风光互补发电简介

合集下载

风光互补并网发电系统

风光互补并网发电系统

风光互补并网发电系统一.目的和意义太阳能和风能是最普遍的自然资源,也是取之不尽的可再生能源。

太阳能与风能在时间上和季节上都有很强的互补性:白天太阳光照好、风小,晚上无光照、风较强;夏季太阳光照强度大而风小,冬季太阳光照强度弱而风大。

这种互补性使风/光并网发电系统在资源上具有最佳的匹配性,可实现连续、稳定发电。

另外,风力发电和光伏发电系统在蓄电池和逆变器环节上是可通用的。

风/光互补发电系统可根据用户用电负荷和自然资源条件进行最佳的合理配置,既可保证系统的可靠性,又能降低发电成本,满足用户用电需求,是最合理,最可靠,最安全,最经济,最环保的供电系统。

二.系统简介风光互补发电系统由太阳能电池板、风力发电机组、控制器、蓄电池组和逆变器等几部分组成;其中光电系统和风电系统把太阳能和风能转换成电能,然后通过控制器对蓄电池充电,最后通过逆变器对用电负荷供电。

该系统的优点是供电可靠性高,运行维护成本低。

由于太阳能与风能的互补性强,风光互补发电系统弥补了风电和光电独立系统在资源上的缺陷,同时,风电和光电系统在蓄电池组和逆变环节是可以通用的,所以可降低风光互补发电系统的造价。

三.系统结构图:太阳能电池板:在金属支架上用导线连在一起的多个太阳电池组件的集合体。

风力发电机组:由风力机、发电机和控制部件等组成的发电系统。

控制器:系统控制装置。

主要功能是对蓄电池进行充电控制和过放电保护。

同时对系统输入输出功率起着调节与分配作用,以及系统赋予的其它监控功能。

蓄电池组:由若干台蓄电池经串联组成的储存电能的装置。

逆变器:将直流电转换为交流电的电力电子设备。

交流负载:以交流电为动力的装置或设备。

直流负载:以直流电为动力的装置或设备。

并网控制器:连接逆变器和公用电网,可将多余的电能输向电网或由电网向负载供电。

电量计量装置:记录发电系统和公用电网之间的流通电量。

四.当地天气情况统计五.负载估算六.太阳能光伏发电七.风能发电八.其他部件(控制器、逆变器、蓄电池组、并网控制器)的具体选用九.投资预算。

风光互补发电系统实训总结

风光互补发电系统实训总结

风光互补发电系统实训总结1. 概述1.1 任务背景风光互补发电系统是一种整合了风力发电和光伏发电的系统,通过利用两种可再生能源进行发电,实现能源互补,提高发电效率和可靠性。

1.2 任务目的本次实训旨在通过搭建风光互补发电系统,探索其在实际应用中的可行性和优势,以及改善可再生能源利用的方法和途径。

2. 搭建风光互补发电系统2.1 系统组成风光互补发电系统由风力发电系统和光伏发电系统组成。

风力发电系统包括风力发电机组、转换器和储能装置;光伏发电系统包括太阳能电池板、光伏逆变器和储能装置。

2.2 系统原理风力发电系统通过风力发电机组将风能转化为电能,经过转换器将直流电转换为交流电,并通过储能装置进行能量储存。

光伏发电系统通过太阳能电池板将太阳能转化为直流电,经过光伏逆变器将直流电转换为交流电,并通过储能装置进行能量储存。

2.3 系统配置在实训中,我们搭建了一套小型的风光互补发电系统,包括100W的风力发电机组、100W的太阳能电池板以及对应的转换器、光伏逆变器和储能装置。

系统通过电网连接并实现电能的双向流动。

3. 实训过程3.1 前期准备在实训之前,我们对风力发电和光伏发电的原理和技术进行了学习和了解,并研究了风力发电机组和太阳能电池板的选型和安装方法。

3.2 系统搭建在实训过程中,我们按照实训指导书的要求,先后完成了风力发电系统和光伏发电系统的搭建,包括风力发电机组的安装、转换器和储能装置的连接以及太阳能电池板的安装、光伏逆变器和储能装置的连接。

3.3 调试与测试完成系统搭建后,我们对风力发电机组和光伏发电系统进行了调试和测试,确保系统能够正常运行和互补发电。

3.4 实际应用在实训的最后阶段,我们将搭建好的风光互补发电系统应用于实际场景中,利用系统所产生的电能供应灯具和其他电器设备,验证系统的可行性和优势。

4. 实训总结4.1 实训收获通过本次实训,我们深入了解了风力发电和光伏发电的原理和技术,掌握了风力发电机组和太阳能电池板的安装和调试方法,了解了风光互补发电系统的组成和原理。

风光互补发电系统简介

风光互补发电系统简介

风光互补发电系统简介风力发电机的低风速启动、低风速发电、抗腐蚀、抗台风:<BR>作为路灯应用型风力发电机不仅要保障安全性、美观性及实用性,还需解决其在2.0米/秒的风速下能开始转动,在2.5米/秒的风速下开始充电。

此外,应用在沿海地区,要能抗最大14级强台风因此必须有机械制动+电磁制动的双保险制动系统。

在选材上为了防止在沿海地区空气的腐蚀,风力发电机的各个部件必须是防腐蚀材料加工而成。

2、控制系统的智能控制(光控、时控、过充、过放、过载、欠压、保护等):作为路灯控制系统,不仅要实现光效控制还需要配以时间控制,从而达到智能自动控制的目的,在充放电期间不仅要实现防止过度的充电、放电,还需要实现过度的放电等功能。

此外,控制系统核心的一块低电压升压充电系统,在风力发电和太阳能发电所发出的电电压小于24V大于15V的情况下,对这部分电能进行升压到24V以上,这样就能对其进行充分利用。

3、支撑系统的承载、抗台风、造型设计:普通路灯的灯杆顶端无承载需求,但作为风光互补路灯不仅有50kg的风力发电机组的重量和太阳能电池组的重量,还要考虑在台风到来的情况下的一个抗挠度的需要,风机在大风下高速旋转的过程中是一个整体受力面,因此综合上述因素灯杆的强度和截面造型必须考虑以上安全性的因素。

4、储能系统的启动瞬间电压及充放容量的选择:应用于风光互补路灯的储能电池,需要不停的充放,因此,在对电池做选择时主要还是选择瞬时启动电压低和负载功率较匹配的能多次反复充放的浮点电压在20—28V间的免维护胶体蓄电池。

5、太阳能功率匹配性及转化率匹配性选择:风光互补路灯所采用的光伏组件因应用地光照资源的条件限制,在选择及配比功率上要考虑经济性的因素,无论单晶硅、多晶硅或者非晶硅材质的太阳能电池组件,在满足其转化率在12%—17%的按要求因地制宜的选择。

选择安装时还需要据安装地所处纬度的不同设定不同向阳倾角。

6、低压照明灯具的整合与匹配性:风光互补路灯的照明灯具,在选择上以低压24V灯具为主,如节能灯、无极灯、LED灯、金卤灯等,这些灯具的不同组合的亮度可以达到普通高压灯具照明的效果,灯具的照度、高度等一系列参数需要符合路灯的标准,灯具功率大小不仅需要和风力发电设备及太阳能发电设备的发电功率匹配,还要和使用地的风资源及太阳能资源相匹配。

风光互补发电系统介绍

风光互补发电系统介绍

风光互补发电系统介绍(1)光生伏打效应半导体P-N结器件当受到阳光照射时会产生额外的伏打电动势,这种现象称为“光生伏打效应”。

通常把这类光伏器件称为“太阳电池”。

见下列示意图。

(2)太阳能光伏发电的特点没有转动部件,不产生噪声。

没有空气污染,不排放废水。

没有燃烧过程,不需要燃料。

维修保养简单,维护费用低。

运行可靠性,稳定性好。

作为关键部件的太阳电池使用寿命长,晶体硅太阳电池寿命可达到25年以上。

根据需要很容易扩大发电规模。

照射的能量分布密度小。

获得的能源四季、昼夜及阴晴等气象条件有关。

造价比较高。

(3)风光互补系统的特点光电系统是利用光电板将太阳能转换成电能,风电系统是利用小型风力发电机,将风能转换成电能,风光互补发电系统将太阳能和风能集成一起,充分利用了太阳能与风能的互补性强,在资源上弥补了风电和光电独立系统每天的发电量受天气、环境、地域的影响大的缺陷。

同时,风电和光电系统在蓄电池组和逆变环节是可以通用的,风力发电的成本是光伏发电的1/4,所以风光互补发电系统的造价可以降低,系统成本趋于合理。

风光互补发电系统可以根据用户的用电负荷情况和资源条件进行系统容量的合理配置,即可保证系统供电的可靠性,又可降低发电系统的造价。

系统无空气污染,无噪音,不产生废弃物,是一种自然、清洁的能源风光互补发电系统由太阳电池组件、小型风力发电机组、系统控制器、蓄电池组和逆变器等几部分组成,发电系统各部分容量的合理配置对保证发电系统的可靠性非常重要。

风光互补路灯的优点经济效益好由于路灯必须用埋地电缆供电,所以在离电源点超过三公里的公路,路灯的供电线路的建设成本很高,随着公里的延伸,还需要设升压系统,所以,在远郊的公路,路灯的供电线路成本高,线路上消耗的电能也多。

而风光互补路灯不需要输电线路,不消耗电能,有明显的经济效益。

可作为普及新能源知识的好教材目前,非常需要对民众进行环保和新能源知识的普及教育,风光互补路灯能最直接的向从们展示太阳能和风能这种清洁的自然能源的应用前景。

什么是风光互补 风光互补系统的优缺点

什么是风光互补 风光互补系统的优缺点

什么是风光互补风光互补系统的优缺点
风光互补技术是利用太阳能电池和风力发电机发电,将风能和太阳能转化为电能,经蓄电池储能,再用于照明的装置,两沖发电系统在同一个装置内互为补充,给设备供电的一种新技术。

关于“什么是风光互补风光互补系统的优缺点”的详细说明。

1.什么是风光互补
风光互补技术是利用太阳能电池和风力发电机发电,将风能和太阳能转化为电能,经蓄电池储能,再用于照明的装置,两沖发电系统在同一个装置内互为补充,给设备供电的一种新技术。

我国许多地区风能和太阳能随季节变化显著,时空分布不均,在夏季太阳辐射强烈,太阳能资源丰富;而在冬季则风速大,风能资源丰富。

采用单一的风能或太阳能发电,往往出现某些月份供电不足。

风光互补技术正是利用了这两种资源的季节互补特性,将太阳能电池和风力发电机组合成一个系统,可以充分发挥两者的特性和优点,最大限度地利用太阳能和风能,从而克服了由于风能、太阳能随季节变化而造成供电不均衡的缺陷,可以保证一年四季均衡供电,使自然资源得到充分利用。

2.风光互补系统的优缺点
优点
1.昼夜互补--中午太阳能发电,夜晚风能发电。

2.季节互补--夏季日照强烈,冬季风能强盛。

3.稳定性高--利用风光的天然。

4.互补性,大大提高系统供电稳定性。

缺点
对比:单纯的风能与太阳能供电有显著的缺陷
1.季节性障碍无法克服
2.供电不稳定
3.公用设施供电不适宜。

风光互补发电系统

风光互补发电系统

知识创造未来
风光互补发电系统
风光互补发电系统是指通过风能和光能相结合,共同发电的系统。

这种系统的设计思路是利用风能发电和光能发电的互补优势,提高
能源利用效率和发电稳定性。

风能发电主要依靠风力涡轮机(即风车)转换风能为机械能,再经
由发电机将机械能转化为电能。

而光能发电则是利用光伏发电技术,将太阳能直接转化为电能。

风能和光能具有互补性:太阳照射较强
的时候,风力较弱;而太阳照射较弱的时候,风力较强。

因此,将
风能发电和光能发电结合起来,可以弥补彼此之间的不足,提高综
合发电能力和发电质量。

风光互补发电系统一般由风力涡轮机和光伏发电组成,并配备逆变器、蓄电池等设备。

逆变器可以将风力涡轮机和光伏发电的直流电
转化为交流电,以供给家庭、工业和商业用电。

蓄电池的作用是存
储多余的电能,以备不时之需。

通过风光互补发电系统,可以有效提高发电效率和稳定性,减少对
传统能源的依赖,进一步推动可再生能源的发展和应用。

1。

风光互补发电系统的应用与发展

风光互补发电系统的应用与发展

风光互补发电系统的应用与发展2023-11-10•风光互补发电系统概述•风光互补发电系统在能源领域的应用•风光互补发电系统在环保领域的应用•风光互补发电系统的技术发展与挑战•风光互补发电系统的未来发展趋势及展望风光互补发电系统概述定义风光互补发电系统是一种利用太阳能和风能发电的系统,它结合了太阳能光伏发电和风力发电两种技术,旨在实现可再生能源的持续、稳定供电。

特点风光互补发电系统具有较高的能源利用效率和较低的碳排放,同时具有较好的供电稳定性和可靠性,能够满足不同领域和场景的能源需求。

风光互补发电系统的定义与特点组成风光互补发电系统主要由太阳能电池板、风力发电机、储能电池、逆变器、控制系统等组成。

工作原理在有阳光和风力的情况下,太阳能电池板和风力发电机分别将光能和风能转化为电能,通过逆变器将直流电转换为交流电,最终实现向电网供电。

储能电池则用于在供电不足时提供电力补充。

风光互补发电系统的组成及工作原理0102农村供电在偏远地区和农村地区,由于地理和气候条件限制,传统供电方式难以覆盖,风光互补发电系统成为一种理想的供电解决方案,能够满足农村居民的基本生活用电需求。

城市小区供电在城市的小区和居民区,由于空间和环境限制,传统的供电方式难以满足需求,而风光互补发电系统则能够实现绿色、环保、高效的能源供应。

交通设施供电高速公路、桥梁、隧道等交通设施的供电系统通常难以覆盖,而风光互补发电系统则能够实现稳定、可靠的供电,保障交通设施的正常运行。

野外设施供电野外的工作站、观测站等设施通常缺乏常规电力供应,风光互补发电系统成为一种理想的供电解决方案,能够满足野外设施的基本用电需求。

海岛供电在远离大陆的海岛地区,由于地理和气候条件限制,传统供电方式难以覆盖,风光互补发电系统成为一种理想的供电解决方案,能够满足海岛居民的基本生活用电需求。

风光互补发电系统的应用范围030405风光互补发电系统在能源领域的应用总结词解决偏远地区供电问题,提高能源供应的可靠性和稳定性。

风光互补供电系统的原理及工作原理解析

风光互补供电系统的原理及工作原理解析

风光互补供电系统的原理及工作原理解析随着可再生能源的快速发展,风能和光能被广泛应用于发电领域。

风光互补供电系统是一种利用风力发电和太阳能发电相互补充的系统,其原理和工作原理是如何实现的呢?风光互补供电系统的目标是提高可再生能源的利用效率,并实现电力的稳定供应。

该系统主要由风能发电系统和太阳能发电系统两部分组成。

下面分别对两部分的原理和工作原理进行解析。

一、风能发电系统的原理及工作原理风能是一种通过风轮驱动发电机转动产生电能的可再生能源。

风能发电系统由风轮、发电机、逆变器、电网连接装置等组成。

1. 原理:风能发电系统的原理是将风能转化为机械能,然后通过发电机将机械能转化为电能,最终通过逆变器将直流电转化为交流电并连接到电网。

2. 工作原理:风能发电系统的工作原理是当风力作用在风轮上时,风轮会转动。

转动的风轮通过轴与发电机相连,使发电机转动。

发电机在转动时,通过电磁感应原理产生电能。

然后,逆变器将直流电转化为交流电,并通过电网连接装置将电能输出到电网上。

当风速较低或风轮转速较快时,逆变器会调节输出电压和频率,以保持电力的稳定输出。

二、太阳能发电系统的原理及工作原理太阳能发电是利用光能转化为电能的一种可再生能源。

太阳能发电系统由光伏电池、逆变器、电网连接装置等组成。

1. 原理:太阳能发电系统的原理是光伏电池吸收光能后,通过半导体材料产生电压,并将光能转化为电能。

逆变器将直流电转化为交流电,并连接到电网。

2. 工作原理:光伏电池是太阳能发电系统的核心部件,由多个光伏电池组成,光伏电池吸收光能后产生电压。

这些光伏电池串联或并联连接,并通过逆变器将直流电转化为交流电。

逆变器调整输出的电压和频率,以满足电网的要求。

最后,通过电网连接装置将电能输出到电网上,供应给用户使用。

风光互补供电系统的原理及工作原理解析到此为止。

该系统通过将风能和太阳能相互补充利用,可以实现电力的稳定供应,并提高可再生能源的利用效率。

风能发电系统和太阳能发电系统分别利用风能和光能转化为电能,然后通过逆变器将直流电转化为交流电,并连接到电网上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古东建塔式多功能垂直轴风光互补发电机组项目基本情况
内蒙古东建新能源有限公司是在内蒙古呼和浩特注册的独立法人机构的民营企业,公司注册资本6亿元人民币,公司主要经营范围:电力设备及器材安装、销售、调试、维修;输电线路和电站的整体工程施工;电力技术咨询;农业科技技术开发;高科技节能开发等。

公司拟在太阳山开发区境内开发建设塔式多功能垂直轴风光互补发电场项目,一期计划建设25台2MW风电塔,计划在10年内发展完成投资建设2MW风电塔1000台。

一、组成结构。

该机组由5大结构系统组成,分别是正棱柱多层塔身、环绕垂直轴磁悬浮发电机、智能控制变电系统、立体环绕太阳能电池阵、攀爬了望观光层。

塔基底部直径30米,高度45-90米,地上7层,地下1层为机房,机房内设有安全通道,进排风系统。

设有8组风力发电机组,其中7组为中部环绕垂直轴风力发电机组,1组为顶部主发电机组。

该发电机组每一组的发电机均采用磁悬浮永磁发电机,具有启动力矩小、工作风速低的特点。

二、主要性能及区别。

1、启动风速低:垂直轴风力发电机对风速要求较小,只要风速达到2-3m/s即可启动发电,而且不需要对风,可确保平稳发电;而水平轴通常在4m/s以上风速才可发电,必须对风。

2、效率高:采用集风和整流系统,风能利用率可达52%以上,年有效发电时数可达6500小时,而水平轴不到1850小时。

充分有效利用现有风力资源,不弃风、废风。

3、占地少,维护成本低:采用吸入式原理设计的塔式集风结构,大大缩小机组的空距,节约用地,单塔占地为700㎡/塔基。

采用内部楼梯结构设计,可直达各层和顶部,安装和维护方便,减少了停机维修时间,发电成本较低,风场投资回收期缩短到5-8年。

4、体积小,成本低:采用多层统一的结构和桨叶,模块式组装,标准构件体积小,高度与水平轴相当99m,但是最大回转件直径小于20m,而水平轴直径是40m。

单件最大重量是20吨,而水平轴是80吨。

单件重量轻,制造难度降低,运输方便,机组可布置在接近地面高度,安装及维护费用较低,总成本大大低于水平轴。

5、单机发电能力可调节:该机组单台发电功率可达2MW,水平轴发电量,而且可根据需要灵活调节发电机输出功率。

6、输出电压稳定:借助于智能控制系统与窗口进风调节系统,可自动适应调节输出电压,达到稳定发电效果。

7、投资额大,单塔投资2600万人民币,而水平轴投资1500。

8风光互补发电与景观一体:利用塔式结构特点,采用太阳能环绕分布,高效吸收光能,与风能结合,使发电能力更强。

利用塔式多层和中空结构特点,设置封闭的观光层和内部攀爬楼梯,可以登上高处看风景,具有较强的旅游观光价值。

三、效益分析。

1、风机发电量估算:
按照1台风机年工作6500发电小时,发电量2MW计算:一期按25台,年发电量:
亿kwh/年台*25台=亿kwh(度电)
2、经济效益估算:
亿kwh*元/kwh=亿元/年。

相关文档
最新文档