2016年 海淀一模试题及答案

合集下载

北京市海淀区2016年高三第一次模拟考试理科数学(含答案)

北京市海淀区2016年高三第一次模拟考试理科数学(含答案)

2016年海淀区高三年级第一学期期末练习数学(理科)2016.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知(1i)i 1i(b b +=-+∈R),则b 的值为A.1B.1-C. iD.i - 2. 抛物线24x y =的准线与y 轴的交点的坐标为A. 1(0,)2- B.(0,1)- C.(0,2)- D.(0,4)-3. 如图,正方形ABCD 中,E 为DC 的中点,若AD AC AE λμ=+,则λμ-的值为A. 3B.2C. 1D.3- 4. 某程序框图如图所示,执行该程序,若输入的a 值为1,则输 出的a 值为A.1B.2C.3D.5 5. 已知数列12345:,,,,A a a a a a ,其中{1,0,1},1,2,3,4,5i a i ∈-=, 则满足123453a a a a a ++++=的不同数列A 一共有A. 15个B.25个C.30个D.35个 6. 已知圆22(2)4C x y -+=:,直线1:l y =,2:1l y kx =- 若12,l l 被圆C 所截得的弦的长度之比为1:2,则k 的值为A. B.1 C.12EA BCD输出输入开始结束7. 若,x y 满足+20,40,0,x y x y y -≥⎧⎪+-≤⎨⎪≥⎩则2||z y x =-的最大值为A.8-B.4-C.1D.28. 已知正方体''''ABCD A B C D -,记过点A 与三条直线,,'AB AD AA 所成角都相等的直线条数为m , 过点A 与三个平面..',,'AB AC AD 所成角都相等的直线的条数为n ,则下面结论正确的是A. 1,1m n ==B. 4,1m n ==C. 3,4m n ==D. 4,4m n == 二、填空题共6小题,每小题5分,共30分。

2016年北京市海淀区中考数学一模试卷-含详细解析

2016年北京市海淀区中考数学一模试卷-含详细解析

2016年北京市海淀区中考数学一模试卷副标题一、选择题(本大题共10小题,共30.0分)1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为()A. B.C.D.2.如图是某个几何体的三视图,该几何体是()A. 长方体B. 正方体C. 圆柱D. 三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A. B. C. D.4.下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.5.如图,在▱ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A. 5B. 4C. 3D. 26.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A. B. C. D.7.结果如下表所示:)A. 9,8B. 9,C. 8,8D. 8,8.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”(190.43°)表示图中承德的位置,“数对”(160,238°)表示图中保定的位置,则与图中张家口的位置对应的“数对”为()A. B. C. D.9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动某人计划购入一辆上述品牌的汽车.他估算了未来年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为()A. 5 000B. 10 000C. 15 000D. 20 00010.小明在暗室做小孔成像实验,如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M′N′)于足够长的固定挡板(直线l)上,其中MN∥l.已知点K 匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的一段时间为x,M′N′的长度为y,若y关于x的函数图象大致如图2所示,则点K的运动路径可能为()A. B.C. D.二、填空题(本大题共6小题,共18.0分)11.分解因式:a2b-2ab+b=______.12.如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8cm,OC=3cm,则⊙O的半径为______cm.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33”设这个数是x,可列方程为______ .14.在下列函数①y=2x+1;②y=x2+2x;③y=;④y=-3x中,与众不同的一个是______ (填序号),你的理由是______ .15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为______ 万人,你的预估理由是______ .16.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,AB长为半径作弧,交直线l于点C;(2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是______________________.三、计算题(本大题共2小题,共12.0分)17.计算:()0-6sin30°+()-2+|1-|.18.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-4(m≠0)的顶点为A,与x轴交于B,C两点(点B在点C左侧),与y轴交于点D.(1)求点A的坐标;(2)若BC=4,①求抛物线的解析式;②将抛物线在C,D之间的部分记为图象G(包含C,D两点).若过点A的直线y=kx+b(k≠0)与图象G有两个交点,结合函数的图象,求k的取值范围.四、解答题(本大题共11小题,共60.0分)19.解不等式组并写出它的所有整数解.20.已知x2+x-5=0,求代数式(x-1)2-x(x-3)+(x+2)(x-2)的值.21.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,DE为AC边上的中线,求证:∠BAD=∠EDC.22.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?23.如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)若BE=10,CE=6,连接OE,过点O作OF⊥CD于点F,求OF的值.24.在平面直角坐标系xOy中,直线y=-x与双曲线y=(k≠0)的一个交点为P(,).(1)求k的值;(2)将直线y=-x向上平移b(b>0)个单位长度后,与x轴,y轴分别交于点A,点B,与双曲线y=(k≠0)的一个交点记为Q.若BQ=2AB,求b的值.25.如图,AB,AD是⊙O的弦,AO平分∠BAD.过点B作⊙O的切线交AO的延长线于点C,连接CD,BO.延长BO交⊙O于点E,交AD于点F,连接AE,DE.(1)求证:CD是⊙O的切线;(2)若AE=DE=3,求AF的长.26.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元;(2)如图为2015年国产动画电影票房金字塔,则B= ______ ;(3)选择统计表或统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.27.有这样一个问题:探究函数y=(x-1)(x-2)(x-3)的图象与性质.小东对函数y=(x-1)(x-2)(x-3)的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数y=(x-1)(x-2)(x-3)的自变量x的取值范围是全体实数;(2)下表是y与x的几组对应值.;②若M(-7,-720),N(n,720)为该函数图象上的两点,则n= ______ ;(3)在平面直角坐标系xOy中,A(x A,y A),B(x B,-y A)为该函数图象上的两点,且A为2≤x≤3范围内的最低点,A点的位置如图所示.①标出点B的位置;②画出函数y=(x-1)(x-2)(x-3)(0≤x≤4)的图象.28.在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE 的长为______,并简述求GE长的思路.29.在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则称P′为点P关于⊙C的限距点,如图为点P及其关于⊙C的限距点P′的示意图.(1)当⊙O的半径为1时.①分别判断点M(3,4),N(,0),T(1,)关于⊙O的限距点是否存在?若存在,求其坐标;②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r,请从下面两个问题中任选一个作答.答案和解析1.【答案】B【解析】解:96 500 000用科学记数法表示应为:9.65×107,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】D【解析】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3.【答案】C【解析】解:∵一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外无其他差别,∴从中随机摸出一个小球,恰好是红球的概率为:=.故选C.由一个不透明的口袋中装有3个红球和12个黄球,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.【答案】B【解析】解:A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、既是轴对称图形也是中心对称图形,故此选项错误;D、既是轴对称图形也是中心对称图形,故此选项错误;故选:B.根据轴对称图形和中心对称图形的定义可直接得到答案.此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【答案】D【解析】【分析】此题考查了平行四边形的性质以及等腰三角形的判定与性质,注意证得△ABE是等腰三角形是解此题的关键【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD-AE=2.故选D.6.【答案】C【解析】解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=35°+90°=125°,∵a∥b,∴∠ACD=180°-125°=55°,∴∠2=∠ACD-∠ACB=55°-45°=10°;故选:C.由等腰直角三角形的性质和平行线的性质求出∠ACD=55°,即可得出∠2的度数.本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.7.【答案】A【解析】解:投掷实心球的成绩最多的是9,共有14人,所以,众数是9,这40名同学投掷实心球的成绩从小到大排列,第20,21人的成绩是8,所以中位数是8.故选A根据中位数的定义与众数的定义,结合图表信息解答.本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.8.【答案】A【解析】解:由题意可得,建立的坐标系如右图所示∵“数对”(190,43°)表示图中承德的位置,“数对”(160,238°)表示图中保定的位置,∴张家口的位置对应的“数对”为(176,145°),故选:A.根据题意,可以画出坐标系,再根据题目中信息,可以解答本题.本题考查坐标位置的确定,解题的关键是明确题意,画出相应的坐标系.9.【答案】B【解析】解:设平均每年行驶的公里数至少为x公里,根据题意得:174800+x×10≤159800+x×10,解得:x≥10000.答:平均每年行驶的公里数至少为10000公里.故选B.设平均每年行驶的公里数至少为x公里,根据购买的单价和每百公里燃油的成本列出不等式,再进行求解即可.此题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系,列出不等式;注意每百公里燃油成本是31元,不是一公里是31元.10.【答案】B【解析】解:由题意可得,当K在点A处时,y最大,在C处时,y最小,点K匀速运动,由图2可知,点K从开始运动到第一次到达的位置一定为点C,第三次到达的位置一定为点A,故选项B符合,从B→C,y随x的增大而减小,从C→D,y随x的增大而增大,从D→A,y随x的增大而增大,A→B,y随x的增大而减小,故选B.根据题意可以明确各段对应的y的大小,从而可以解答本题.本题考查动点问题的函数图象,解题的关键是明确题意,利用数形结合的思想解答问题.11.【答案】b(a-1)2【解析】解:a2b-2ab+b,=b(a2-2a+1),…(提取公因式)=b(a-1)2.…(完全平方公式)先提取公因式b,再利用完全平方公式进行二次分解.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.12.【答案】5【解析】解:由垂径定理OC⊥AB,则AC=BC=AB=4cm在Rt△ACO中,AC=4,OC=3,由勾股定理可得AO==5(cm),即⊙O的半径为5cm.故答案为:5.根据垂径定理可将AC的长求出,再根据勾股定理可将⊙O的半径求出.本题综合考查了圆的垂径定理与勾股定理.13.【答案】x+x+x+x=33【解析】解:设这个数是x,依题意有x+x+x+x=33,故答案为:x+x+x+x=33.可设这个数是x,根据等量关系:这个数的三分之二+这个数的一半+这个数的七分之一+这个数=33,依此列出方程求解即可.此题主要考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.14.【答案】③;只有③的自变量取值范围不是全体实数【解析】解:①y=2x+1中自变量的取值范围是全体实数;②y=x2+2x中自变量的取值范围是全体实数;③y=中自变量的取值范围是x≠0;④y=-3x中自变量的取值范围是全体实数;理由是:只有③的自变量取值范围不是全体实数故答案为:③,只有③的自变量取值范围不是全体实数.根据分式的分母不为0,二次根式的被开方数大于等于0进行计算即可.本题考查了函数自变量的取值范围问题,掌握分式的分母不为0,二次根式的被开方数大于等于0是解题的关键.15.【答案】6.53;最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右【解析】解:由折线统计图可知,2010-2011年报名人数减少8.02-7.60=0.42(万人),2011-2012年报名人数减少7.60-7.35=0.25(万人),2012-2013年报名人数减少7.35-7.27=0.08(万人),2013-2014年报名人数减少7.27-7.05=0.22(万人),2014-2015年报名人数减少7.05-6.78=0.27(万人),由上可预估2016年北京市高考报名人数约为6.53万人,理由:最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右;故答案为:6.53,最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右.根据折线统计图可以得到得到各年相对去年减少的人数,从而可以预估2016年北京市高考报名人数,并说明理由.本题考查用样本估计总体、折线统计图,解题的关键是明确折线统计图的特点,从中可以得到我们需要的信息.16.【答案】四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)【解析】解:由题意可得,小云的作图依据是:四条边都相等的四边形是菱形;菱形的对边平行.故答案为:四条边都相等的四边形是菱形;菱形的对边平行.(本题答案不唯一)利用菱形的性质得出作出以A,B,C,D为顶点的四边形,进而得出答案.此题主要考查了复杂作图,正确把握菱形的性质与作法是解题关键.17.【答案】解:原式=1-6×+4+-1=1+【解析】原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,第四项利用绝对值的代数意义化简,计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)y=mx2-2mx+m-4=m(x-1)2-4,所以抛物线的顶点A的坐标为(1,-4);(2)①∵BC=4,抛物线的对称轴为x=1,点B在点C左侧,∴点B坐标为(-1,0),点C坐标为(3,0),将B(-1,0)代入y=m(x-1)2-4,得:0=4m-4,解得m=1所以抛物线的解析式为y=(x-1)2-4=x2-2x-3;②B(-1,0),C(3,0),当x=0时,y=x2-2x-3=-3,则D(0,-3),如图,当直线y=kx+b过A、C时,直线解析式为y=2x-6;当直线y=kx+b过A、D时,直线解析式为y=-x-3,所以若过点A的直线y=kx+b(k≠0)与图象G有两个交点,k的取值范围为0<k≤2或-1≤k<0.【解析】(1)把一般式配成顶点式即可得到A点坐标;(2)已知BC=4,由(1)可知抛物线对称轴为x=1,所以可知B点坐标,将其代入抛物线方程可求得m的值,于是得到抛物线解析式;②由m=1即可得到B(-1,0),C(3,0),再求出D(0,-3),画出抛物线,通过画图可得当k>0时,直线y=kx+b过A、C时,k最大;当k<0,直线y=kx+b过A、D时,k最大,然后分别求出两直线解析式即可得到k的范围.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和一次函数图象的性质.19.【答案】解:解不等式4(x-1)≤3(x+2)得:x≤10,解不等式<x-4得:x>7,∴不等式组的解集为:7<x≤10,则该不等式组的整数解有:8、9、10.【解析】分别求出每一个不等式的解集,根据口诀:“大小小大中间找”确定不等式组的解集,继而可得答案.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】解:(x-1)2-x(x-3)+(x+2)(x-2)=x2-2x+1-x2+3x+x2-4=x2+x-3,∵x2+x-5=0,∴x2+x=5,∴原式=5-3=2.【解析】先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键,难度适中.21.【答案】证明:∵∠BAC=90°,∴∠BAD+∠DAC=90°,又∵AD⊥BC,即∠ADC=90°,∴∠DAC+∠C=90°,∴∠BAD=∠C.∵DE是直角△ACD斜边上的中线,∴DE=AC=EC,∴∠C=∠EDC,∴∠BAD=∠EDC.【解析】根据直角三角形的两锐角互余即可证得∠BAD=∠C,然后利用直角三角形斜边上的中线等于斜边的一般证明△CDE是等腰三角形,利用等腰三角形的性质,以及等量代换即可证得.本题考查了直角三角形斜边上的中线等于斜边的一般,理解直角三角形被斜边上的中线分成两个等腰三角形是关键.22.【答案】解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.【解析】设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数,结合小明步行12 000步与小红步行9 000步消耗的能量相同,即可得出关于x的分式方程,解之后经检验即可得出结论.本题考查了分式方程的应用,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数列出关于x的分式方程是解题的关键.23.【答案】解:(1)∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)如图,∵四边形ABCD是矩形,∴∠BCD=90°.∵BE=BD=10,∴CD=CE=6.同理,可得CF=DF=CD=3,∴EF=9.在直角△BCE中,由勾股定理可得:BC=8.∵OB=OD,∴OF为△BCD的中位线,∴OF=BC=4.【解析】(1)根据矩形的对角线相等可得AC=BD,对边平行可得AB∥CD,再求出四边形ABEC是平行四边形,根据平行四边形的对边相等可得AC=BE,从而得证;(2)如图,过点O作OF⊥CD于点F,结合矩形、平行四边形的性质以及勾股定理、中位线即可求得OF.本题考查了矩形的性质,平行四边形的判定与性质,熟记各性质并求出四边形ABEC是平行四边形是解题的关键.24.【答案】解:(1)∵直线y=-x经过P(,).∴m=-,∴P(,-),∵点P(,-)在y=(k≠0)上,∴k=×(-)=-6.(2)如图,∵直线y=-x向上平移b(b>0)个单位长度后的解析式为y=-x+b,∴OA=OB=b,∵BQ=2AB,∴=或=1,作QC⊥x轴于C,∴QC∥y轴,∴△ABO∽△AQC,∴===,或===1,∴点Q坐标(-2b,3b),或(2b,-b)∴-6b2=-6或-2b2=-6,b=±1或b=±,∵b>0,∴b=1或b=.【解析】(1)将点P的坐标代入y=-x即可求得m=-,然后把P(,-)代入y=(k≠0)即可求得k的值;(2)根据题意设平移后的直线为y=-x+b,然后根据△ABO∽△AQC和BQ=2AB,求得Q点的坐标,代入y=-,即可求得b.本题考查了一次函数与反比例函数的交点坐标等关系,相似三角形的判定和性质,由点的坐标求函数的解析式以及平移问题.25.【答案】(1)证明:如图,连接OD.∵BC为圆O的切线,∴∠CBO=90°.∵AO平分∠BAD,∴∠OAB=∠OBA.∵OA=OB=OD,∴∠OAB=∠ABO=∠OAF=∠ODA,∴∠BOC=∠DOC,在△COB和△COD中,,∴BOC≌△DOC(SAS),∴∠CBO=∠CDO=90°,∴CD是⊙O的切线;(2)∵AE=DE,∴=,∴∠DAE=∠ABO,∴∠BAO=∠OAD=∠ABO∴∠BAO=∠OAD=∠DAE,∵BE是直径,∴∠BAE=90°,∴∠BAO=∠OAD=∠DAE=∠ABO=30°,∴∠AFE=90°,在RT△AFE中,∵AE=3,∠DAE=30°,∴EF=AE=,∴AF==.【解析】(1)欲证明CD是⊙O的切线,只要证明∠CDO=∠CBO=90°,由△COB≌△COD 即可解决问题.(2)先证明∠BAO=∠OAD=∠DAE=∠ABO=30°,在RT△AEF中利用30度性质以及勾股定理即可解决问题.本题考查切线的判定和性质、全等三角形的判定和性质、直角三角形的性质等知识,解题的关键是正确寻找全等三角形,发现特殊角30°,属于中考常考题型.26.【答案】21【解析】解:(1)2015年中国内地动画电影票房收入为400×11.25%=45(亿元);(2)B=41-3-5-12=21(部);故答案为45,21;(3)《熊出没2》2015年的票房为2.4×(1+20%)=2.88(亿),2015年中国内地动画电影市场票房收入前5名的票房成绩统计表(1)用2015年中国内地电影市场票房总收入乘以11.25%即可;(2)用41分别减去6、5、12、12得到B的值;(3)先计算出《熊出没2》2015年的票房,然后利用列表的方法把2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.本题考查了统计图的选择:即根据常用的几种统计图反映数据的不同特征结合实际来选择.27.【答案】-60;11【解析】解:(2)①当x=-2时,y=(x-1)(x-2)(x-3)=-60.故答案为:-60.②观察表格中的数据可得出函数图象关于点(2,0)中心对称,∴-7+n=2×2,解得:n=11.故答案为:11.(3)①作点A关于点(2,0)的对称点B1,再在函数图象上找与点B1纵坐标相等的B2点.②根据表格描点、连线,画出图形如图所示.(2)①把x=-2代入函数解析式可求得m的值;②观察给定表格中的数据可发现函数图象上的点关于点(2,0)对称,再根据点M、N的坐标即可求出n值;(3)①找出点A关于点(2,0)对称的点B1,再找出与点B1纵坐标相等的B2点;②根据表格描点、连线即可得出函数图象.本题考查了多次函数的图象与性质,根据给定表格找出函数图象关于点(2,0)中心对称是解题的关键.28.【答案】【解析】(1)证明:①依题意补全图形,如图1所示,②BC⊥CG,BC=CG;∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,∴∠ACF+∠ACB=90°,∴BC⊥CG;∵点G是BA延长线上的点,BC=CG(2)如图2,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD-∠DAC=90°,∠DAF=∠CAF-∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,BD=CF,∴∠ACF+∠ACB=90°,∴BC⊥CF;∵AB=,BC=CD=CG=GF=2,∴在Rt△ACG中,根据勾股定理得,AG=,∴在Rt△CDG中,根据勾股定理的,DG=2,∵AD=,∴AH=,HG=,∴GI=AD-HG=,∴GE==故答案为.(1)①依题意补全图形,如图1所示,②判断出△BAD≌△CAF即可;(2)先判断出△BAD≌△CAF,得到BD=CF,BG⊥CF,得到直角三角形,利用勾股定理计算即可.此题是四边形综合题,主要考查了全等三角形的性质和判定,垂直的判断方法,解本题的关键是判断出角相等.29.【答案】;0<r<【解析】解:(1)①点M、点T关于⊙O的限距点不存在,点N关于⊙0的限距点存在,坐标为(1,0).②∵点D坐标为(2,0),⊙O半径为1,DE、DF分别切⊙O于E、F,∴切点坐标为(,),(,-),如图所示,不妨设点E(,),点F(,-),EO、FO的延长线分别交⊙O于点E′、F′,则E′(-,-),F′(-,).设点P关于⊙O的限距点的横坐标为x,①当点P在线段EF上时,直线PO与⊙O的交点P′满足1≤PP′≤2,故点P关于⊙O的限距点存在,其横坐标x满足-1≤x≤-.②当点P在线段DE、DF(不包括端点)上时,直线PO与⊙O的交点P′满足0<PP′<1或2<PP′<3,故点P关于⊙O的限距点不存在.③当点P与点D重合时,直线PO与⊙O的交点P′(1,0),满足PP′=1,故点P关于⊙O的限距点存在,其横坐标x=1.综上所述点P关于⊙O的限距点的横坐标x的范围为-1≤x≤-或x=1.(2)问题1:如图2中,∵△DEF是等边三角形,点C是△DEF的外接圆的圆心,∵若点P关于⊙C的限距点P′存在,且P′随点P的运动所形成的路径长为πr,∴图中△PP′C是等边三角形,点P在PP′上运动时,有限距点,∵PC∥ED,∴==,∴PC=,由题意:r≤-r≤2r,∴,∴r的最小值为.问题2:如图2中,当点H不存在限距点时,点P就不存在限距点,∵HC=,∴-r>2r,∴r<,∴0<r<时点P的限距点不存在.故答案分别为,0<r<.(1)①根据限距点的定义即可判断.②分三种情形:①当点P在线段EF上时,②当点P在线段DE、DF(不包括端点)上时,③当点P与点D重合时,分别说明即可解决问题.(2)问题1:如图2中,△PP′C是等边三角形,点P在PP′上运动时,有限距点,列出不等式即可解决.问题2:如图2中,当点H不存在限距点时,点P就不存在限距点,列出不等式即可解决.本题考查圆综合题、切线的性质等知识,解题的关键是理解题意,把问题转化为不等式解决,属于中考创新题目.。

2016年北京市海淀区高三一模理科数学试卷含答案

2016年北京市海淀区高三一模理科数学试卷含答案

海淀区高三年级2015-2016 学年度第二学期期中练习数学试卷(理科) 2016.4本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项.1.函数()21x f x =-的定义域为( ) A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,1]2.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为( )A .-1B .1C .-ID .i3.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为( )A .52 B .3 C .72D .4 4.某三棱锥的三视图如图所示,则其体积为( )A 3B 323 D 265.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |=( ) A .1 B 2 C 3 D . 2 7.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是( )A .,44a b ππ==-B .2,36a b ππ==C .,36a b ππ==D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是( )A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每小题5 分,共30 分.9.已知向量(1,),(,9)a t b t ==,若a b ,则t = _______. 10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______. 11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b -=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离为3,则C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有_______种; (ⅱ)当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,若存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得|()()|f x f t -≤2,则记a +b 的最大值为H (t ). (ⅰ)当 ()f x =2x 时,H (0)=_______.(ⅱ)当()f x 2x =且t [1,2]∈时,函数H (t )的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13 分) 如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β. (Ⅰ)求证:sin 3sin AC BC βα=; (Ⅱ)若,,1962AB ππαβ===BC 的长.16.(本小题满分13 分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量;(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据,试估计21s 与22s 的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求随机变量ξ的分布列和数学期望.17.(本小题满分14 分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB .(Ⅰ)求证: BC ⊥平面PAB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内; (Ⅲ)当PA =AB =2,二面角C -AN -D 的大小为3π时,求PN 的长.18.(本小题满分13 分) 已知函数f (x) =ln x +1x -1,1()ln x g x x-= (Ⅰ)求函数 f (x)的最小值;(Ⅱ)求函数g(x)的单调区间;(Ⅲ)求证:直线 y =x 不是曲线 y =g(x)的切线。

2016届高三海淀一模文科数学试卷与答案解析-无水印

2016届高三海淀一模文科数学试卷与答案解析-无水印

5 分,有两空 本大题共 6 小题,每小题 小 空的小题,第 第一空 3 分,第二空 2 分, 分 二、填空题(本
3 分) 共 30 9. [1, ) 12.
10 0. 2 13 3. [
x2 y 2 11. ( 2 ,0) , 1 2 2
1 2
5π π kπ , kπ],k Z 12 12
2.已 已知向量 a 1,t , b 3 ,9 ,若 若 a∥b ,则 t
A.1 B .2 C.3 D.4
,则输出的 3.某 某程序的框图 图如图所示,若输入的 z i (其中 i 为虚数单位) 的 S 值为
开开 开 输输 输z n=1
n>5 > 否 S=zn
2016 高三 三一模
海淀区高三年 年级 2015~2016 学年度第二 二学期期中 中练习 数学试卷 卷(文科)
2016.4
本试卷共 4 页,150 分. .考试时长 120 1 分钟.考 考生务必将答 答案答在答题 题卡上,在试 试卷上 作答 答无效.考试 试结束后,将 将本试卷和答题卡一并交回 回. 一、选择题共 8 小题,每小 小题 5 分,共 40 分.在每 每小题列出的 的四个选项中 中,选出符合题目 求的一项. 要求 1.已 已知集合 A x Z | 2 ≤ x 3 , B x | 2 ≤ x 1 ,则 A B= A. 2 , 1,0 B. 2 , 1,0 , 1 C. x | 2 x 1 D. x | 2 ≤ x 1
A
(1 分)
A
14 2π B 6 3 C
D
(13 分) )
3 2π B 6 3 C 1 D
因为 为 ACB 又因 因为 SABC 即3 3

2016年北京市海淀区高考一模数学试卷(理科)【解析版】

2016年北京市海淀区高考一模数学试卷(理科)【解析版】

2016年北京市海淀区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)函数f(x)=的定义域是()A.[O,+∞)B.[1,+∞)C.(﹣∞,0]D.(﹣∞,1] 2.(5分)某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S值为()A.﹣1B.1C.﹣i D.i3.(5分)若x,y满足,则z=x+y的最大值为()A.B.3C.D.44.(5分)某三棱锥的三视图如图所示,则其体积为()A .B.C .D .5.(5分)已知数列{a n}的前n项和为S n,则“{a n}为常数列”是“∀n∈N*,S n =na n”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)在极坐标系中,圆C1:ρ=2cosθ与圆C2:ρ=2sinθ相交于A,B两点,则|AB|=()A.1B.C .D.27.(5分)已知函数f(x )=是偶函数,则下列结论可能成立的是()A.a =,b =﹣B.a=,b =C.a =,b =D.a =,b =8.(5分)某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示,若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是()A.甲只能承担第四项工作B.乙不能承担第二项工作C.丙可以不承担第三项工作D.丁可以承担第三项工作二、填空题共6小题,每小题5分,共30分.9.(5分)已知向量,若,则t=.10.(5分)在等比数列{a n}中,a2=2,且,则a1+a3的值为.11.(5分)在三个数2中,最小的数是.12.(5分)已知双曲线C:=1的一条渐近线l的倾斜角为,且C的一个焦点到l的距离为,则C的方程为.13.(5分)如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有种;(ⅱ)当同一条边上的三个数字都不同时,不同的填法有种.14.(5分)已知函数f(x),对于实数t,若存在a>0,b>0,满足:∀x∈[t﹣a,t+b],使得|f(x)﹣f(t)|≤2,则记a+b的最大值为H(t).(1)当f(x)=2x时,H(0)=;(2)当f(x)=x2且t∈[1,2]时,函数H(t)的值域为.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(13分)如图,在△ABC中,点D在边AB上,且=.记∠ACD=α,∠BCD=β.(Ⅰ)求证:=(Ⅱ)若α=,β=,AB=,求BC的长.16.(13分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4株青蒿作为样本,每株提取的青蒿素产量(单位:克)如表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量; (Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为,,根据样本数据,试估计与的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求随机变量ξ的分布列和数学期望.17.(14分)如图,在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,四边形ABCD 为正方形,点M 、N 分别为线段PB ,PC 上的点,MN ⊥PB . (Ⅰ)求证:BC ⊥平面P AB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D ,A 四个点在同一个平面内;(Ⅲ)当P A =AB =2,二面角C ﹣AN ﹣D 的大小为时,求PN 的长.18.(13分)已知函数f(x)=ln x+﹣1,g(x)=(Ⅰ)求函数f(x)的最小值;(Ⅱ)求函数g(x)的单调区间;(Ⅲ)求证:直线y=x不是曲线y=g(x)的切线.19.(14分)已知椭圆C:+=1(a>b>0)的离心率为,椭圆C与y轴交于A,B两点,且|AB|=2.(Ⅰ)求椭圆C的方程;(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线P A,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x轴交于两点E,F,求点P横坐标的取值范围及|EF|的最大值.20.(13分)给定正整数n(n≥3),集合U n={1,2,…,n}.若存在集合A,B,C,同时满足下列条件:①U n=A∪B∪C,且A∩B=B∩C=A∩C=∅;②集合A中的元素都为奇数,集合B中的元素都为偶数,所有能被3 整除的数都在集合C中(集合C中还可以包含其它数);③集合A,B,C中各元素之和分别记为S A,S B,S C,有S A=S B=S C;则称集合U n为可分集合.(Ⅰ)已知U8为可分集合,写出相应的一组满足条件的集合A,B,C;(Ⅱ)证明:若n是3 的倍数,则U n不是可分集合;(Ⅲ)若U n为可分集合且n为奇数,求n的最小值.2016年北京市海淀区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)函数f(x)=的定义域是()A.[O,+∞)B.[1,+∞)C.(﹣∞,0]D.(﹣∞,1]【解答】解:要使函数有意义,则需2x﹣1≥0,即为2x≥1,解得,x≥0,则定义域为[0,+∞).故选:A.2.(5分)某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S值为()A.﹣1B.1C.﹣i D.i【解答】解:模拟执行程序,可得z=i,n=1不满足条件n>5,S=i1,n=2不满足条件n>5,S=i2,n=3不满足条件n>5,S=i3,n=4不满足条件n>5,S=i4,n=5不满足条件n>5,S=i5,n=6满足条件n>5,退出循环,输出S=i5=i.故选:D.3.(5分)若x,y满足,则z=x+y的最大值为()A.B.3C.D.4【解答】解:作出不等式组对应的平面区域如图由z=x+y得y=﹣x+y,平移y=﹣x+y,由图象知当直线y=﹣x+y经过点A直线的截距最大,此时z最大,由得,即A(1,3),则z=+3=,故选:C.4.(5分)某三棱锥的三视图如图所示,则其体积为()A.B.C.D.【解答】解:根据三视图可知几何体是一个三棱锥,底面是一个三角形:即俯视图:底是2、高是侧视图的底边,三棱锥的高是侧视图和正视图的高1,∴几何体的体积V==,故选:A.5.(5分)已知数列{a n}的前n项和为S n,则“{a n}为常数列”是“∀n∈N*,S n =na n”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若{a n}为常数列,则d=0,则S n=na n成立,即充分性成立,若S n=na n,则当n≥2时,a n=S n﹣S n﹣1=na n﹣(n﹣1)a n﹣1,即(n﹣1)a n﹣1=(n﹣1)a n,则a n﹣1=a n,则{a n}为常数列,即必要性成立.故“{a n}为常数列”是“∀n∈N*,S n=na n”的充要条件,故选:C.6.(5分)在极坐标系中,圆C1:ρ=2cosθ与圆C2:ρ=2sinθ相交于A,B两点,则|AB|=()A.1B.C.D.2【解答】解:由ρ=2cosθ得,ρ2=2ρcosθ;∴x2+y2=2x;∴(x﹣1)2+y2=1;∴该圆表示以(1,0)为圆心,1为半径的圆;由ρ=2sinθ得,ρ2=2ρsinθ;∴x2+y2=2y;∴x2+(y﹣1)2=1;∴该圆表示以(0,1)为圆心,1为半径的圆;画出这两个圆的图形如图:△ABC2为Rt△,C2A=C2B=1;∴.故选:B.7.(5分)已知函数f(x)=是偶函数,则下列结论可能成立的是()A.a=,b=﹣B.a=,b=C.a=,b=D.a=,b=【解答】解:函数f(x)=是偶函数,x=0时,sin a=cos b,…①可得sin(x+a)=cos(﹣x+b)=sin(x+﹣b),…②,当a=,b=﹣,满足①,不满足②,A不成立.a=,b=,满足①,不满足②,B不正确.a=,b=,满足①,满足②,所以C正确.a=,b=,不满足①,所以不正确.故选:C.8.(5分)某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示,若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是()A.甲只能承担第四项工作B.乙不能承担第二项工作C.丙可以不承担第三项工作D.丁可以承担第三项工作【解答】解:由表知道,五项工作后获得的效益值总和最大为17+23+14+11+15=80,但不能同时取得.要使总和最大,甲可以承担第一或四项工作,丙只能承担第三项工作,丁则不可以承担第三项工作,所以丁承担第五项工作;乙若承担第四项工作;戊承担第一项工作,此时效益值总和为17+23+14+11+13=78;乙若不承担第二项工作,承担第一项,甲承担第二项工作,则戊承担第四项工作,此时效益值总和为17+22+14+11+15=79,所以乙不承担第二项工作,故选:B.二、填空题共6小题,每小题5分,共30分.9.(5分)已知向量,若,则t=±3.【解答】解:∵向量,若,则9﹣t2=0,求得t=±3,故答案为:±3.10.(5分)在等比数列{a n}中,a2=2,且,则a1+a3的值为5.【解答】解:设等比数列{a n}的公比为q,∵a2=2,且,∴+=,解得q=2或.当q=2时,则a1+a3==5;当q=时,则a1+a3=+2×=5.故答案为:5.11.(5分)在三个数2中,最小的数是.【解答】解:=,log 32>=,∴三个数2中,最小的数是.故答案为:.12.(5分)已知双曲线C:=1的一条渐近线l的倾斜角为,且C的一个焦点到l的距离为,则C的方程为x2﹣=1.【解答】解:双曲线C:=1的一条渐近线l的方程为y=x,由题意可得=tan=,即b=a,由C的一个焦点到l的距离为,可得=b=,解得a=1,则双曲线的方程为x2﹣=1.故答案为:x2﹣=1.13.(5分)如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有4种;(ⅱ)当同一条边上的三个数字都不同时,不同的填法有6种.【解答】解:(i)当三个顶点都填1时,中间的只能填2,若其中一个填2,另外两个填1,由3种,故共有1+3=4种,(ⅱ)同一条边上的三个数字都不同时,有A33=6种,故答案为:4,6.14.(5分)已知函数f(x),对于实数t,若存在a>0,b>0,满足:∀x∈[t﹣a,t+b],使得|f(x)﹣f(t)|≤2,则记a+b的最大值为H(t).(1)当f(x)=2x时,H(0)=2;(2)当f(x)=x2且t∈[1,2]时,函数H(t)的值域为[﹣,2]∪[2,4].【解答】解:(1)根据题意,当f(x)=2x时,存在a>0,b>0,满足:∀x∈[﹣a,b],使得|f(x)﹣f(0)|≤2,即|f(x)|≤2,∴|2x|≤2,即|x|≤1,解得﹣1≤x≤1;令,解得a=b=1;∴a+b的最大值为H(0)=2;(2)根据题意,当f(x)=x2且t∈[1,2]时,不等式|f(x)﹣f(t)|≤2可化为|x2﹣t2|≤2,∴t2﹣2≤x2≤t2+2,即;又t∈[1,2],∴t2∈[1,4],∴t2+2∈[3,6];∴∈[,],t2﹣2∈[﹣1,2],∴∈[0,];解不等式组得﹣≤x≤2或2≤x≤4;∴函数H(t)的值域为[﹣,2]∪[2,4].故答案为:(1)2,(2)[﹣,2]∪[2,4].三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(13分)如图,在△ABC中,点D在边AB上,且=.记∠ACD=α,∠BCD=β.(Ⅰ)求证:=(Ⅱ)若α=,β=,AB=,求BC的长.【解答】解:(Ⅰ)在△ACD中,由正弦定理得:,在△BCD中,由正弦定理得:,∵∠ADC+∠BDC=π,∴sin∠ADC=sin∠BDC,∵,∴.(Ⅱ)∵,,∴,∠ACB =α+β=.设AC =2k ,BC =3k ,k >0,由余弦定理得:AB 2=AC 2+BC 2﹣2AC •BC •cos ∠ACB , 即,解得k =1,∴BC =3.16.(13分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4株青蒿作为样本,每株提取的青蒿素产量(单位:克)如表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量; (Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为,,根据样本数据,试估计与的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求随机变量ξ的分布列和数学期望.【解答】解:(I )由山下试验田4株青蒿样本青蒿素产量数据, 得样本平均数…(2分)则山下试验田100株青蒿的青蒿素产量S 估算为g . …(3分)(Ⅱ)比较山上、山下单株青蒿素青蒿素产量方差和,结果为.…(6分)(Ⅲ)依题意,随机变量ξ可以取7.2,7.4,8,8.2,8.6,9.4,…(7分),,,,,,…(9分)随机变量ξ的分布列为:…(11分)随机变量ξ的期望.…(13分)17.(14分)如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,四边形ABCD为正方形,点M、N分别为线段PB,PC上的点,MN⊥PB.(Ⅰ)求证:BC⊥平面P AB;(Ⅱ)求证:当点M不与点P,B重合时,M,N,D,A四个点在同一个平面内;(Ⅲ)当P A=AB=2,二面角C﹣AN﹣D的大小为时,求PN的长.【解答】证明:(Ⅰ)在正方形ABCD中,AB⊥BC,…(1分)因为P A⊥平面ABCD,BC⊂平面ABCD,所以P A⊥BC.…(2分)因为AB∩P A=A,且AB,P A⊂平面P AB,所以BC⊥平面P AB…(4分)(Ⅱ)因为BC⊥平面P AB,PB⊂平面P AB,所以BC⊥PB…(5分)在△PBC中,BC⊥PB,MN⊥PB,所以MN∥BC.…(6分)在正方形ABCD中,AD∥BC,所以MN∥AD,…(7分)所以AM,AD可以确定一个平面,记为α所以M,N,D,A四个点在同一个平面α内…(8分)解:(Ⅲ)因为P A⊥平面ABCD,AB,AD⊂平面ABCD,所以P A⊥AB,P A⊥AD.又AB⊥AD,如图,以A为原点,AB,AD,AP所在直线为x,y,z轴,建立空间直角坐标系A﹣xyz,…(9分)所以C(2,2,0),D(0,2,0),B(2,0,0),P(0,0,2).设平面DAN的一个法向量为,平面CAN的一个法向量为,设,λ∈[0,1],因为,所以,又,所以,即,取z=1,得到,…(9分)因为,,所以,即,取a=1得,到,…(10分)因为二面C﹣AN﹣D大小为,所以,所以解得,所以…(12分)18.(13分)已知函数f(x)=ln x+﹣1,g(x)=(Ⅰ)求函数f(x)的最小值;(Ⅱ)求函数g(x)的单调区间;(Ⅲ)求证:直线y=x不是曲线y=g(x)的切线.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),,当x变化时,f'(x),f(x)的变化情况如下表:函数f(x)在(0,+∞)上的极小值为f(1)=ln1+1﹣1=0,所以f(x)的最小值为0;(Ⅱ)函数g(x)的定义域为(0,1)∪(1,+∞),,由(Ⅰ)得,f(x)≥0,所以g'(x)≥0,所以g(x)的单调增区间是(0,1),(1,+∞),无单调减区间;(Ⅲ)证明:假设直线y=x是曲线g(x)的切线.设切点为(x0,y0),则g'(x0)=1,即,又,则.所以,得g'(x0)=0,与g'(x0)=1矛盾,所以假设不成立,直线y=x不是曲线g(x)的切线19.(14分)已知椭圆C:+=1(a>b>0)的离心率为,椭圆C与y轴交于A,B两点,且|AB|=2.(Ⅰ)求椭圆C的方程;(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线P A,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x轴交于两点E,F,求点P横坐标的取值范围及|EF|的最大值.【解答】解:(Ⅰ)由题意可得,2b=2,即b=1,,得,解得a2=4,椭圆C的标准方程为;(Ⅱ)方法一、设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),所以,直线P A的方程为,同理:直线PB的方程为,直线P A与直线x=4的交点为,直线PB与直线x=4的交点为,线段MN的中点,所以圆的方程为,令y=0,则,因为,所以,所以,设交点坐标(x1,0),(x2,0),可得x1=4+,x2=4﹣,因为这个圆与x轴相交,该方程有两个不同的实数解,所以,解得.则()所以当x0=2时,该圆被x轴截得的弦长为最大值为2.方法二:设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),所以,直线P A的方程为,同理:直线PB的方程为,直线P A与直线x=4的交点为,直线PB与直线x=4的交点为,若以MN为直径的圆与x轴相交,则,即,即.因为,所以,代入得到,解得.该圆的直径为,圆心到x轴的距离为,该圆在x轴上截得的弦长为;所以该圆被x轴截得的弦长为最大值为2.20.(13分)给定正整数n(n≥3),集合U n={1,2,…,n}.若存在集合A,B,C,同时满足下列条件:①U n=A∪B∪C,且A∩B=B∩C=A∩C=∅;②集合A中的元素都为奇数,集合B中的元素都为偶数,所有能被3 整除的数都在集合C中(集合C中还可以包含其它数);③集合A,B,C中各元素之和分别记为S A,S B,S C,有S A=S B=S C;则称集合U n为可分集合.(Ⅰ)已知U8为可分集合,写出相应的一组满足条件的集合A,B,C;(Ⅱ)证明:若n是3 的倍数,则U n不是可分集合;(Ⅲ)若U n为可分集合且n为奇数,求n的最小值.【解答】解:(I)依照题意,可以取A={5,7},B={4,8},C={1,2,3,6}.(II)假设存在n是3的倍数且U n是可分集合.设n=3k,则依照题意{3,6,…,3k}⊆C,故S C≥3+6+…+3k=,而这n个数的和为,故S C==,矛盾,所以n是3的倍数时,U n一定不是可分集合.(Ⅲ)n=35.因为所有元素和为,又S B 中元素是偶数,所以=3S B=6m(m为正整数),所以n(n+1)=12m,因为n,n+1为连续整数,故这两个数一个为奇数,另一个为偶数.由(Ⅱ)知道,n不是3的倍数,所以一定有n+1是3的倍数.当n为奇数时,n+1为偶数,而n(1+n)=12m,所以一定有n+1既是3的倍数,又是4的倍数,所以n+1=12k,所以n=12k﹣1,k∈N*.…(10分)定义集合D={1,5,7,11,…},即集合D由集合U n中所有不是3的倍数的奇数组成,定义集合E={2,4,8,10,…},即集合E由集合U n中所有不是3的倍数的偶数组成,根据集合A,B,C的性质知道,集合A⊆D,B⊆E,此时集合D,E中的元素之和都是24k2,而,此时U n中所有3的倍数的和为,24k2﹣(24k2﹣2k)=2k,(24k2﹣2k)﹣(24k2﹣6k)=4k显然必须从集合D,E中各取出一些元素,这些元素的和都是2k,所以从集合D={1,5,7,11,…}中必须取偶数个元素放到集合C中,所以2k ≥6,所以k≥3,此时n≥35而令集合A={7,11,13,17,19,23,25,29,31,35},集合B={8,10,14,16,20,22,26,28,32,34},集合C={3,6,9,12,15,18,21,24,27,30,33,1,5,2,4},检验可知,此时U35是可分集合,所以n的最小值为35.…(13分)第21页(共21页)。

2016年北京市海淀区中考数学一模试卷及答案

2016年北京市海淀区中考数学一模试卷及答案

2016年北京市海淀区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为()A.96.5×107B.9.65×107C.9.65×108D.0.965×1092.(3分)如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱3.(3分)一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A.B.C.D.4.(3分)下列图形中,是轴对称图形,但不是中心对称图形的是()A. B.C.D.5.(3分)如图,在▱ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5 B.4 C.3 D.26.(3分)如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35°B.15°C.10°D.5°7.(3分)初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是()A.9,8 B.9,8.5 C.8,8 D.8,8.58.(3分)京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”(190.43°)表示图中承德的位置,“数对”(160,238°)表示图中保定的位置,则与图中张家口的位置对应的“数对”为()A.(176,145°)B.(176,35°) C.(100,145°)D.(100,35°)9.(3分)油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为()A.5 000 B.10 000 C.15 000 D.20 00010.(3分)小明在暗室做小孔成像实验,如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M′N′)于足够长的固定挡板(直线l)上,其中MN∥l.已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的一段时间为x,M′N′的长度为y,若y关于x的函数图象大致如图2所示,则点K 的运动路径可能为()A.A→B→C→D→A B.B→C→D→A→B C.B→C→A→D→B D.D→A→B→C→D二、填空题(本题共18分,每小题3分)11.(3分)分解因式:a2b﹣2ab+b=.12.(3分)如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8cm,OC=3cm,则⊙O的半径为cm.13.(3分)埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33”设这个数是x,可列方程为.14.(3分)在下列函数①y=2x+1;②y=x2+2x;③y=;④y=﹣3x中,与众不同的一个是(填序号),你的理由是.15.(3分)北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为万人,你的预估理由是.16.(3分)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,AB长为半径作弧,交直线l于点C;(2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:()0﹣6sin30°+()﹣2+|1﹣|.18.(5分)解不等式组并写出它的所有整数解.19.(5分)已知x2+x﹣5=0,求代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值.20.(5分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,DE为AC边上的中线,求证:∠BAD=∠EDC.21.(5分)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?22.(5分)如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)若BE=10,CE=6,连接OE,求tan∠OED的值.23.(5分)在平面直角坐标系xOy中,直线y=﹣x与双曲线y=(k≠0)的一个交点为P().(1)求k的值;(2)将直线y=﹣x向上平移b(b>0)个单位长度后,与x轴,y轴分别交于点A,点B,与双曲线y=(k≠0)的一个交点记为Q.若BQ=2AB,求b的值.24.(5分)如图,AB,AD是⊙O的弦,AO平分∠BAD.过点B作⊙O的切线交AO的延长线于点C,连接CD,BO.延长BO交⊙O于点E,交AD于点F,连接AE,DE.(1)求证:CD是⊙O的切线;(2)若AE=DE=3,求AF的长.25.(5分)阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元;(2)如图为2015年国产动画电影票房金字塔,则B=;(3)选择统计表或统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.(5分)有这样一个问题:探究函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质.小东对函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数y=(x﹣1)(x﹣2)(x﹣3)的自变量x的取值范围是全体实数;(2)下表是y与x的几组对应值.①m=;②若M(﹣7,﹣720),N(n,720)为该函数图象上的两点,则n=;(3)在平面直角坐标系xOy中,A(x A,y A),B(x B,﹣y A)为该函数图象上的两点,且A为2≤x≤3范围内的最低点,A点的位置如图所示.①标出点B的位置;②画出函数y=(x﹣1)(x﹣2)(x﹣3)(0≤x≤4)的图象.27.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣4(m≠0)的顶点为A,与x轴交于B,C两点(点B在点C左侧),与y轴交于点D.(1)求点A的坐标;(2)若BC=4,①求抛物线的解析式;②将抛物线在C,D之间的部分记为图象G(包含C,D两点).若过点A的直线y=kx+b(k≠0)与图象G有两个交点,结合函数的图象,求k的取值范围.28.(7分)在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA 与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE 的长为,并简述求GE长的思路.29.(8分)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则称P′为点P关于⊙C的限距点,如图为点P及其关于⊙C的限距点P′的示意图.(1)当⊙O的半径为1时.①分别判断点M(3,4),N(,0),T(1,)关于⊙O的限距点是否存在?若存在,求其坐标;②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r,请从下面两个问题中任选一个作答.2016年北京市海淀区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为()A.96.5×107B.9.65×107C.9.65×108D.0.965×109【解答】解:96 500 000用科学记数法表示应为:9.65×107,故选:B.2.(3分)如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.3.(3分)一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A.B.C.D.【解答】解:∵一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外无其他差别,∴从中随机摸出一个小球,恰好是红球的概率为:=.故选C.4.(3分)下列图形中,是轴对称图形,但不是中心对称图形的是()A. B.C.D.【解答】解:A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、既是轴对称图形也是中心对称图形,故此选项错误;D、既是轴对称图形也是中心对称图形,故此选项错误;故选:B.5.(3分)如图,在▱ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5 B.4 C.3 D.2【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=2.故选D.6.(3分)如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35°B.15°C.10°D.5°【解答】解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=35°+90°=125°,∵a∥b,∴∠ACD=180°﹣125°=55°,∴∠2=∠ACD﹣∠ACB=55°﹣45°=10°;故选:C.7.(3分)初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是()A.9,8 B.9,8.5 C.8,8 D.8,8.5【解答】解:投掷实心球的成绩最多的是9,共有14人,所以,众数是9,这40名同学投掷实心球的成绩从小到大排列,第20,21人的成绩是8,所以中位数是8.故选A8.(3分)京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”(190.43°)表示图中承德的位置,“数对”(160,238°)表示图中保定的位置,则与图中张家口的位置对应的“数对”为()A.(176,145°)B.(176,35°) C.(100,145°)D.(100,35°)【解答】解:由题意可得,建立的坐标系如右图所示∵“数对”(190,43°)表示图中承德的位置,“数对”(160,238°)表示图中保定的位置,∴张家口的位置对应的“数对”为(176,145°),故选A.9.(3分)油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为()A.5 000 B.10 000 C.15 000 D.20 000【解答】解:设平均每年行驶的公里数为x公里,根据题意得:174800+x×10≤159800+x×10,解得:x≥10000.答:平均每年行驶的公里数至少为10000公里.故选B.10.(3分)小明在暗室做小孔成像实验,如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M′N′)于足够长的固定挡板(直线l)上,其中MN∥l.已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的一段时间为x,M′N′的长度为y,若y关于x的函数图象大致如图2所示,则点K 的运动路径可能为()A.A→B→C→D→A B.B→C→D→A→B C.B→C→A→D→B D.D→A→B→C→D 【解答】解:由题意可得,当K在点A处时,y最大,在C处时,y最小,点K匀速运动,由图2可知,点K从开始运动到第一次到达的位置一定为点C,第三次到达的位置一定为点A,故选项B符合,从B→C,y随x的增大而减小,从C→D,y随x的增大而增大,从D→A,y随x的增大而增大,A→B,y随x的增大而减小,故选B.二、填空题(本题共18分,每小题3分)11.(3分)分解因式:a2b﹣2ab+b=b(a﹣1)2.【解答】解:a2b﹣2ab+b,=b(a2﹣2a+1),…(提取公因式)=b(a﹣1)2.…(完全平方公式)12.(3分)如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8cm,OC=3cm,则⊙O的半径为5cm.【解答】解:由垂径定理OC⊥AB,则AC=BC=AB=4cm在Rt△ACO中,AC=4,OC=3,由勾股定理可得AO==5(cm),即⊙O的半径为5cm.故答案为:5.13.(3分)埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33”设这个数是x,可列方程为x+x+x+x=33.【解答】解:设这个数是x,依题意有x+x+x+x=33,故答案为:x+x+x+x=33.14.(3分)在下列函数①y=2x+1;②y=x2+2x;③y=;④y=﹣3x中,与众不同的一个是③(填序号),你的理由是只有③的自变量取值范围不是全体实数.【解答】解:①y=2x+1中自变量的取值范围是全体实数;②y=x2+2x中自变量的取值范围是全体实数;③y=中自变量的取值范围是x≠0;④y=﹣3x中自变量的取值范围是全体实数;理由是:只有③的自变量取值范围不是全体实数故答案为:③,只有③的自变量取值范围不是全体实数.15.(3分)北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为 6.53万人,你的预估理由是最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右.【解答】解:由折线统计图可知,2010﹣2011年报名人数减少8.02﹣7.60=0.42(万人),2011﹣2012年报名人数减少7.60﹣7.35=0.25(万人),2012﹣2013年报名人数减少7.35﹣7.27=0.08(万人),2013﹣2014年报名人数减少7.27﹣7.05=0.22(万人),2014﹣2015年报名人数减少7.05﹣6.78=0.27(万人),由上可预估2016年北京市高考报名人数约为6.53万人,理由:最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右;故答案为:6.53,最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右.16.(3分)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,AB长为半径作弧,交直线l于点C;(2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是四条边都相等的四边形是菱形;菱形的对边平行.【解答】解:由题意可得,小云的作图依据是:四条边都相等的四边形是菱形;菱形的对边平行.(本题答案不唯一).故答案为:四条边都相等的四边形是菱形;菱形的对边平行.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:()0﹣6sin30°+()﹣2+|1﹣|.【解答】解:原式=1﹣6×+4+﹣1=4﹣2.18.(5分)解不等式组并写出它的所有整数解.【解答】解:解不等式4(x﹣1)≤3(x+2)得:x≤10,解不等式<x﹣4得:x>7,∴不等式组的解集为:7<x≤10,则该不等式组的整数解有:8、9、10.19.(5分)已知x2+x﹣5=0,求代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值.【解答】解:(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3,∵x2+x﹣5=0,∴x2+x=5,∴原式=5﹣3=2.20.(5分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,DE为AC边上的中线,求证:∠BAD=∠EDC.【解答】证明:∵∠BAC=90°,∴∠BAD+∠DAC=90°,又∵AD⊥BC,即∠ADC=90°,∴∠DAC+∠C=90°,∴∠BAD=∠C.∵DE是直角△ACD斜边上的中线,∴DE=AC=EC,∴∠C=∠EDC,∴∠BAD=∠EDC.21.(5分)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?【解答】解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.22.(5分)如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)若BE=10,CE=6,连接OE,求tan∠OED的值.【解答】解:(1)∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)如图,过点O作OF⊥CD于点F,∵四边形ABCD是矩形,∴∠BCD=90°.∵BE=BD=10,∴CD=CE=6.同理,可得CF=DF=CD=3,∴EF=9.在直角△BCE中,由勾股定理可得:BC=8.∵OB=OD,∴OF为△BCD的中位线,∴OF=BC=4,∴在直角△OEF中,tan∠OED==.23.(5分)在平面直角坐标系xOy中,直线y=﹣x与双曲线y=(k≠0)的一个交点为P().(1)求k的值;(2)将直线y=﹣x向上平移b(b>0)个单位长度后,与x轴,y轴分别交于点A,点B,与双曲线y=(k≠0)的一个交点记为Q.若BQ=2AB,求b的值.【解答】解:(1)∵直线y=﹣x经过P().∴m=﹣,∴P(,﹣),∵点P(,﹣)在y=(k≠0)上,∴k=×(﹣)=﹣6.(2)如图,∵直线y=﹣x向上平移b(b>0)个单位长度后的解析式为y=﹣x+b,∴OA=OB=b,∵BQ=2AB,∴=或=1,作QC⊥x轴于C,∴QC∥y轴,∴△ABO∽△AQC,∴===,或===1,∴点Q坐标(﹣2b,3b),或(2b,﹣b)∴﹣6b2=﹣6或﹣2b2=﹣6,b=±1或b=±,∵b>0,∴b=1或.24.(5分)如图,AB,AD是⊙O的弦,AO平分∠BAD.过点B作⊙O的切线交AO的延长线于点C,连接CD,BO.延长BO交⊙O于点E,交AD于点F,连接AE,DE.(1)求证:CD是⊙O的切线;(2)若AE=DE=3,求AF的长.【解答】(1)证明:如图,连接OD.∵BC为圆O的切线,∴∠CBD=90°.∵AO平分∠BAD,∴∠OAB=∠OBF.∵OA=OB=OD,∴∠OAB=∠ABO=∠OAF=∠ODA,∴∠BOC=∠DOC,在△COB和△COD中,,∴BOC≌△DOC,∴∠CBO=∠CDO=90°,∴CD是⊙O的切线;(2)∵AE=DE,∴=,∴∠DAE=∠ABO,∴∠BAO=∠OAD=∠ABO∴∠BAO=∠OAD=∠DAE,∵BE是直径,∴∠BAE=90°,∴∠BAO=∠OAD=∠DAE=∠ABO=30°,∴∠AFE=90°,在Rt△AFE中,∵AE=3,∠DAE=30°,∴EF=AE=,∴AF==.25.(5分)阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元;(2)如图为2015年国产动画电影票房金字塔,则B=21;(3)选择统计表或统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.【解答】解:(1)2015年中国内地动画电影票房收入为400×11.25%=45(亿元);(2)B=41﹣3﹣5﹣12=21(部);故答案为45,21;(3)《熊出没2》2015年的票房为2.4×(1+20%)=2.88(亿),2015年中国内地动画电影市场票房收入前5名的票房成绩统计表26.(5分)有这样一个问题:探究函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质.小东对函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数y=(x﹣1)(x﹣2)(x﹣3)的自变量x的取值范围是全体实数;(2)下表是y与x的几组对应值.①m=﹣60;②若M(﹣7,﹣720),N(n,720)为该函数图象上的两点,则n=11;(3)在平面直角坐标系xOy中,A(x A,y A),B(x B,﹣y A)为该函数图象上的两点,且A为2≤x≤3范围内的最低点,A点的位置如图所示.①标出点B的位置;②画出函数y=(x﹣1)(x﹣2)(x﹣3)(0≤x≤4)的图象.【解答】解:(2)①当x=﹣2时,y=(x﹣1)(x﹣2)(x﹣3)=﹣60.故答案为:﹣60.②观察表格中的数据可得出函数图象关于点(2,0)中心对称,∴﹣7+n=2×2,解得:n=11.故答案为:11.(3)①作点A关于点(2,0)的对称点B1,再在函数图象上找与点B1纵坐标相等的B2点.②根据表格描点、连线,画出图形如图所示.27.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣4(m≠0)的顶点为A,与x轴交于B,C两点(点B在点C左侧),与y轴交于点D.(1)求点A的坐标;(2)若BC=4,①求抛物线的解析式;②将抛物线在C,D之间的部分记为图象G(包含C,D两点).若过点A的直线y=kx+b(k≠0)与图象G有两个交点,结合函数的图象,求k的取值范围.【解答】解:(1)y=mx2﹣2mx+m﹣4=m(x﹣1)2﹣4,所以抛物线的顶点A的坐标为(1,﹣4);(2)①∵BC=4,抛物线的对称轴为x=1,点B在点C左侧,∴点B坐标为(﹣1,0),点C坐标为(3,0),将B(﹣1,0)代入y=m(x﹣1)2﹣4,得:0=4m﹣4,解得m=1所以抛物线的解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3;②B(﹣1,0),C(3,0),当x=0时,y=x2﹣2x﹣3=﹣3,则D(0,﹣3),如图,当直线y=kx+b过A、C时,直线解析式为y=2x﹣6;当直线y=kx+b过A、D时,直线解析式为y=﹣x﹣3,所以若过点A的直线y=kx+b(k≠0)与图象G有两个交点,k的取值范围为0<k≤2或﹣1≤k<0.28.(7分)在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA 与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE的长为,并简述求GE长的思路.【解答】(1)证明:①依题意补全图形,如图1所示,②BC⊥CG,BC=CG;∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,∴∠ACF+∠ACB=90°,∴BC⊥CG;∵点G是BA延长线上的点,BC=CG(2)如图2,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD﹣∠DAC=90°,∠DAF=∠CAF﹣∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,BD=CF,∴∠ACF+∠ACB=90°,∴BC⊥CF;∵AB=,BC=CD=CG=GF=2,∴在Rt△ACG中,根据勾股定理得,AG=,∴在Rt△CDG中,根据勾股定理的,DG=2,∵AD=,∴AH=,HG=,∴GI=AD﹣HG=,∴GE==故答案为.29.(8分)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则称P′为点P关于⊙C的限距点,如图为点P及其关于⊙C的限距点P′的示意图.(1)当⊙O的半径为1时.①分别判断点M(3,4),N (,0),T(1,)关于⊙O的限距点是否存在?若存在,求其坐标;②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r,请从下面两个问题中任选一个作答.<【解答】解:(1)①点M、点T关于⊙O 的限距点不存在,点N 关于⊙0的限距点存在,坐标为(1,0).②∵点D坐标为(2,0),⊙O半径为1,DE、DF分别切⊙O于E、F,∴切点坐标为(,),(,﹣),如图所示,不妨设点E(,),点F(,﹣),EO、FO的延长线分别交⊙O于点E′、F′,则E′(﹣,﹣),F′(﹣,).设点P关于⊙O的限距点的横坐标为x,①当点P在线段EF上时,直线PO与⊙O的交点P′满足1≤PP′≤2,故点P关于⊙O的限距点存在,其横坐标x满足﹣1≤x≤﹣.②当点P在线段DE、DF(不包括端点)上时,直线PO与⊙O的交点P′满足0<PP′<1或2<PP′<3,故点P关于⊙O的限距点不存在.③当点P与点D重合时,直线PO与⊙O的交点P′(1,0),满足PP′=1,故点P 关于⊙O的限距点存在,其横坐标x=1.综上所述点P关于⊙O的限距点的横坐标x的范围为﹣1≤x≤﹣或x=1.(2)问题1:如图2中,∵△DEF是等边三角形,点C是△DEF的外接圆的圆心,∵若点P关于⊙C的限距点P′存在,且P′随点P的运动所形成的路径长为πr,∴图中△PP′C是等边三角形,点P在PP′上运动时,有限距点,∵PC∥ED,∴==,∴PC=,由题意:r≤﹣r≤2r,∴,∴r的最小值为.问题2:如图2中,当点H不存在限距点时,点P就不存在限距点,∵HC=,∴﹣r>2r,∴r<,∴0<r<时点P的限距点不存在.故答案分别为,0<r<.。

2016海淀高三一模真题试卷与解析

2016海淀高三一模真题试卷与解析

海淀区高三年级 2015~2016 学年度第二学期期中练习2016.4英语试卷第二部分:知识运用(共两节,45 分)第一节单项填空(共 15 小题;每小题 1 分,共 15 分)从每题所给的 A、B、C、D 四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。

21. My flight was delayed, so l read a book ______ time.A. killB. killingC to kill D. having killed22. In the early days, Beijing Opera ______ on open-air stages or inteahouses.A. performedB. was performedC. performsD. is performed23. People around us ______ affect our thoughts and behaviors.A. mustB. canC. shouldD. would24. Since its start, WeChat ______ into the most popular messaging communication service in China.A. has developedB. developedC. developsD. was developing25. The number of Hutongs in Beijing is decreasing, ______ they still attracttourists from all over the world.A. orB. andC. butD. so26. With the new family planning policy ______, many young parents are considering having their second child.A. introduceB. introducingC. to introduceD. introduced27. ______ astonishes us is that AIphaGo defeated the human champion.A. WhichB. WhenC. ThatD. What28. Chinese people‟s spending on overseas trips ______ year by year.A. had risenB. riseC. is risingD. rose29. Scott was amazed by the Great Wall, ______ he described as the greatest attraction in Beijing.A. whereB. whichC. whatD. why30. The most exciting moment during the Spring Festival is ______ the family enjoy the big dinner together.A. whatB. whyC. whichD. when31. —We‟d better leave now.— No hurry. Th e train ______ at 10 o‟clock.A. has leftB. leftC leaves D. would leave32. You‟d better exercise at least three times a week ______ you can keep fit.A. so thatB. only ifC. as thoughD. in case33. She works in theatre, ______ in her father‟s footst eps.A. to followB. followingC. followedD. being followed34. If Mike ______ the half-cooked food then, he would not be in hospital now.A. had not hadB. did not haveC. does not haveD. has not had35. — Could you please show me which boy in the photo is Patrick?— The one ______ red hair.A. inB. overC. ofD. with第二节完形填空(共20 小题;每小题1.5 分,共30 分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D 四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

2016年北京市海淀区高三一模理科数学考试含答案

2016年北京市海淀区高三一模理科数学考试含答案

2016年北京市海淀区高三一模理科数学考试含答案————————————————————————————————作者:————————————————————————————————日期:海淀区高三年级2015-2016 学年度第二学期期中练习数学试卷(理科) 2016.4本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项.1.函数()21x f x =-的定义域为( )A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,1]2.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为( )A .-1B .1C .-ID .i3.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为( )A .52B .3C .72D .44.某三棱锥的三视图如图所示,则其体积为( )A .33 B .32 C .233 D .2635.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |=( )A .1B .2C .3D . 27.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是( )A .,44a b ππ==- B .2,36a b ππ== C .,36a b ππ==D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是( )A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每小题5 分,共30 分.9.已知向量(1,),(,9)a t b t ==,若a b ,则t = _______.10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______.11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b -=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离为3,则C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个. (ⅰ)当每条边上的三个数字之和为4 时,不同的填法有_______种; (ⅱ)当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,若存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得|()()|f x f t -≤2,则记a +b 的最大值为H (t ).(ⅰ)当 ()f x =2x 时,H (0)=_______.(ⅱ)当()f x 2x =且t [1,2]∈时,函数H (t )的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13 分)如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β.(Ⅰ)求证:sin 3sin AC BC βα=; (Ⅱ)若,,1962AB ππαβ===,求BC 的长.16.(本小题满分13 分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量;(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据,试估计21s 与22s 的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求随机变量ξ的分布列和数学期望.17.(本小题满分14 分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB . (Ⅰ)求证: BC ⊥平面PAB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内;(Ⅲ)当PA =AB =2,二面角C -AN -D 的大小为3π时,求PN 的长.18.(本小题满分13 分) 已知函数f (x) =ln x +1x -1,1()ln x g x x-=(Ⅰ)求函数 f (x)的最小值; (Ⅱ)求函数g(x)的单调区间;(Ⅲ)求证:直线 y =x 不是曲线 y =g(x)的切线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区九年级第二学期期中练习语文2016.5学校班级姓名成绩一、基础·运用(共21分)1.阅读下面文段,完成第(1)-(5)题。

(共10分)柳,又名杨柳,极易成活,插条而生,“”,就是柳生命力旺盛的生动写照。

柳遇春而发,叶细枝长,翠绿蓊郁,飘逸柔美。

自古以来,柳就深受文人墨客的喜爱,成为我国诗词中意蕴丰富的意象。

在众多植物中,柳抽丝发芽最早,善观察的诗人常用柳作为报春的使者。

“碧玉妆成一树高,万条垂下绿丝绦。

不知细叶谁裁出,二月春风似剪刀”,诗人借柳寓指美好春光,表达逢春的欣喜之情。

“柳”与“留”谐音,垂柳的“依依”情态又与人们分别时依依不舍的心绪相似,所以就有了亲人或朋友离别时折柳赠别的习俗。

李白的“天下伤心处,劳劳送客亭。

春风知别苦,不遣柳条青”,真切地写出了诗人折柳送别时的离愁别绪。

“柳”还常被作为故乡的象征,寄寓人们对家园故土的思念之情。

“此夜曲中闻折柳,何人不起故园情”的诗句,写出诗人夜晚听到折柳之曲而触发的思乡情怀。

此外,柳的枝叶柔韧纤.细,婀.娜多姿,古人常用柳枝柳叶形容女子的身姿容颜。

“隔户杨柳弱袅袅,恰似十五女儿腰”,即是形容女子腰肢的纤柔。

柳还代表着君子形象,刘禹锡《杨柳枝词》中“城中桃李须臾尽,争似垂杨无限时”的诗句,将“垂杨”与“桃李”作对比,使“垂杨”朴实无华的君子形象跃然纸上。

在中华传统文化各具特色的载体中,柳意象丰富的内涵、独特的韵味一直为历代文人所青睐。

(1)对文中加点字的注音和画线字笔顺的判断,全都正确的一项是(2分)A.纤.细(qiān)婀.娜多姿(ē)“郁”字的第7画是“”B.纤.细(xiān)婀.娜多姿(ē)“郁”字的第7画是“”C.纤.细(qiān)婀.娜多姿(ā)“郁”字的第7画是“”D.纤.细(xiān)婀.娜多姿(ā)“郁”字的第7画是“”(2)根据语意,在文段横线处填写俗语或谚语,最恰当的一项是(2分)A.房前屋后,栽桑种柳B.高山松树核桃沟,溪河两岸栽杨柳C.柳树不怕淹,松树不怕干D.有心栽花花不发,无心插柳柳成荫(3)在下面横线处依次填入词语,将这副对联补充完整,正确的一项是(2分)①垂柳②,屋后③落花红。

A.①院落②绿枝条③疏蕊B.①院落②飞叶翠③桃李C.①庭前②飞叶翠③疏蕊D.①庭前②绿枝条③桃李(4)结合文段内容,对下面诗句中柳的意象理解不正确...的一项是(2分)A.昔我往矣,杨柳依依;今我来思,雨雪霏霏。

(《诗经·小雅·采薇》)理解:诗人借杨柳依依的情态,表达了惜别时难舍难分的情感。

B.羌笛何须怨杨柳?春风不度玉门关。

(王之涣《凉州词》)理解:诗句以羌笛吹奏出的哀怨的“折柳”曲,写出了征人对迟来春天的不满。

C.芙蓉如面柳如眉,对此如何不泪垂。

(白居易《长恨歌》)理解:诗句用细长的柳叶来比喻女子秀美的眉毛,表现了女子容颜的娇美。

D.两个黄鹂鸣翠柳,一行白鹭上青天。

(杜甫《绝句》)理解:柳芽萌发,成双成对的黄鹂在翠绿的枝头欢唱,诗人借柳赞颂美好的春光。

(5)对下面书法作品的欣赏,不恰当...的一项是(2分)第一幅 第二幅A.第一幅笔力苍劲有力,笔断意连,错落有致。

B.第二幅布局齐整,字体端庄方正,笔画平直。

C.第一幅运笔潇洒飘逸,线条奔放自如,收放有度。

D.第二幅字体大小相间,笔法富于变化,疏密得当。

2.下列成语都出自《论语》的一项是(2分)A.学而不厌 计日可待 秉烛夜游 不打不相识B.见义勇为 因材施教 前呼后应 大意失荆州C.峰回路转 安贫乐道 望梅止渴 学而时习之D.温故知新 诲人不倦 精益求精 一言以蔽之3.默写。

(6分)(12分)(2(晏殊《浣溪沙》)(2分)(3)《登飞来峰》中反映诗人勇往直前、无所畏惧精神的诗句是。

(2分)4.北海公园的太液池,是京城有名的赏月佳地之一。

每当明月当空,泛舟于湖上:月影倒映水中,温婉如玉;微风袭来,波光涌动。

倘若你观赏到眼前情景,会想到哪句古诗文?简要说说此种情景为什么会让你联想到这句古诗文。

(3分)答:二、文言文阅读(共9分)阅读下面文字,完成第5-8题。

虞世南,字伯施,越州余姚人。

性沈静寡欲,笃志勤学,少与兄世基受学于吴郡顾野王,经十余年,精思不倦,或累旬不盥栉①。

善.属文,常祖述徐陵,陵亦言世南得己之意.。

又同郡沙门智永善王羲之书,世南师焉,妙得其体,由是声名籍甚。

太宗重其博识,每机务之隙,引之谈论,共观经史。

世南虽.容貌懦②懦,若不胜衣,而志性抗烈,每论及古先帝王为政得失,必存规讽,多所补益。

太宗尝.谓侍臣曰:“朕因暇日与虞世南商略古今,有一言之失,未尝不怅恨,其恳诚若此,朕用嘉焉。

群臣皆若世南,天下何忧不理!”后高祖崩,务从隆厚。

程限既促,功役劳弊。

世南上封事谏,书奏不报。

世南又上疏。

时公卿又上奏请遵遗诏,务从节俭,因.下其事付所司详议,于是制度颇有减省焉。

其有犯无隐,多此类也。

太宗以是益亲礼之。

尝称世南有五绝:一曰德行,二曰忠直,三曰博学,四曰文辞,五曰书翰③。

十二年,又表请致仕④,优制⑤许之。

寻.卒,年八十一。

太宗举哀于别次,哭之甚恸。

赐东园秘器,陪葬昭陵,赠礼部尚书,谥曰文懿⑥。

(节选自《旧唐书·列传第二十二》,有删改)注:①[盥(g uàn)栉]梳洗。

②[懦]指柔弱。

③[翰]借指毛笔和文字、书信等。

④[致仕]交还官职,即退休。

⑤[制]帝王的命令。

⑥[懿(yì)]美德。

5.解释下列语句中加点词的意思。

(2分)(1)善.属文善:(2)寻.卒,年八十一寻:6.下列语句中加点词的意思相同的一项是()(2分)A.陵亦言世南得己之意.醉翁之意.不在酒B.世南虽.容貌懦懦虽.欲言,无可进者C.太宗尝.谓侍臣曰予尝.求古仁人之心D.因.下其事付所司详议罔不因.势象形7.用现代汉语翻译下面的句子。

(2分)(1)群臣皆若世南,天下何忧不理!翻译:(2)太宗以是益亲礼之。

翻译:8.谥号,是古代有一定地位的人去世后,朝廷根据其生平事迹与品德修养,给予的带有评判性质的称号,如欧阳修谥号为“文忠”。

根据选文内容,说说为什么虞世南谥号为“文懿”。

(3分)答:三、名著阅读(共10分)9.阅读下面连环画,完成第(1)-(3)题。

(6分)1.鹦鹉螺号驶进了印度洋的锡兰岛,那里是以采珠闻名的地方。

因为还没到采珠期,一条采珠船也没有。

我们穿上潜水衣,一个个下到水里去。

2.我看到巨大砗磲里一颗椰子般大小的珍珠,但船长无意取下它。

此时一个人影进入了我们的视野。

他每次上下三十秒钟,只能采到几个珠贝。

3.忽然一条巨大的鲨鱼出现在采珠人头上。

他做了一个惊骇的手势,想快速浮上海面。

鲨鱼向他扑来,他躲闪不及,被鲨鱼的尾巴打翻在海底。

(1)上面连环画的内容取材于法国著名作家儒勒·凡尔纳的《 ① 》。

连环画中,在紧急关头,用鱼叉准确刺中鲨鱼心脏、解救尼摩船长的A 是 ② 。

(2分)(2)根据这部科幻小说的内容,请对第9幅连环画中“我们”的疑问作出解答。

(2分)答:(3)这部科幻小说记叙了尼摩船长一行人在大海里的种种惊险奇遇。

请就小说的某一方面谈谈你获得的有益启示。

(不超过30字)(2分)答:10.下面两组名著阅读题,请任选一组....,完成相应的题目。

(4分) 第一组甲却说A 在山东,闻知车驾已还洛阳,聚谋士商议。

荀彧进曰:“昔晋文公纳周襄王,而诸侯服从;汉高祖为义帝发丧,而天下归心。

今天子蒙尘,将军诚因此时首倡义兵,奉天子以从众望,不世之略也。

若不早图,人将先我而为之矣。

” A 大喜。

(选自《三国演义》第十四回)乙庶勒马谓玄德曰:“某因心绪如麻,忘却一语:此间有一奇士,只在襄阳城外二十里隆中。

使君何不求之?”玄德曰:“敢烦元直为备请来相见。

”庶曰:“此人不可屈致,使君可4.船长见此情景,立即手握短刀向鲨鱼刺去,可惜没有刺中要害。

鲨鱼被激怒了,疯狂搅动海水,眼看船长就要被鲨鱼吃掉。

5.紧急关头,A 手持鱼叉向鲨鱼冲去,一叉刺中了它的心脏。

鲨鱼终于被制服了。

A 随即把船长拉了起来。

幸好船长没受伤。

6.船长抱起采珠人浮出了水面,并送给他珍珠。

回到船上,船长深沉地说:“这个印度人是被压迫国家的人民,我的心还在这个国家,直到最后一次跳动。

”7.鹦鹉螺号到了希腊群岛。

突然,海水里出现一个潜水人。

船长向他点点头,潜水人用手势回答了他,然后浮出了海面。

船长说那是他的老相识。

8.然后,船长打开一个全是金条的橱箱,把约有一千公斤的金子装进一个小柜子,又在盖上写好地址,由四个海员用小滑车把它送到了海底。

9.我把此事告诉了康塞尔和A 。

我们对此都感到不解:金子要送到哪里去?这些金子又是从哪里弄来的呢?亲往求之。

若得此人,无异周得吕望、汉得张良也。

”玄德曰:“此人比先生才德何如?”庶曰:“以某比之,譬犹驽马并麒麟、寒鸦配鸾凤耳。

此人每尝自比管仲、乐毅;以吾观之,管、乐殆不及此人。

此人有经天纬地之才,盖天下一人也!”玄德喜曰:“愿闻此人姓名。

”(选自《三国演义》第三十六回)(1)甲段中谋士荀彧的这一计谋被称为“①”,A ②(人名)常借此计谋使自己“出师有名”。

(2分)(2)乙段中徐庶所说的“奇士”是指③,刘备为了得到这位“奇士”,曾经④(情节),其爱才、敬才的举动为后人所称道。

(2分)第二组甲石猿端坐上面道:“列位呵,‘人而无信,不知其可。

’你们才说有本事进得来,出得去,不伤身体者,就拜他为王。

我如今进来又出去,出去又进来,寻了这一个洞天与列位安眠稳睡,各享成家之福,何不拜我为王?”众猴听说,即拱伏无违,一个个序齿排班,朝上礼拜,都称“千岁大王”。

自此,石猿高登王位,将“石”字儿隐了,遂称美猴王。

(选自《西游记》第一回)乙唐僧道:“我命在天,该那个妖精蒸了吃,就是煮了,也算不过。

终不然,你救得我的大限?你快回去!”行者道:“师父,我回去便也罢了,只是不曾报得你的恩哩。

”唐僧道:“我与你有甚恩?”那大圣闻言,连忙跪下叩头道:“老孙因,致下了伤身之难,被我佛压在两界山;幸观音菩萨与我受了戒行,幸师父救脱吾身;若不与你同上西天,显得我‘知恩不报非君子,万古千秋作骂名。

’”(选自《西游记》第二十七回)(1)甲段中石猿话中的“人而无信,不知其可”出自我国儒家经典《①》。

众猴尊称石猿为王,可以体现出他们②的特点。

(2分)(2)阅读乙段师徒二人的对话,根据小说内容,在横线处填写相关内容。

(2分)孙悟空因③(情节)而被如来佛祖惩罚,他所说的“恩”指的是④。

(用自己的话概括回答)四、现代文阅读(共30分)(一)阅读下面三则材料,完成第11-13题。

(8分)【材料一】国家自主创新示范区是经国务院批准,在推进自主创新和高新技术产业发展方面先行先试、探索经验、做出示范的区域。

2009年3月,北京中关村被批准成为第一个国家自主创新示范区。

2016年3月30日,国家在原有11个自主创新示范区基础上,再设河南郑洛新、山东半岛、辽宁沈大3个国家自主创新示范区。

相关文档
最新文档