5-声学基础知识
声学知识

声学的基本知识1.声波的传播方向的改变包括:反射、折射、衍射、漫射。
当声波遇到不同的介质时就会发生这几个“动作”,在多孔材料表面,声波会放生全部的“动作”。
随温度、风速、风向的变化,声音折射的区域会产生变化。
声衍射使得声波能沿墙体的周边弯曲并越过墙体。
声波漫射与光的漫射是同理的。
2.声音的基本特性包括:声速(v)、波长( )、频率(f)。
3.声音的强度经常用声强(W/m2)、声压(Pa)、声功率(W)、声压级(dB)来描述。
声强--媒质单位体积里所具有的声能量。
声压--声波在媒质中传播时,媒质某点由于受到声波扰动后压强超过原来静压力的值。
声功率--单位时间内声源辐射的总能量。
声压级=20lg(实际声压/基准声压)基准声压取2×10-5(N/m2) 单位是分贝。
应该注意的是:声强级、声压级、声功率与声强、声压、声功率是不同的概念。
以分贝为单位的各种“级”,只有相对的意义,,他们量纲为1,其数值的大小与所规定的基准有关。
因此,用分贝为单位的各种“级”,都应同时iaoming怂恿的基准值。
国标规定在生产车间以及作业场所连续工作8小时的允许噪声为90dB(A),时间减半允许噪声提高3dB。
4.根据人耳对声音的主观反映,声音的强度和频率引起对响度、音调、音色等感觉的变化。
响度---是声音强度这一物理量给人的主观感觉。
单位是方。
为了模仿人耳对声音响度的灵敏性,在测量声压级的仪器中加入对各种频率具有“计权”性质的网络,由此可直接读出接近人耳响度感觉的计权声压级,又称为A声级(dB)。
响度级是以1000HZ纯音为基准,对于1000HZ纯音,它的响度级就是这个声音的声压级。
调节1000HZ的纯音的声压级,使它和待定的纯音听起来一样响,这时1000HZ的纯音的声压级就是被定义为这一纯音的响度级。
音色---频率最低的称为基音,其他与基音成整数倍的称谐音(或称泛音)。
谐音的多少和强弱不同时就会感觉音色有变化。
《声学基础知识》课件

让我们一起探索声学的奥秘吧。从声学基础概述开始,深入了解声音的产生 机制、声音的特性和参数,以及声学波动的基本概念。
声学基础概述
声学是研究声音在空气、固体和液体中的传播和变化的学科。它涵盖了声音的起源、传播和感知等方面的内容。
声音的产生机制
声音的产生涉及物体振动,从声源传递到介质中形成声波。声波通过空气、固体或液体的震动传递,最终被我 们的耳朵接收。
声音的特性和参数
声音具有许多特性和参数,包括频率、振幅、声压级和声色。这些特性决定 了声音的音调、响度和音质。
声学波动的本概念
声学波动是指声音在空气、固体或液体介质中传播的过程。了解波动的基本概念可以帮助我们理解声音的行为 和传播规律。
声场的传播和测量
声场是声波在空间中的分布情况。了解声场的传播和测量方法有助于我们优 化声音的传递和改善声学环境。
声学信号的处理和分析
声学信号的处理和分析可以帮助我们理解和改善声音的质量。通过采用数字信号处理等技术,我们可以对声音 进行精确的控制和调整。
声学应用的案例研究
通过案例研究,我们可以了解声学在不同领域的应用,包括音乐演奏、建筑 设计、噪声控制等。这些案例可以帮助我们更好地理解声学的实际应用。
声学基础知识

声学基础知识声音,是我们生活中无处不在的一部分。
从清晨鸟儿的鸣叫,到城市道路上的车水马龙声,从悠扬的音乐旋律,到人们日常的交谈,声音以各种形式存在着,并对我们的生活产生着深远的影响。
那么,什么是声学呢?声学是研究声音的产生、传播、接收和效应的科学。
让我们一起走进声学的世界,了解一些声学的基础知识。
首先,我们来聊聊声音的产生。
声音的产生源于物体的振动。
当一个物体振动时,它会引起周围介质(比如空气)的振动,这种振动以波的形式向外传播,就形成了声音。
不同的物体振动方式和频率不同,产生的声音也就不同。
例如,琴弦的振动产生了美妙的音乐,而人的声带振动则产生了说话的声音。
那么声音是如何传播的呢?声音的传播需要介质。
在地球上,最常见的介质就是空气。
当声音在空气中传播时,其实就是空气分子在振动并依次传递能量。
声音在不同介质中的传播速度是不一样的。
比如,声音在固体中的传播速度通常比在液体和气体中快。
在 20 摄氏度的空气中,声音的传播速度约为 343 米每秒。
接下来谈谈声音的频率和波长。
频率指的是物体在单位时间内振动的次数,单位是赫兹(Hz)。
而波长则是声音在一个周期内传播的距离。
频率和波长之间存在着密切的关系,它们的乘积等于声音的传播速度。
人耳能够听到的声音频率范围大约在 20Hz 到 20000Hz 之间。
低于 20Hz 的声音称为次声波,高于 20000Hz 的声音称为超声波。
次声波和超声波在生活中也有广泛的应用,比如次声波可以用于地震监测,超声波可以用于医疗诊断和清洗。
声音的强度也是声学中的一个重要概念。
声音的强度用分贝(dB)来表示。
日常生活中的环境声音强度各不相同,安静的图书馆可能只有 30dB 左右,而繁忙的交通路口可能会达到 80dB 以上。
长期处于高强度的噪音环境中会对人的听力造成损害,因此,控制噪音是非常重要的。
在声学中,还有一个重要的概念是声波的反射、折射和衍射。
当声波遇到障碍物时,会发生反射。
声学基本知识ppt

声音的干涉与衍射
声音的干涉
当两个或多个声波叠加时,它们会产生加强或抵消的效果,形成干涉。在音乐中 ,通过调整不同声波的相位和幅度,可以产生和谐或嘈杂的音效。
声音的衍射
当声波遇到障碍物的边缘时,它会绕过障碍物继续传播,这就是声音的衍射。在 音乐中,通过使用不同的障碍物和空间,可以创造出不同的音场和音效。
04
声音的传播特性
声音的反射与折射
声音的反射
声波遇到障碍物时,一部分声波会反弹回原来的介质,这就是声音的反射。 在封闭的空间里,声音会多次反射,形成混响。
声音的折射
当声波从一个介质进入另一个介质时,它会改变传播方向,这就是声音的折 射。在空气中,声音的传播速度比在水中慢,所以当声音从水中进入空气时 ,它会向上折射。
传递出去。声波的传播速度与介质的性质和温度有关。
声波的反射、折射和干涉
03
当声波遇到障碍物或不同介质时,会产生反射、折射和干涉等
现象,这些现象在音乐和建筑声学中具有重要意义。
声音的分类与特征
声音的分类
根据声音的产生方式和特征,可以将其分为乐音和噪音两大 类。乐音是指和谐、有节奏的声音,如音乐;噪音是指不和 谐、无规律的声音,如机械噪音、环境噪音等。
回声与混响
回声
当声音遇到障碍物并反弹回来时,我们称之为回声。在音乐 中,通过使用回声效果器,可以创造出一种远离现实、空旷 或神秘的音乐氛围。
混响
当声音在封闭空间内多次反射时,会形成混响。在音乐中, 通过使用混响效果器,可以增加音乐的深度和广度,使音乐 更加丰富和悦耳。
05
声音的污染与防护
噪声的来源与危害
声学基本知识ppt
xx年xx月xx日
目 录
声学基础知识

声学基础知识声学基础知识⼀、声学基础1、⼈⽿能听到的频率范围是20—20KHZ。
2、把声能转换成电能的设备是传声器。
3、把电能转换成声能的设备是扬声器。
4、声频系统出现声反馈啸叫,通常调节均衡器。
5、房间混响时间过长,会出现声⾳混浊。
6、房间混响时间过短,会出现声⾳发⼲。
7、唱歌感觉声⾳太⼲,当调节混响器。
8、讲话时出现声⾳混浊,可能原因是加了混响效果。
9、声⾳三要素是指⾳强、⾳⾼、⾳⾊。
10、⾳强对应的客观评价尺度是振幅。
11、⾳⾼对应的客观评价尺度是频率。
12、⾳⾊对应的客观评价尺度是频谱。
13、⼈⽿感受到声剌激的响度与声振动的频率有关。
14、⼈⽿对⾼声压级声⾳感觉的响度与频率的关系不⼤。
15、⼈⽿对中频段的声⾳最为灵敏。
16、⼈⽿对⾼频和低频段的声⾳感觉较迟钝。
17、⼈⽿对低声压级声⾳感觉的响度与频率的关系很⼤。
18、等响曲线中每条曲线显⽰不同频率的声压级不相同,但⼈⽿感觉的响度相同。
19、等响曲线中,每条曲线上标注的数字是表⽰响度级。
20、⽤分贝表⽰放⼤器的电压增益公式是20lg(输出电压/输⼊电压)。
21、响度级的单位为phon。
22、声级计测出的dB值,表⽰计权声压级。
23、⾳⾊是由所发声⾳的波形所确定的。
24、声⾳信号由稳态下降60dB所需的时间,称为混响时间。
25、乐⾳的基本要素是指旋律、节奏、和声。
26、声波的最⼤瞬时值称为振幅。
27、⼀秒内振动的次数称为频率。
28、如某⼀声⾳与已选定的1KHz纯⾳听起来同样响,这个1KHz纯⾳的声压级值就定义为待测声⾳的响度。
29、⼈⽿对1~3KHZ的声⾳最为灵敏。
30、⼈⽿对100Hz以下,8K以上的声⾳感觉较迟钝。
31、舞台两侧的早期反射声对原发声起加重和加厚作⽤,属有益反射声作⽤。
32、观众席后侧的反射声对原发声起回声作⽤,属有害反射作⽤。
33、声⾳在空⽓中传播速度约为340m/s。
34、要使体育场距离主⾳箱约34m的观众听不出两个声⾳,应当对观众附近的补声⾳箱加0.1s延时。
公共基础知识声学基础知识概述

《声学基础知识概述》一、引言声学是一门研究声波的产生、传播、接收和效应的科学。
从我们日常的言语交流到音乐演奏,从医学超声诊断到建筑声学设计,从水下声呐探测到航空航天领域的噪声控制,声学无处不在。
它不仅在科学研究中具有重要地位,也在工程技术、医学、艺术等领域发挥着关键作用。
本文将对声学基础知识进行全面的概述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、声学的基本概念1. 声波的定义与性质声波是一种机械波,是由物体的振动产生的。
它通过介质(如空气、水、固体等)传播,引起介质分子的振动。
声波具有以下主要性质:(1)频率:指声波每秒振动的次数,单位为赫兹(Hz)。
人耳能够听到的声音频率范围大约在 20Hz 到 20kHz 之间。
(2)波长:指声波在一个周期内传播的距离。
波长与频率和波速之间的关系为:波长=波速/频率。
(3)波速:声波在不同介质中的传播速度不同。
在空气中,声速约为 343 米/秒;在水中,声速约为 1480 米/秒;在固体中,声速则更高。
(4)振幅:表示声波的强度,即介质分子振动的幅度。
振幅越大,声音越响亮。
2. 声音的三要素声音的三要素是音调、响度和音色。
(1)音调:由声音的频率决定,频率越高,音调越高。
例如,女高音的音调比男低音高。
(2)响度:与声音的振幅和距离有关,振幅越大、距离越近,响度越大。
通常用分贝(dB)来表示声音的响度。
(3)音色:也称为音品,是由声音的波形决定的。
不同的发声体发出的声音具有不同的音色,这使得我们能够区分不同的乐器和人的声音。
3. 噪声与乐音噪声是指那些杂乱无章、令人厌烦的声音。
噪声的来源广泛,如交通噪声、工业噪声、建筑施工噪声等。
噪声对人的身心健康会产生不良影响,如引起听力损伤、心理压力等。
乐音则是有规律、悦耳动听的声音,如音乐演奏中的声音。
三、声学的核心理论1. 波动方程波动方程是描述声波传播的基本方程。
对于一维情况,波动方程可以表示为:$\frac{\partial^{2}u}{\partialt^{2}}=c^{2}\frac{\partial^{2}u}{\partial x^{2}}$ 其中,$u$表示介质的位移,$t$表示时间,$x$表示空间坐标,$c$表示波速。
声学基础知识

声学基础知识声学是研究声音的产生、传播和接收的学科,它是物理学的一个重要分支,也与工程学、心理学等学科密切相关。
声音是一种机械波,是由介质中分子的振动引起的。
在日常生活中,我们所接触的声音与我们的情绪、心理状态有很大关联,而在工业、医学、通信等领域,声学也扮演着重要的角色。
本文将从声音的产生、传播和接收三个方面介绍声学的基础知识。
一、声音的产生声音是由物体振动引起的,当物体振动产生的机械波传播到我们的耳朵时,我们才能感知到声音。
声音的产生主要有以下几种方式:1. 自由振动:当一个物体自由地振动时,会在周围介质中产生声音。
例如,乐器弦线振动时产生的声音。
2. 强迫振动:当一个物体被外力作用迫使振动时,也会产生声音。
例如,乐器的音箱被演奏者的手和腮帮振动时产生的声音。
3. 空气振动:当空气被物体振动时,会通过空气分子的碰撞传播声音。
例如,人的嗓子发出的声音就是通过空气的振动传播出去的。
二、声音的传播声音是通过介质传播的,常见的传播介质有空气、水和固体。
声音传播的速度与介质的性质相关,例如,在空气中,声音传播的速度约为每秒343米。
声音传播的基本过程可以分为以下几个步骤:1. 振动:声音是由物体的振动引起的,当物体振动时,会在介质中产生声波。
2. 压缩与稀疏:振动的物体使介质中的分子产生交替的压缩和稀疏,形成纵波传播。
3. 传播:声波以纵波的形式沿介质传播,当声波到达物体后,物体的分子也会被振动,进而再次产生声波。
4. 接收:当声波达到接收器(如耳朵),通过耳膜、骨骼、耳腔等组织,被转化为神经信号,我们才能感知到声音。
三、声音的接收声音的接收是指我们如何感知和理解传播过程中产生的声音信号。
人类具有复杂而精细的听觉系统,能够感知各种不同频率和振幅的声音。
1. 听觉器官:人类的听觉器官包括外耳、中耳和内耳。
外耳通过外耳道将声音引入中耳,中耳通过鼓膜和听小骨(听骨链)将声波传递给内耳。
内耳中的耳蜗含有感音神经,能够将声波转化为神经信号。
声学基本知识

声学基本知识一、声音的基本性质声音来源于振动的物体。
辐射声音的振动物体称为“声源”。
声源要在弹性介质中发声并向外传播。
声波是纵波。
(1)人耳所能听到的声波的频率范围为20~20000Hz,称为可听声。
低于20Hz的声音称为次声;高于20000Hz的声音称为超声。
次声与超声不能使人产生声音的感觉。
(2)室温下空气中的声速为340m/s.声速c,波长λ和频率f有如下关系:频率为100~10000Hz的声音的波长为3.4~0.034m.这个波长范围与建筑物室内构件的尺度相当,在室内声学中,对这一频段的声波尤为重视。
-f2.每一频带以其中心频率fc标度,.建筑声学设计和测量中常用的有倍频带和1/3倍频带;在倍频带分析中,上限频率是下限频率的两倍,即fl=2f2;在1/3倍频带分析中,在可听声范围内,倍频带及1/3倍频带的划分及其中心频率如表3—l所示。
表中第一行为1/3倍频带中心频率,第二行为倍频带中心频率。
(4)波阵面与声线声波从声源出发,在同一介质中按一定方向传播,声波在同一时刻所到达的各点的包络面称为波阵面。
声线表示声波的传播方向和途径。
在各向同性的介质中,声线是直线且与波阵面垂直。
依据波阵面形状的不同,将声波划分为:1)平面波——波阵面为平面,由面声源发出;2)柱面波——波阵面为同轴柱面,由线声源发出;3)球面波——波阵面为球面,由点声源发出。
一个声源是否可以被看成是点声源,取决于声源的尺度与所讨论声波波长的相对尺度。
当声源的尺度比它所辐射的声波波长小得多时,可看成是点声源。
所以往往一个尺度较大的声源在低频时可按点声源考虑,而在中高频则不可以。
(5)声绕射声波在传播过程中,遇到小孔或障板时,不再沿直线传播,而是在小孔处产生新的波形或绕到障板背后而改变原来的传播方向,在障板背后继续传播。
这种现象称为绕射,或衍射。
(6)声反射声波在传播过程中,当介质的特性阻抗发生变化时,会发生反射。
从几何声学角度,可更直观地解释为,声波在传播过程中遇到尺寸比声波波长大得多的障板时,声波将被反射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
手机声腔设计和音频电路检测一. 声音的基础知识1.声压:由声波引起的压强变化称为声压,用符号P表示,单位为微巴(ubar)或帕(Pa)1 ubar=0.1Pa=0.1N/m2一个标准大气压P0=1.03 x10-5Pa表达式:P=Po(ωt-kx+Ψ)通常所指的声压是指声压的均方根值,即有效声压。
2.频率:声源每秒振动的次数称为频率,单位为Hz.人耳可听得见的声波频率范围约为20Hz~ 20000Hz,即音频范围3.声速:在介质中传播速度称为声速。
固体最快,液体次之,空气中最慢。
在空气中传播340m/s,水中1450 m/s,钢铁中5000m/s4.波长:相邻同相位的两点之间的距离称为波长λCo= λf Co为空气中声速f为频率5.声压级:Lp=20lg(P/Po) (dB) Po为基准声压2x10-5 pa基准声压为为2x10-5 pa,称为听阀,即为0dB当声压为20Pa时,称为痛阀,即为120dB由此可见,声压相差百万倍时,用声压级表示时,就变成了0dB到120dB的变化范围。
由上式可以看出声压变化10倍,相当于声压级变化20dB;声压变化100倍,相当于声压级变化40dB 一般交谈为30 dB纺织车间为100 dB6.声压级与功率的关系:ΔP=10lg(w/wo) (dB)wo为参考功率功率增加一倍,声压级增加3 dB7.声压级与距离的关系:ΔP=-20lg(r1/ro) (dB) ro为参考距离距离增加一倍,声压级减小6 dB从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。
对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。
而高于8KHz略有提升,可使高频段的音色显得生动活泼些。
一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。
声音失真对听觉会产生一定的影响,其程度取决于失真的大小。
对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的;THD>3%时,人耳已可感知;THD>5%时,会有轻微的噪声感;THD>10%时,噪声已基本不可忍受。
对于手机而言,由于受到外形和SPEAKER尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。
二. 手机铃声的影响因素铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。
对手机而言,SPEAKER、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。
SPEAKER单体的品质对于铃声的各个方面影响都很大。
其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。
手机声腔则可以在一定程度上调整SPEAKER的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。
音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。
例如,当输出信号的失真度超过10%时,铃声就会出现比较明显的杂音。
此外,输出电压则必须与SPEAKER相匹配,否则,输出电压过大,导致SPEAKER在某一频段出现较大失真,同样会产生杂音。
MIDI选曲对铃声的音质也有一定的影响,表现在当铃声的主要频谱与声腔和SPEAKER的不相匹配时,会导致MIDI音乐出现较大的变音,影响听感。
总之,铃声音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。
三.SPEAKER选型1. 目的SPEAKER的品质特性对手机铃声优劣起着决定性作用。
在同一个声腔、同样的音源情况下,不同性能的SPEAKER在音质、音量上会有较大的差异。
因此选择一个合适的SPEAKER可较大程度的改善手机的音质。
为了便于设计工程师选择合适的SPEAKER,本章介绍了SPEAKER的评价原则、测试流程和根据实验结果提供的不同半径SPEAKER选型推荐。
2. SPEAKER的评价原则SPEAKER的性能一般可以从频响曲线、失真度和寿命三个方面进行评价。
频响曲线反映了SPEAKER在整个频域内的响应特性,是最重要的评价标准。
失真度曲线反映了在某一功率下,SPEAKER 在不同频率点输出信号的失真程度,它是次重要指标,一般情况下,当失真度小于10%时,都认为在可接受的范围内。
寿命反映了SPEAKER的有效工作时间。
由于频响曲线是图形,包含信息很多,为了便于比较,主要从四个方面进行评价:SPL值、低频谐振点f0、平坦度和f0处响度值。
SPL值一般是在1K~4KHz之间取多个频点的声压值进行平均,反映了在同等输入功率的情况下,SPEAKER输出声音强度的大小,它是频响曲线最重要的指标。
低频谐振点f0反映了SPEAKER的低频特性,是频响曲线次重要的指标。
平坦度反映了SPEAKER还原音乐的保真能力,作为参考指标。
f0处响度值反映了低音的性能,作为参考指标。
3. SPEAKER选型推荐根据2.2节的评价方法,对常用的SPEAKER进行评价。
由于供应商提供的SPEAKER参数是在不同条件下测量得到,很难进行对比,因此我们对本公司常用的30多种SPEAKER在同等条件进行实测,根据实验结果,判定SPEAKER的优劣(测试数据见附录一)。
4. SPEAKER测试流程本流程的目的是为了对SPEAKER性能进行评价,便于工程师选择合适的SPEAKER产品。
4.1实验内容1.EA Frequency Response(频响曲线测定)(频响:在一定条件下,器件或系统由激励所引起的运动或其他输出)2.EA Total Distortion(失真率测定)(失真为不希望的波形变化;引起原因有 1.输入和输出之间的非线性关系;2.不同频率的传输的不一致;3.相移与频率不成比例)3.听感评价(SPEAKER音质主观评价,作参考)4.2测试方法与步骤:测试地点:中期试验部静音室测试仪器:HEAD acoustics GmbH测试夹具:12cc标准密闭盒或0.8m×1m障板,我司现用0.8m×1m障板。
步骤:(1)实验仪器按要求联接设备;(先连接设备再开PC)(2)确定SPEAKER与MICROPHONE的距离为10mm±5%,并固定。
(一)频响曲线测定:点开文件夹选择EA Frequency Response, sweep 12th octave LS,在右栏设定中选择电平(level)使经过放大器输出分别为:0.1w(1KHz,负载8欧姆时用示波器测有效值电压为0.894V,P-P值为1.264V);0.2w(1KHz,负载8欧姆时用示波器测有效值电压为1.265V,P-P值为1.789V);0.3w(1KHz,负载8欧姆时用示波器测有效值电压为1.549V,P-P值为2.190V);0.4w(1KHz,负载8欧姆时用示波器测有效值电压为1.789V,P-P值为2.530V);0.5w(1KHz,负载8欧姆时用示波器测有效值电压为2.000V,P-P值为2.828V),频率范围为300~10000Hz。
单击右键选择开始测定,将测定结果创建报告并储存。
(二)失真率测定:点开文件夹选择EA Total Distortion LS,在右栏设定中调整电平(level)使放大器输出如(一)中所规定的为0.1w,0.3w,0.5w时电压为标准输入电压,然后以6th octave row b选择频率范围为500~10000Hz单击右键选择开始测定,将测定结果创建报告并储存。
(三)听感评价:听感评价是一种主观行为,现只作为辅佐性评价,在客观数据评定难以取舍时,组织相关工程师或音频工程师评价。
4.3实验数据记录和处理(以下数据和图面仅作参考)(1) 频响曲线测试结果 a. 频响曲线图b. 频响曲线点测数据(SPL )c. 根据失真测试度数据绘制失真度曲线测试日期:供应商名: SANYO 15%20%25%30%35%40%45%50%四. 手机声腔设计1.目的手机声腔对于铃声音质的优劣影响很大。
同一个音源、同一个SPEAKER在不同声腔中播放效果的音色可能相差较大,有些比较悦耳,有些则比较单调。
合理的声腔设计可以使铃声更加悦耳。
为了提高声腔设计水平,详细说明了声腔各个参数对声音的影响程度以及它们的设计推荐值,同时还介绍了声腔测试流程。
手机的声腔设计主要包括前声腔、后声腔、出声孔、密闭性、防尘网五个方面,如下图:出声孔防尘网后声腔图1 声腔结构示意图2.后声腔对铃声的影响及推荐值后声腔主要影响铃声的低频部分,对高频部分影响则较小。
铃声的低频部分对音质影响很大,低频波峰越靠左,低音就越突出,主观上会觉得铃声比较悦耳。
一般情况下,随着后声腔容积不断增大,其频响曲线的低频波峰会不断向左移动,使低频特性能够得到改善。
但是两者之间关系是非线性的,当后声腔容积大于一定阈值时,它对低频的改善程度会急剧下降,如图2示。
图2 后声腔容积对低频性能影响图2横坐标是后声腔的容积(cm3),纵坐标是SPEAKER单体的低频谐振点与从声腔中发出声音的低频谐振点之差,单位Hz。
从上图可知,当后声腔容积小于一定的阈值时,其变化对低频性能影响很大。
需要强调的是,SPEAKER单体品质对铃声低频性能的影响很大。
在一般情况下,装配在声腔中的SPEAKER,即便能在理想状况下改善声腔的设计,其低频性能也只能接近,而无法超过单体的低频性能。
一般情况下,后声腔的形状变化对频响曲线影响不大。
但是如果后声腔中某一部分又扁、又细、又长,那么该部分可能会在某个频率段产生驻波,使音质急剧变差,因此,在声腔设计中,必须避免出现这种情况。
对于不同直径的SPEAKER,声腔设计要求不太一样,同一直径则差异不太大。
具体推荐值如下:φ13mm SPEAKER:它的低频谐振点f0一般在800Hz~1200Hz之间。
当后声腔为0.5cm3时,其低频谐振点f0大约衰减600Hz~650Hz。
当后声腔为0.8cm3时,f0大约衰减400Hz~450Hz。
当后声腔为1cm3时,f0大约衰减300Hz~350Hz。
当后声腔为1.5cm3时,f0大约衰减250Hz~300Hz。
当后声腔为3.5cm3时,f0大约衰减100Hz~150Hz。
因此对于φ13mm SPEAKER,当它低频性能较好(如f0在800Hz左右)时,后声腔要求可适当放宽,但有效容积也应大于0.8cm3。