铝电解电容器的结构与特点

合集下载

圆柱铝电容

圆柱铝电容

圆柱形铝电解电容器是常见的电子元件之一,其结构和特点如下:
1. 结构:
- 圆柱形铝电解电容器的基本构造包括:
- 正极:通常由一卷弯曲的铝箔制成,经过阳极氧化处理后在其表面形成一层致密的三氧化二铝(Al2O3)介质层。

- 负极:电解液,一般是酸性或碱性溶液,它在电容器内部填充并与正极氧化膜相对,形成双电层结构。

- 绝缘材料:在正负极之间有多层电解纸作为隔离介质,起到绝缘和吸附电解液的作用。

- 外壳:电容器被封装在铝壳或其它绝缘材料制成的外壳内,保证内部结构稳定并提供良好的电气绝缘。

- 引脚:电容器有两个引脚,分别为正极和负极,外部通常标有正负极标识,使用时需按照极性正确接入电路。

2. 特点:
- 容量大:相对于其他类型的电容器,铝电解电容
器的单位体积容量较高,尤其适合储存大量的电荷。

- 漏电流大:与薄膜电容器相比,铝电解电容器存在较大的漏电流,即在没有施加电压的情况下也会有一定的自放电现象。

- 稳定性较差:受温度、电压及使用时间的影响,铝电解电容器的电容量和阻抗可能会发生一定的变化。

- 极性明确:只能按照正负极性使用,如果极性接反,可能导致电容器损坏或爆炸。

- 适用场合:主要用于电源滤波、低频信号处理等方面,不适合高频应用,但在一些特定的电力电子设备和电源变换装置中不可或缺。

3. 类型和应用:
- 按照工作电压的不同,圆柱形铝电解电容器有低压、中压和高压等多个类别,对应不同的额定电压和工作环境。

- 在家电、工业设备、汽车电子、电源模块、音响设备等众多领域都有广泛应用。

铝电解电容的特点

铝电解电容的特点

铝电解电容的特点铝电解电容是一种电容器,具有以下特点:1. 高电容密度:铝电解电容器具有很高的电容密度,可以在相对较小的体积内存储大量的电荷。

这意味着在相同尺寸的电容器中,铝电解电容器能够提供更大的电容量。

2. 低内阻:铝电解电容器的内阻相对较低,可以提供较大的电流输出能力。

这使得它们在需要高电流脉冲的电路中非常有用,比如电源滤波电路和功放电路。

3. 高工作电压:铝电解电容器可以承受较高的工作电压,通常可达数百伏特甚至更高。

这使得它们适用于需要工作在高电压环境下的电路,如电力电子设备和电源电路。

4. 电容稳定性:铝电解电容器具有较好的电容稳定性,其电容值在规定的工作电压和温度范围内变化较小。

这使得它们在需要稳定性能的电路中得到广泛应用,如时钟电路和振荡电路。

5. 长寿命:铝电解电容器具有较长的使用寿命,通常可达几千小时以上。

这是因为铝电解电容器采用了特殊的电解液和铝箔作为电极材料,能够有效地防止电解液的挥发和腐蚀。

这使得它们在需要长寿命的应用中非常可靠,如汽车电子和工业控制设备。

6. 价格相对较低:与其他类型的电容器相比,铝电解电容器的价格相对较低,具有较高的性价比。

这使得它们在大批量生产和经济性要求较高的应用中得到广泛应用,如消费电子和通信设备。

7. 体积较大:由于铝电解电容器的结构特点,其体积相对较大。

这意味着在有限的空间内使用铝电解电容器时需要考虑体积的限制。

在一些小型电子设备中,可能需要采用其他类型的电容器来满足体积要求。

铝电解电容器具有高电容密度、低内阻、高工作电压、电容稳定性好、长寿命、价格相对较低等特点。

这些特点使得铝电解电容器在各种电路中得到广泛应用,如电源滤波电路、功放电路、时钟电路、振荡电路、汽车电子和工业控制设备等。

然而,由于其体积相对较大,需要注意在有限空间内使用时的体积限制。

铝电解电容的纹波电流

铝电解电容的纹波电流

铝电解电容的纹波电流铝电解电容是一种常见的电容器,其特点之一就是能够在电路中提供稳定的电容值。

然而,在实际使用过程中,我们经常会遇到一个问题,那就是纹波电流。

纹波电流是指电容器通过的交流电流在周期性变化时所产生的波动现象。

本文将围绕铝电解电容的纹波电流展开讨论,探究其产生原因及影响因素,并提出相应的解决办法。

我们需要了解铝电解电容的基本结构和工作原理。

铝电解电容的结构由两个铝箔作为极板,中间隔以电解质(通常是硫酸铝)组成。

当电压施加到电容器上时,电解质中的离子会在极板之间移动,形成电荷分布,从而储存能量。

然而,由于电解质的存在,电容器的电流响应速度受到一定的限制,因此在交流电路中,纹波电流就会出现。

纹波电流的产生有多个原因。

首先,电解质的导电性有限,导致电容器对交流信号的响应速度变慢,从而产生纹波电流。

其次,电解质中离子的迁移速度也会受到温度的影响,温度升高会导致离子迁移速度变快,进而增加纹波电流的幅度。

此外,电容器的内部电阻也会对纹波电流产生影响,电阻越大,纹波电流的幅度就越大。

纹波电流的大小可以通过纹波系数来衡量,纹波系数定义为纹波电流的有效值与直流电流的平均值之比。

一般来说,纹波系数越小,说明电容器对交流信号的滤波效果越好。

纹波系数的计算公式如下:纹波系数 = (纹波电流的有效值) / (直流电流的平均值)为了减小纹波电流的幅度,我们可以采取一些措施。

首先,选择合适的电容器型号和规格非常重要。

一般来说,电容器的电压容量越大,纹波电流的幅度越小。

此外,采用具有低ESR(等效串联电阻)特性的电容器也能有效减小纹波电流。

其次,合理设计电路布局,减少电流回路的长度和面积,降低电阻和电感的影响,从而减小纹波电流。

此外,通过使用滤波电路,如电感、电阻和电容的组合,可以有效地降低纹波电流的幅度。

总的来说,铝电解电容的纹波电流是由电容器内部电解质的限制和电路布局等因素共同影响的结果。

在实际应用中,我们需要根据具体情况选择合适的电容器型号和规格,并通过合理的电路设计和滤波电路的应用来减小纹波电流的幅度。

卡入式铝电解电容

卡入式铝电解电容

卡入式铝电解电容
卡入式铝电解电容是一种常见的电子元件,广泛应用于各种电路中。

它具有较大的电容值和较低的内阻,能够稳定地存储和释放电荷。

下面我将从不同角度来描述卡入式铝电解电容。

让我们从卡入式铝电解电容的结构入手。

它通常由铝箔、电解液和卡入剂组成。

铝箔作为正极,经过特殊的处理,能够形成大面积的表面积,从而增加电容值。

电解液则是充当电容器的介质,能够提供离子导电路径。

卡入剂则是将铝箔和电解液紧密结合在一起,以提高电容器的稳定性和可靠性。

我们来探讨卡入式铝电解电容的工作原理。

当电压施加在电容器的两个极板上时,电解液中的离子会在极板之间移动,形成电荷分布。

正极板上的正电荷和负极板上的负电荷之间形成电场,从而储存电能。

当外部电路需要电能时,电容器会释放储存的电荷,供给外部设备使用。

这种储存和释放电荷的能力使得卡入式铝电解电容成为电子设备中不可或缺的元件。

卡入式铝电解电容还有很多其他的特点和应用。

首先,它具有较小的体积和重量,适合在高密度电子设备中使用。

其次,它的电容值范围广泛,能够满足不同电路的需求。

同时,卡入式铝电解电容还具有较低的成本和良好的可靠性,使得它成为电子产品中最常见的电容器之一。

总的来说,卡入式铝电解电容在电子领域中扮演着重要的角色。

它的结构和工作原理使其具有储存和释放电荷的能力,适用于各种电路。

同时,它还具有较小的体积、较低的成本和良好的可靠性。

无论是在消费电子产品还是工业设备中,卡入式铝电解电容都发挥着不可替代的作用。

它的广泛应用也体现了电子技术的快速发展和进步。

铝电解基本知识

铝电解基本知识

L X LO A
TO TX 10
其中: L0:最高使用温度的有效寿命(hrs) LX:使用温度时的推算寿命(hrs) T0:产品的最高使用温度(℃) TX: 使用温度(℃) A : 寿命延长率或称温度加速系数 这里,如果在最高使用温度以下,可以用温度加速系数 A≈2 ,用来计算,每 10℃温升就 有 2 倍的寿命延长率或称加速率,因此使用温度越低就越可以期待长的使用寿命。 例如:某铝电解电容器,其标称寿命为 105℃ 1000 小时,但实际使用环境温度不超 过 45℃,按上式可以推断出这只铝电解电容器实际寿命为:
Z r jL
一般讲 L 很小,所以 jωL 11 变化,当 C 值一定时
1 jC
1 将随着 C 值越大小而值在 j C 1 jC 值也成定值。所以决定 Z 值大小,关键是 r 值。式中的损
可以忽略不计,
耗电阻 r 是由三部分组成的:①氧化膜介质损耗的等效串联电阻 r 介;②代表工作电解 液的等效串联电阻 r 液;③代表金属电极、引出线、以及接触电阻等组成的 r 金即: r= r介 + r液 + r金 r 被称为等效串联电阻,英文缩写为 ESR(equivalent series resistance)故
)下的电压为目的用途,为调谐、振荡用。
特定频率 f (
⒌移相、调相用: 为了使单相马达旋转,为改善其转矩特性,必须使用移相电容器。另外,为了缩 小频率 f 的迟相电流,必须并联固定电容器为其调相。 ⒍降压用: 有必要在不引起发热损耗的情况下,降低电压或分割电压时必须用电容器。 ⒎积分用: 若计算机求微积分方程的解时,也必须使用构成积分常数的电容器。 ⒏记忆用: 若了解脉动电荷的积累时,必须使用漏电流极小的记忆电容器。 ⒐特效网络用: 和电阻或电感串、并联连接,而使用发生特有效果的网络中的电容器。

10uf铝电解电容

10uf铝电解电容

10uf铝电解电容1. 引言电解电容是一种常见的电子元件,用于储存和释放电荷。

其中,10uf铝电解电容是一种容量为10微法(uf)的铝制电解电容器。

本文将对10uf铝电解电容进行详细介绍,包括其原理、结构、特性以及应用领域。

2. 原理10uf铝电解电容的原理基于铝箔与氧化铝薄膜之间的二极管效应。

当正向偏置时,氧化铝薄膜上形成一个氧化层,阻碍进一步的阳极溶解,从而形成一个稳定的极板。

这样就实现了对正向信号的储存和释放。

3. 结构10uf铝电解电容通常由两个金属箔(阳极和阴极)之间夹着一层细孔饱和的纸浸泡在硫酸盐溶液中制成。

阳极箔表面经过阳极氧化处理后生成了氧化铝薄膜,并且在表面上有导线引出。

阴极箔则通过与阳极连接引出。

4. 特性•容量值: 10uf铝电解电容的容量值为10微法(uf),表示其能够储存和释放的电荷量。

•工作电压: 10uf铝电解电容的工作电压通常在几伏至几百伏之间,具体取决于制造商和型号。

•频率特性: 10uf铝电解电容在不同频率下的阻抗会有所变化,一般在低频下具有较低的阻抗,而在高频下则较高。

5. 应用领域由于其良好的特性和适中的容量值,10uf铝电解电容在各种电子设备中得到广泛应用。

以下是一些常见的应用领域:5.1 电源滤波10uf铝电解电容可用于平滑直流信号,以去除交流噪声和纹波。

它可以作为整流器后级或稳压器输入端的滤波元件。

5.2 耦合和绕组10uf铝电解电容可用作耦合元件,将一个信号传输到另一个部分。

它还可用于扼流圈绕组,以防止高频噪声干扰。

5.3 延迟和滞后10uf铝电解电容可用于延迟或滞后信号。

在某些应用中,它可以产生相位差,用于控制电路的时间常数。

5.4 电源启动10uf铝电解电容可用于帮助启动某些设备,例如电机或放大器。

它可以提供额外的能量来支持设备的启动过程。

6. 总结本文对10uf铝电解电容进行了全面详细的介绍。

从其原理、结构、特性到应用领域都进行了深入的探讨。

铝电解电容使用频率

铝电解电容使用频率

铝电解电容使用频率
铝电解电容是一种常见的电容器,它具有体积小、容量大、价格便宜
等优点,因此被广泛应用于电子产品中。

但是,铝电解电容也有一些
缺点,其中之一就是使用频率的限制。

铝电解电容的使用频率受到其内部结构的影响。

铝电解电容的结构由
两个极板和一个介质组成。

介质通常是氧化铝膜,它的厚度决定了电
容器的容量大小。

在使用过程中,电容器会产生热量,这会导致氧化
铝膜的厚度发生变化,从而影响电容器的容量和使用频率。

具体来说,当电容器的使用频率较低时,氧化铝膜的厚度会逐渐增加,电容器的容量也会随之增加。

但是,当电容器的使用频率较高时,氧
化铝膜的厚度会逐渐减少,电容器的容量也会随之减少。

当电容器的
使用频率超过一定范围时,氧化铝膜的厚度会变得非常薄,这会导致
电容器的容量急剧下降,甚至失效。

因此,铝电解电容的使用频率通常被限制在几百赫兹到几千赫兹之间。

如果需要使用更高频率的电容器,可以选择其他类型的电容器,例如
钽电解电容、陶瓷电容等。

总之,铝电解电容是一种常见的电容器,具有体积小、容量大、价格
便宜等优点。

但是,它的使用频率受到其内部结构的影响,通常被限制在几百赫兹到几千赫兹之间。

如果需要使用更高频率的电容器,可以选择其他类型的电容器。

铝电解电容器简介

铝电解电容器简介

铝电解电容器(ALUMINUM ELECTROLYTIC CAPACITOR)之定议:以高纯度之铝金属为阳极, 于其表面使用阳极氧化所形成的氧化薄膜(oxide film) 作为电介质(dielectric medium), 使液体之电解质密接于氧化薄膜, 另与阴极铝箔所构成之有极性电容器. 但也可将两个阳极组合起来, 而构成无极性电解电容器或交流用之电解电容器.铝电解电容器之优点与用途因铝电解电容器具备了体积小, 容量大且价格低廉等优点,故被广泛的使用于电子机器的旁路(by-pass), 耦合回路(coupling), 喇叭系统的纲路(net-work), 闪光灯, 马达起动, 连续交流等回路. 尤其近来主要材料的质量提升, 制造技朮的进步及完美的质量管理. 铝电解电容器更广泛的使用于民生电器用品及各种产业用电器. 以目前铝电解电容器使用最多的产品分别为主机板, 监视器, 电源供应器, CD, VCD, DVD音响, 电视机, 无线通讯, 录像机, 电话机, 数据机等产业.铝电解电容器之前途及发展趋势由于铝箔电蚀与化成技朮的突飞猛进, 加以铝电解电容器具有体积小, 容量大及价格低的优点, 近十年来铝电解电容器的需求量成长快速惊人, 往后的成长也必定不差.铝电解电容器的未来发展将走向小型化大容量, 长使用寿命及高苹低阻抗耐高纹波(ripple current)化.铝电解电容器的基本构造铝电解电容器的基本构造如下图:铝电解电容器所构成的组件如下:电容器素子(capacitor element)将已铆钉导线端子的阳极铝箔(正箔)与阴极铝箔(负箔) 中间夹入两张宽度比铝箔稍宽之隔离纸, 且卷绕在一起, 并于末端以浆糊或粘着胶带粘住之制品. 最初先在滚动条上卷绕数层隔离纸, 然后再分别夹入正箔与负箔并一起卷绕至需要长度为止. 素子的最外层是隔离纸,再而是负箔, 隔离纸,正箔.素子的构成组件1.阳极铝箔(Anode Foil)又称正箔, 铝纯度在99.9%以上, 厚度大约为40~105um, 皆需于电蚀后以化成处理使表面生成一层氧化膜.2.阴极铝箔(Cathode Foil)又称负箔, 铝纯度在99.4%以上, 厚度大约为15~60um 除特殊用途外一般都不施行化成处理, 但却施行安定化处理, 以表面也有一层薄膜存在.3.电解纸或称隔离纸(Separator Paper)介于电解电容器阳极与阴极之间, 保持电解液充分之量, 防止两极发生短路等为其目的所用之纸张.就电解电容器构成原理而言, 只要有阳极,阴极及其中间之电解液即可. 但是在实际生产制造场合务需使阳极与阴极尽量靠近配置才行, 其主要理由仍为两电极间的距离如果太远, 则其间的电阻将使电容器成品之损失显著增大, 同时两极间如果仅注满电解液, 则外壳就必须为完全水密性, 而完全的水密性是极端困难的构造. 所以就有开发了在两极夹入含浸过电解液之多孔质电解纸的电容器2此种方法, 不仅能使两极在不发生短路情况下尽量接近, 而且电解纸可以充分吸收稍有粘度的电解液, 电容器外壳的水密性就不必过分严苛电解纸之制造用材料主要为植物纤维, 植物纤维中以牛皮纸(Kraft )和马尼拉麻(Manika Hemp)之使用量最大. 牛皮纸非常强韧而便宜, 然因其纤维比较扁平, 以致电解液含浸后之电流通路较长, 电阻大仍为其缺点. 马尼拉麻之纤维形状比牛皮纸稍接近园形, 以致电流通路较短, 电阻较小, 但价格较高, 另外牛皮纸与马尼拉麻之混抄之电解纸也广泛被采用. 一般电解电容器均依其规格规定中之电容量, 电压与电阻之要求来选用上述电解纸.4.导线端子或称导针(Lead Wire)橡胶封口构造之电解电容器均使用导线端子为做外部端子-----将铝线与CP 线以高周波焊接后再将铝线的一端压扁后完成.(1)CP线结构系钢心, 铜皮镀锡后完成.(2)铝线系采用高纯度的铝线制作, 纯度越高的铝线所制成的导线端子, 由于其延展性佳, 与铝箔嵌钉后其开出来的花瓣完整, 阻抗效果佳.铝线的纯度分类如下:G1:纯度90%以上G2:纯度99%以上G3:纯度99.9%以上G4:纯度99.99%以上一般导线端子所使用的铝线应是G3级●电解液(Electrolyte)电解电容器系由阳极, 阴极及介于两者中间的电解液所构成. 电解液从基本动作原理而言, 系指由溶剂与溶于该溶剂之后能供给离子之电解质所构成.基本上电解液由如下数项特性之成分所组成.1.化成性优良之弱酸;2.能够与酸中和至适当PH值(一般PH值于6-7之间微酸性), 且能降低电阻系数之碱;3.能够溶解酸与碱获致适当粘度, 以提高其安定度,并改善其温度效果之溶剂;4.能够与上述溶剂互溶, 使电解质产生大量离子之少量水分;5.某种特性改善用添加物.以上第3. 4两项称为溶剂, 目前最广泛被使用的溶剂是乙二醇(Ethylene Glycol 简称EG).使用乙二醇为溶剂之电解液称为乙二醇(或EG)系列电解液. 以上其余1.2.5项称为溶质.一般电解液的规范中均有述明酸碱值(PH Value), 火花电压(SparkTehsion),导电度(Conductivity)之电化等特性及适用工作电压范围与适用使用温度等数据供选择使用.●封口橡胶(Rubber Bung)使用封口橡胶之目的:1.保持端子相互间及端子与外壳间之绝缘;2.可藉机械方式将端子确实压紧;3.电容器素子与外界隔离及防止电解液漏出与蒸发.为了能够达到上述要求以配合电容器之极限使用温度起见, 封口橡胶必须具备之性质如下:(1)不受电解液腐蚀, 且不会与电解液作用或析出氯化物等杂质.(2)长时间使用于电容器之极限使用最高温度与最低温度状态下都不变质;(3)电气绝缘性及气密性良好;(4)具有适当弹性与硬度. 封口后在相当压力下电解液不会漏出, 蒸汽也不会逸出, 且与外壳能够密切结合不会发生松动.同时, 除了需能完全满足上述要求之外, 尚需价格适当而低廉才行.●铝壳(Aluminum Sase)普通电解电容用外壳皆以AL99%纯度之铝板冲压而成, 主要特点是价格柢,加工性良好, 不受电解液腐蚀, 不污染电解液, 能承受颇高的内压力且厚度重量皆小以及热传导性良好, 便于散热. 为安全起见, 电容器直径在8Ø(含8Ø) 以上者, 其铝壳一律加设铝壳防爆孔.●外壳套管(Sleeve)基于规格识别及外壳绝缘的理由, 一般用途之电容器几乎都包有胶膜套管, 普通电容器用氯乙稀胶膜套管(Polyving chloride Tube , PVC Tube)都能随温度之升降而收缩.PVC材料之套管耐热性较差, 很容易劣化, 所以不可视为完全绝缘体, 因而如果厂商有特别强调绝缘特性时, 应与厂商协调使用更可靠的材料.铝质电解电容器之生产制造流程:铝质电解电容器系利用铝箔, 经与导针钉接后再与电解纸卷绕成为素子,再经过电解液的含浸后与封口橡胶, 铝壳组立并外加胶管后完成电容器的本体, 再经老化充电选别后完成成品.制造流程图如下:51. 电极铝箔及电解纸之裁切电极铝箔及电解纸通常首先依设计决定之尺寸整卷裁切成需要宽度并重新卷绕在一起以备钉卷后工程之用. 电极铝箔整箱的宽度是500mm, 但由于两边箔边无法使用, 故各切除10mm, 故实际可用宽度是480mm再依照所需宽度安排裁切刀后进行裁切.使用设备: 分切机(Slitter)2. 电极铝箔与导线端子之钉接裁切完成之电极铝箔通常都先以设计决定之电极长度分别在正负极铝箔钉接机上依次加以钉接导线端子后重新卷绕在一起, 再将钉接的导线端子之卷筒铝箔放入卷绕机中制造素子.电极铝箔与导线端子的钉接在电容器的制造上是一项非常重要的工序, 其钉接连接部分简单构成原理如下:[铝片与铝片之电气上确实连接务需在两金属片之接触而相互之间形成金相结合]电极铝箔与导线端子之铝扁部(一般称为导线端子之A部) 之连接一般皆施以嵌钉法. 系将拟连接之两金属片重搭之后, 以浮花钢冲穿孔, 再将生成之孔边毛头弯曲挤压成花瓣的方式形成确实的连接部. 此种方式只冲的形状适当就可形成小型的冷焊部达到上述金相结合的目的.此种连接部分部形成的优良与否可以量测电极铝箔与导线端子的接触电阻的大小来判定.一般电极铝箔与导线端子的嵌钉处有2~5处, 通常视铝箔的宽度来决定.使用设备: 正负极铝箔钉接机(Stitching Machine)3. 素子之卷绕将已铆钉导线端子的阳极铝箔(正箔)与阴极铝箔(负箔)中间夹入两张宽度比铝箔稍宽之电解纸且卷绕在一起, 并于末端以浆糊或粘着胶带粘住. 最初先在滚动条上卷绕数层电解纸然后再分别夹入正箔与负箔并一起卷绕至需要长度为止. 素子的最外层是电解纸, 再而是负箔,电解纸, 正箔.素子的卷绕首先需注意正箔与负箔必需正确对准, 整齐卷绕. 如果正负极铝箔卷绕不齐则两极铝箔的合成容量会降低, 损失会增大. 再者电解纸必需完全将正, 负极铝箔隔离以避免短路.使用设备: 素子卷绕机(Winding Machine)4.素子含浸为了避免造成电解纸中之水分增加而导致不良结果, 在素子含浸前需将素子以高温烘干.含浸是将烘干后的素子浸渍于电解液中, 利用真空及加空气压力使电解液有完全浸湿渗透到素6子内部, 让电解纸吸收使电解液能均匀附着于铝箔表面, 因而含浸须达到下列两项条件:(1)电解液将铝箔之细小孔穴及电解纸完全浸入并浸湿. 如果含浸不完全,则制成之电容器会因此而使容量降低, 损失增大,且会因为含浸不良以致使用中容易造成特性变化.(2)素子含有电解液量不可过多, 因电解液量愈多, 漏液之可能性愈大,故一般素子含浸后须经脱水过程, 以防素子含有之电解液量过多的现象.目前最常使用的含浸方法有下列两种:(1)真空含浸法: 系将素子放入含浸的容器内然后抽真空再注入电解液将素子盖满, 然后恢后容器内之大气压力, 则因大气压力的关系, 可使电解液由上下迅速浸入素子内., 以达到含浸的效果. 然因电解液之蒸汽压过高, 使蒸汽进入素子内, 导致中央部份无法含浸到电解液的情形, 此为真空含浸的缺点. 故针对大型电容器和中高压电容器均以下列之真空加压含浸予以克服.(2)真空加压含浸法: 系于大气压强制含浸后. (即真空含浸的过程)将容器密闭再以空气压缩提高容器内的压力, 当容器内之压力达到数大气压后, 素子将会继续显示出强制含浸的效果, 而使得中央因蒸汽之进入而未含浸部分缩小或消除, 以达到完全含浸的目的,因而真空加压含浸法较适合大型电容器及中高压电容器的含浸作业方式.使用设备:素子干燥机真空含浸机真空加压含浸机5.组立,封口组立是将已含浸完成的素子, 从导线端子引线部套入封口橡胶再放入铝壳的作业过程. 如下图:素子经含浸后到组立完成之间时距愈短愈好, 因为已含浸的素子, 如暴露在空气中时间太长时, 会吸收空气中的水分, 因而对电容器在使用上的特性会有不良的影响. 且在组立的作业7过程中, 应注意防止素子受外界的污染, 如灰尘, 手汗等, 尤其手汗带有氯元素, 对铝箔有腐蚀作用, 有加速电容器漏电流增加的倾向, 故在作业过程中应戴胶套以防止之.所谓封口系将已组立完成品铝壳开口部加以密封. 封口的目的是要将铝壳内部与外部完全隔绝.如果封口的紧密性不好时, 则铝壳内部的已含浸素子, 会受外界性况的影响, 尤其作高温负荷特性试验时, 因外界温度高, 因而内部已含浸素子之电解液很容易挥发掉, 则造成电容器的电容量减少, 损失变大等不良影响.另外在封口作业过程中, 如因作业疏忽或错误而造成封口紧密性不良时, 已封口完成之内部已含浸素子之电解液会往外流, 而造成漏液现象, 亦是影响电容器质量的严重缺点.使用设备:自动组立机6.清洗组立封口后的电容器应经清洗过程, 其目的是将电容器本体在组立作业时所沾染的油渍及端子引线因在含浸和组立作业时所沾染的电解液清洗干净, 尤其是端子引线镀锡部份易受电解液之侵蚀而脱落, 因而造成焊锡性不良的现象.清洗后的电容器经高温脱水干燥后完成.使用设备: 清洗机高温脱水干燥机7.套胶管套装是将已封口完成的电容器套入胶管再予加热使胶管收缩之作业过程.套装时对于印刷胶管之取用, 应依生产卡上之标明指示取用, 严防错误, 因电容器的商标(Brand), 系列(Series), 规格, 极性等全部印刷在胶管上, 故作业时严防逆指示(即极性相反)的错误与收缩不良, 偏差等现象发生.使用设备;自动套胶管机8.老化选别电容器制造时, 需先将铝箔裁切成适当的尺寸, 阳箔经裁切后, 其氧化膜因而破损, 造成极大之泄漏电流, 此时之电解液亦可当作化成液, 经加高温电压液, 可将破损的氧化膜弥补起来, 此作用即吾人所称之老化(Aging) 又称二次化成.其所加之电压称老化电压(Aging Voltage)(1)泄漏电流检测泄漏电流检测是为测出所老化完成之电容器经施加直流额定电压时,所通过的直流电8流值. 其值是愈小愈好. 在检查前应先依照额定电压作预备充电三分钟再进行测试.泄漏电流的规格值因电容器之系列, 电容量与额定电压的不同, 其允许的最高泄漏电流亦不同,一般以下列公式规定之:I< = 0.01CV or 3UA 取大值I: 泄漏电流(单位:UA)C: 额定电容量(单位:UF)V: 额定工作电压(单位:VOIT)(2)电容量与散逸因素检查电容量检查的目的是在测定其值是否在容量差范围内. 如超出范围即为不合格品, 散逸因素检查则是在测定其值是否在规格值以下,如超出此规格值即为不合格品.使用设备:自动老化选别机9.后加工依据客户的需要将制作完成这合格品进行切脚, 成型或编带.使用设备:自动切脚机自动编带机影响铝质电解电容器寿命的探讨一. 铝质电解电容器之寿命绝大部份取决于环境和电气因素, 所谓环境因素包括温度,湿度, 大气压力和掁动电气. 因素包括操作电压, 纹波电流和充放电.温度因素(环境温度和因纹波电流所产生的内温) 系影响铝质电解电容器寿命的最主要因素.二. 基于以上的解释,铝质电解电容器., 一般只依据下列公式由环境温度,施加电压与纹波电流来计算其使用寿命.Lx = Lo K Temp K voltage K Ripple在此Lx:电容器的预估使用寿命Lo: 电容器的基本寿命9K Temp:周围温度加速条件K voltage:电压加速条件K Ripple:纹波电流加速条件K TemP (周围温度对寿命的影响)铝质电解电容器实质上是一种电气化学组件, 温度的上升使电容器内部的化学反应产生气体, 持续地促使电容量渐渐降低和DF, ESR渐渐升高.下面的公式已经被广泛的使用来解释温度加速系数与电容器劣化的关系.Lx = Lo K Temp=Lo B(To-Tx) /10K Temp = B (To-Tx) /10在此Lx: 电容器的预估使用寿命(小时)Lo: 电容器的基本寿命(小时)To: 在型录上所示电容器的最高额定工作温度Tx: 电容器周围的实际环境温度B: 温度加速系数(约等于2)此公式和说明温度与化学反应率的阿瑞尼阿斯公式很类似, 所以此公式就被广泛使用在说明与计算铝电解电容器之温度与使用寿命的关系. 我们被称为铝电解电容器的阿瑞尼阿斯法则.从环境温度(Tx)在40℃至电容器的最高额定使用温度之温度加速系数大约是2. 它表示环境温度每上升10℃, 则电容器的寿命就以近似减半的法则缩短. 而环境温度(Tx)由20℃至40℃对电容器的使用寿命影响很小, 故如果环境温度低于40℃时, 一般仍以40℃当作Tx来计算电容器的使用寿命.K voltage (施加电压对寿命的影响)由于铝电解电容器均在额定工作电压内使用,故如果符合此种情况时10K voltage=1被视为合理的认定.K Ripple (纹波电流对寿命的影响)由于铝电解电容器的散逸因素(DF)比其它类型电容器来得高, 因此纹波电流会造成铝电解电容高的内部温度, 所以在使用铝电解电容器时有必要去确认型录上所示最高容许纹波电流(Maximum Permissible Ripple Current)以确保其使用寿命.K Ripple = 2 (⊿To-⊿T)/5在此⊿To: 由于施加最高容许纹波电流所产生的内部热能导致的电容器内部温升, 以日本NIPPON CHEMI-CON之低阻抗产品之标准⊿To=5.⊿T: 由于施加实际工作纹波电流所产生的内部热能导致的电容器内部温升.由于要实际测得电容器内部的温度较为困难, 故可于由下列两种方式计算大约的⊿T.(1)⊿T=Kc (Ts-Tx)在此Kc:下列之系数;Ts: 电容器铝壳的表面温度;Tx: 环境温度(2)⊿T=⊿To (Ix / Io)2在此⊿To= 5 (对最高使用温度105℃之产品)Ix = 实际施加之纹波电流Io = 额定最高容许纹波电流.11铝电解电器简介一.前言.1.铝电解电容器之定议.2.铝电解电容器之优点与用途.3.铝电解电容器之前途及发展趋势.二.铝电解电容器之基本构造.三.铝电解电容器之生产制造流程.四.影响铝电解电容器寿命的探讨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铝电解电容器的结构与特点
铝电解电容器是有极性的电容器,它的正极板用铝箔,将其浸在电解液中进行阳极氧化处理,铝箔表面上便生成一层三氧化二铝薄膜,其厚度一般为0.02~0.03μm。

这层氧化膜便是正、负极板间的绝缘介质。

电容器的负极是由电解质构成的,电解液一般由硼酸、氨水、乙二醇等组成。

为了便于电容器的制造,通常是把电解质溶液浸渍在特殊的纸上,再用一条原态铝箔与浸过电解质溶液的纸贴合在一起,这样可以比较方便地在原态铝箔带上引出负极,如图一a所示。

将上述的正、负极按其中心轴卷绕,便构成了铝电解电容器的芯子,然后将芯子放大铝外壳封装,便构成了铝电解电容器。

为了保持电解质溶液不泄漏、不干涸,在铝外壳的口部用橡胶塞进行密封,如图一b 所示。

图一铝电解电容器的构造
为了获得较大的电容量且体积又要小,在正极铝箔的一面用化学腐蚀方法形成凸凹不平的表面,使电极的表面积增大,从而使电容量增加。

铝电解电容器之所以有极性,是因为正极板上的氧化铝膜具有单向导电性,只有在电容器的正极接电源的正极,负极接电源的负极时,氧化铝膜才能起到绝缘介质的作用。

如果将铝电解电容器的极性接反,氧化铝膜就变成了导体,电解电容器不但不能发挥作用,还会因有较大的电流通过,造成过热而损坏电容器。

为了防止铝电解电容器在使用时发生意外爆炸事故,一般在铝外壳的端面压制有沟槽式的机械薄弱环节,一旦电解电容器内部压力过高,薄弱环节的沟槽便会开裂,进行泄压防爆。

铝电解电容器虽然有极性,但如果在结构和工艺上采用新方法,也可以制成无极性的电解电容器。

铝电解电容器具有以下特点:
①单位体积电容量特别大,单位容量价格最低。

②铝电解电容器是有极性的。

③介电常数较大,一般为7~10。

④容量误差大,损耗大,漏电流大,且容量和损耗会随温度的变化而变化。

⑤工作温度范围狭窄,只适合在-20℃~+50℃温度范围内工作。

⑥工作电压较低,一般为6.3-400V。

⑦价格不贵。

铝电解电容器适合在直流或脉动电路中作整流、滤波和音频旁路使用。

相关文档
最新文档