为6.64×10n km 3,则n =( ) A.4 B.5 C.6 D.7 变式9、恩施生态旅游初步形成,2011年全年实现旅游综合收入908600000元.数908600000用科学记数法表示(保留三个有效数字),正确的是( )A . 9.09×109B . 9.087×1010C . 9.08×109D . 9.09×108变式10、PM 2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为( ) A. -50.2510⨯B. -60.2510⨯C. -52.510⨯D. -62.510⨯6、实数的大小例6、下列四个运算中,结果最小的是( )A 1+(-2) B.1-(-2) C.1×(-2) D. 1÷(-2) 变式11、在2.5,-2.5,0,3这四个数中,最小的数是( )A .2.5B .-2.5C .0D .3 变式12、写出一个比-3大的无理数是 7、平方根、算术平方根、立方根 例7、16的算术平方根是( )A4 B. ±4 C. 2 D. ±2变式12、38-=变式13、的值在( )(A )2到3之间 (B )3到4之间 (C )4到5之间 (D )5到6之间三、巩固提高 选择题1.﹣34的绝对值是( ) A 、﹣错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师巡视并给予方法指导。
三.小组合作:
以小组为单位,学生根据自学情况,有针对性的进行小组合作交流。
四.交流展示:
请小组推荐代表发言。
其他小组评价并补充或提出不同意见。
每次小组发言人轮换,让更多同学有发言机会。
教师记录各小组课堂积分。
五、点拨引领:
根据学生展示点评情况教师进行归纳提升,学生想不到的思路、方法,教师进行点拨引领。
2.分解因式:
3、因式分解:a2﹣6a+9=
4、分解因式: =
5、分解因式:8(x2﹣2y2)﹣x(7x+y)+xy.




课外作Leabharlann 业布置必做选作教后心得
教学
年级
九年级
教学时间
2015年3月17日
第周第课时
课题
§2.3因式分解
课型
新授
主备
教师
张学涛
二次备课教师
教学
目标
知识与能力:
1、理解因式分解的有关概念。。
2.熟练掌握因式分解的方法。
过程与方法:经历复习因式分解有关概念的复习过程
情感态度
与价值观:通过复习过程培养积极合作的精神
教学
重点
难点
教学重点:整式的运算法则
教学难点:运算的准确率。
教学
资源
伴你学班班通ppt
教法与学法简述
以合作教学为主展开教学,学生探索发现法,归纳总结。
通案内容设计
个案内容设计




一、目标定向
1理解因式分解的有关概念。
2、熟练掌握因式分解的方法。
因式分解的综合运用
二、自学尝试
针对上述学习目标,小组合作展开自学,
学生根据学案内容认真进行自学,自行解决学案设置的内容,严禁抄袭他人。生疏或难以解决的问题做好标记,等待小组合作交流后在课堂上向老师质疑。
3、分解因式: =
4、分解因式:
5、已知 ,则 的值
一、知识再现:(阅读教材,理解记忆)
1、因式分解:
2、用提公因式法分解因式(1)基本方法,(2)找公因式的方法,
3、因式分解中运用的公式(1) ,(2) ,
4、因式分解的应用.
二、典例分析
1、提公因式法分解因式
例1因式分解: =
变式1、因式分解: =
变式2、因式分解: =
2、公式法分解因式
例2、因式分解: =
变式3、因式分解: =
变式4、因式分解: =
3、因式分解的应用
例3解方程
变式5、若 且 则
三、巩固提高
1.下列分解因式正确的是()
A、﹣ + 3=﹣ (1+ 2)B、2 ﹣4 +2=2( ﹣2 )
C、 2﹣4=( ﹣2)2D、 2﹣2 +1=( ﹣1)2
六、当堂练习:
七、课堂反馈
【课堂反馈】
1、下列式子变形是因式分解的是【】
A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)
C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)
2、若实数 、 、 满足 .则下列式子一定成立的是()
(A) (B)
(C) (D)
相关文档
最新文档