风光互补发电系统

合集下载

风光互补并网发电系统

风光互补并网发电系统

风光互补并网发电系统一.目的和意义太阳能和风能是最普遍的自然资源,也是取之不尽的可再生能源。

太阳能与风能在时间上和季节上都有很强的互补性:白天太阳光照好、风小,晚上无光照、风较强;夏季太阳光照强度大而风小,冬季太阳光照强度弱而风大。

这种互补性使风/光并网发电系统在资源上具有最佳的匹配性,可实现连续、稳定发电。

另外,风力发电和光伏发电系统在蓄电池和逆变器环节上是可通用的。

风/光互补发电系统可根据用户用电负荷和自然资源条件进行最佳的合理配置,既可保证系统的可靠性,又能降低发电成本,满足用户用电需求,是最合理,最可靠,最安全,最经济,最环保的供电系统。

二.系统简介风光互补发电系统由太阳能电池板、风力发电机组、控制器、蓄电池组和逆变器等几部分组成;其中光电系统和风电系统把太阳能和风能转换成电能,然后通过控制器对蓄电池充电,最后通过逆变器对用电负荷供电。

该系统的优点是供电可靠性高,运行维护成本低。

由于太阳能与风能的互补性强,风光互补发电系统弥补了风电和光电独立系统在资源上的缺陷,同时,风电和光电系统在蓄电池组和逆变环节是可以通用的,所以可降低风光互补发电系统的造价。

三.系统结构图:太阳能电池板:在金属支架上用导线连在一起的多个太阳电池组件的集合体。

风力发电机组:由风力机、发电机和控制部件等组成的发电系统。

控制器:系统控制装置。

主要功能是对蓄电池进行充电控制和过放电保护。

同时对系统输入输出功率起着调节与分配作用,以及系统赋予的其它监控功能。

蓄电池组:由若干台蓄电池经串联组成的储存电能的装置。

逆变器:将直流电转换为交流电的电力电子设备。

交流负载:以交流电为动力的装置或设备。

直流负载:以直流电为动力的装置或设备。

并网控制器:连接逆变器和公用电网,可将多余的电能输向电网或由电网向负载供电。

电量计量装置:记录发电系统和公用电网之间的流通电量。

四.当地天气情况统计五.负载估算六.太阳能光伏发电七.风能发电八.其他部件(控制器、逆变器、蓄电池组、并网控制器)的具体选用九.投资预算。

描述风光互补发电系统的组成及其功能

描述风光互补发电系统的组成及其功能

描述风光互补发电系统的组成及其功能
描述风光互补发电系统的组成及其功能
风光互补发电系统是采用风能和太阳能共同发电的节能、环保发电系统。

它指通过利用风能和太阳能共同发电,实现电能供应可靠性和可再生替代能源的更加可靠、低成本、高效率的发电技术系统。

该系统是由风能发电机和太阳能发电机组成,它们会根据天气情况相互补充,以达到最大发电效率。

一般情况下,风光互补发电系统主要由以下几个部分组成:
1、风力发电机:用以提取风能,通过风轮旋转驱动发电机,将风能转换为机械能,再转换为电能。

2、太阳能发电机:太阳能发电机是用太阳能驱动的一种发电机,它可以将太阳能转换为电能。

3、控制器:控制器是风光互补系统的大脑,它可以根据风能和太阳能的变化情况,自动调整发电机的转速,以达到最佳发电效率。

4、储能装置:储能装置可以存储由风力发电机和太阳能发电机发出的电能,让其不会被浪费掉。

风光互补发电系统的主要功能是利用风能和太阳能进行发电,它可以使发电系统具有高度的可靠性。

风能发电系统可以在无太阳能的情况下仍然发电,而太阳能发电系统可以在白天发电;控制器可以自动调节风能发电机和太阳能发电机的转速,将其实现最佳发电效率;储能装置可以存储风力发电机和太阳能发电机发出的电能,以便在无风或无太阳能的情况下提供电能。

总之,风光互补发电系统的组成及其功能是利用风能和太阳能发电,以达到最佳发电效率,具有高度的可靠性和可再生替代能源的发电技术系统。

风光互补发电系统工作原理

风光互补发电系统工作原理

风光互补发电系统工作原理嗨,朋友!今天咱们来唠唠这个超酷的风光互补发电系统。

你知道吗?这可是一种超级聪明的发电方式呢。

先来说说这个风光互补发电系统里的风这部分。

风,那可是大自然的小调皮鬼,整天跑来跑去的。

风力发电呢,就是利用风的这个好动的特性。

你看那些高高大大的风力发电机,就像一个个巨大的风车。

当风吹过来的时候,它的叶片就开始转动啦。

这叶片一转,就带动了发电机里面的一些小零件(其实是很精密的啦,但咱们就简单这么理解)。

就好像你用手转动一个小玩具的齿轮,然后这个齿轮又带动其他东西转起来一样。

风越大,叶片转得就越快,发电机产生的电也就越多。

你可以想象风就像一个大力士,在用力推着叶片这个大圆盘,然后这个圆盘把风的力量转化成了电能。

再说说光这部分。

太阳公公可是个大暖男,每天都无私地散发着光和热。

在风光互补发电系统里,有太阳能电池板。

这些电池板可神奇了,就像一个个小魔法板。

它们是由好多小的太阳能电池组成的。

当阳光照射到这些电池板上的时候,就像是给它们注入了能量。

太阳能电池里面有一些特殊的物质,阳光一照,这些物质就开始活跃起来,电子就开始跑来跑去,这样就产生了电流。

就好比一群小蚂蚁,本来在休息,阳光一照,就都开始忙忙碌碌地搬运东西,这个搬运的过程就产生了电。

那这风发电和光发电怎么就互补了呢?这就更有趣了。

你想啊,风有时候大,有时候小,它可没准头了。

有时候一整天都没什么风,那风力发电机就歇菜了。

但是太阳公公可不管风的事,只要是白天,就有阳光。

所以在没风的时候,太阳能电池板就开始工作,产生电能。

反过来呢,有时候天阴沉沉的,太阳能电池板就不能很好地工作了,但是风可不管天气阴不阴,它该吹还是吹。

这时候风力发电机就可以大显身手了。

它们两个就像两个好伙伴,互相弥补对方的不足。

在整个风光互补发电系统里,还有一个很重要的部分,就是储能装置。

这个就像是一个小仓库。

不管是风力发电机产生的电,还是太阳能电池板产生的电,要是一下子用不完,就可以存到这个小仓库里。

《2024年风光互补发电系统的建模与仿真研究》范文

《2024年风光互补发电系统的建模与仿真研究》范文

《风光互补发电系统的建模与仿真研究》篇一摘要:随着对可再生能源需求的增长和对环境可持续发展的追求,风光互补发电系统因其在地理和能源来源上的优势受到了广泛的关注。

本文着重介绍了风光互补发电系统的建模、仿真以及相关的研究成果,通过对系统结构、运行机制及模拟方法的深入研究,旨在为进一步推动可再生能源领域的技术创新和优化提供理论支持。

一、引言风光互补发电系统,即利用风能和太阳能进行发电的系统,具有无污染、可持续、分布广泛等优点。

随着全球能源结构的转变,风光互补发电系统已成为未来能源发展的重要方向。

因此,对其建模与仿真研究具有重要的理论和实践意义。

二、风光互补发电系统的建模1. 系统结构模型风光互补发电系统的结构模型主要包括风力发电机组、太阳能光伏板、储能装置(如电池组)以及控制系统等部分。

通过建立各部分的数学模型,可以描述系统的运行特性和能量转换过程。

2. 能量转换模型能量转换模型主要描述风力和太阳能如何被转换成电能的过程。

风力发电机组和太阳能光伏板的工作原理和性能参数是建模的关键。

此外,还需要考虑环境因素如风速、光照强度等对能量转换效率的影响。

三、仿真方法及工具1. 仿真方法仿真方法主要采用物理建模和数学建模相结合的方式。

通过建立系统的物理模型,可以更直观地了解系统的运行机制;而数学建模则可以通过数学方程描述系统的行为,为后续的仿真分析提供基础。

2. 仿真工具仿真工具的选择对于提高仿真效率和准确性具有重要意义。

常用的仿真软件如MATLAB/Simulink等,具有强大的建模和仿真功能,可以有效地用于风光互补发电系统的建模与仿真。

四、仿真结果与分析通过仿真,我们可以得到以下结果:1. 系统输出特性仿真结果可以清晰地展示风光互补发电系统的输出特性,包括在不同风速和光照强度下的发电量,以及系统的日、月、年发电量等。

2. 系统性能评价通过对比不同配置和参数下的系统性能,可以评价系统的稳定性和经济性等指标,为实际工程提供参考依据。

风光互补发电系统

风光互补发电系统

知识创造未来
风光互补发电系统
风光互补发电系统是指通过风能和光能相结合,共同发电的系统。

这种系统的设计思路是利用风能发电和光能发电的互补优势,提高
能源利用效率和发电稳定性。

风能发电主要依靠风力涡轮机(即风车)转换风能为机械能,再经
由发电机将机械能转化为电能。

而光能发电则是利用光伏发电技术,将太阳能直接转化为电能。

风能和光能具有互补性:太阳照射较强
的时候,风力较弱;而太阳照射较弱的时候,风力较强。

因此,将
风能发电和光能发电结合起来,可以弥补彼此之间的不足,提高综
合发电能力和发电质量。

风光互补发电系统一般由风力涡轮机和光伏发电组成,并配备逆变器、蓄电池等设备。

逆变器可以将风力涡轮机和光伏发电的直流电
转化为交流电,以供给家庭、工业和商业用电。

蓄电池的作用是存
储多余的电能,以备不时之需。

通过风光互补发电系统,可以有效提高发电效率和稳定性,减少对
传统能源的依赖,进一步推动可再生能源的发展和应用。

1。

野外监控供电系统风光互补方案

野外监控供电系统风光互补方案

野外监控供电系统风光互补方案前端监控设备所处位置在野外,除监控中心附近有市电的情况下采用市电,远距离一般不建议采用市电,因为过长的电源线路导致到达基站时电压较低,容易造成设备损害,而且成本高,我们建议在日照比较丰富的地方采用太阳能发电系统,在风能比较丰富的地方采用风能和太阳能互补的发电系统。

1.发电系统配置太阳能发电系统是由太阳能电池板、蓄电池、控制器、逆变器(有220V设备采用)、电池保温箱构成风光互补发电系统是由太阳能电池板、风力发电机、蓄电池、控制器、逆变器(有220V设备采用)、电池保温箱构成具体配置需要针对不同地区日常系数、阴雨天气时间等因素配置。

2.系统组成风力发电机组太阳能发电板控制系统(逆变系统)支撑系统(塔杆、拉索杆、塔架)储能系统(铅酸蓄电池组或胶体蓄电池组)3. 性能要求风力发电机组具有低风速启动、低风速发电、防尘、防水、防腐蚀、抗台风应用于各种恶劣自然环境下的风力发电机组,不仅要具有安全性、美观性及实用性,机型的选择应与应用地的自然环境相匹配,还需解决风力发电机在2.0米/秒的风速下能开始转动,在2.5 -3.0米/秒的风速下开始充电。

此外,应用在沿海地区,要能抗最大16级强台风,因此必须有机械制动+电磁制动的双保险制动系统;应用在北方风沙大的区域还涉及到防风沙。

在选材上为了满足防止在沿海地区空气的腐蚀,风力发电机的各个零部件必须是防腐、耐磨材料或特殊工艺加工而成。

控制系统具有智能控制功能(光控、时控、过充、过放、过载、欠压等保护,低压充电、制动短路)控制系统不仅要实现光效控制还需要配以时间控制,从而达到智能自动控制的目的,在充放电期间不仅要实现防止过度的充电,还需要实现过度的放电等功能。

此外,控制系统核心的低电压升压充电系统,在风力发电和太阳能发电所发出的电电压在15V-24V情况下,对这部分电能进行升压到24V以上,这样就能对其进行储存利用。

支撑系统需要承载、抗台风、造型设计普通路灯的灯杆顶端无承载需求,但作为风光互补路灯不仅有50kg的风力发电机组的重量和太阳能电池组的重量,还要考虑在台风到来的情况下的一个抗挠度的需要,风机在大风下高速旋转的过程中是一个整体受力面,因此综合上述因素灯杆的强度和截面造型必须考虑以上安全性的因素。

《2024年风光互补发电系统的建模与仿真研究》范文

《2024年风光互补发电系统的建模与仿真研究》范文

《风光互补发电系统的建模与仿真研究》篇一一、引言随着人类对可再生能源的日益重视,风光互补发电系统因其独特的优势,如清洁、可持续、资源丰富等,正逐渐成为电力供应的重要来源。

本文将就风光互补发电系统的建模与仿真进行深入探讨,分析其系统组成、模型建立以及仿真应用等关键领域,旨在为未来风能与光能协同供电的研究与实践提供参考依据。

二、风光互补发电系统的基本构成与原理1. 太阳能光伏系统太阳能光伏系统是利用光生电效应将太阳能转换为电能。

它主要由太阳能电池板、支架、汇流箱、逆变器等部分组成。

当阳光照射在太阳能电池板上时,产生直流电,经逆变器转换成交流电供负载使用。

2. 风力发电系统风力发电系统则通过风车叶片捕捉风能,转化为机械能,再由发电机转换为电能。

它主要由风车叶片、齿轮箱、发电机和控制器等部分组成。

三、风光互补发电系统的建模方法建模是研究和模拟复杂系统行为的关键过程,对风光互补发电系统来说同样如此。

该系统的建模主要包括以下几个步骤:1. 确定模型目标与范围:明确模型需要解决的问题和所涉及的组件。

2. 收集数据:收集风速、光照强度、环境温度等数据,为建模提供基础数据支持。

3. 构建模型:根据系统组成和工作原理,建立数学模型或物理模型。

4. 参数设置与校验:为模型设定参数并进行仿真验证,确保模型的准确性和可靠性。

四、风光互补发电系统的仿真研究仿真研究是评估风光互补发电系统性能的重要手段。

通过仿真软件模拟实际运行环境,可以分析系统的输出功率、效率、稳定性等关键指标。

此外,仿真研究还可以帮助优化系统配置,提高能源利用效率。

五、仿真结果分析与应用通过仿真研究,我们可以得到以下结论:1. 风光互补发电系统在资源丰富地区具有较高的发电效率,能有效提高能源利用率。

2. 系统稳定性好,即使在风速和光照强度波动较大的情况下,仍能保持较高的输出功率。

3. 通过优化系统配置,如调整太阳能电池板和风车叶片的安装角度、数量等,可以进一步提高系统的发电效率。

风光互补发电系统原理

风光互补发电系统原理

风光互补发电系统原理
风光互补发电系统原理是指通过利用风力发电与光伏发电相结合,实现能源的互补和互补利用,以提高发电效率和稳定性。

在风光互补发电系统中,风力发电和光伏发电是独立而又相互协调的两种方式。

风力发电利用风能驱动风力发电机转动,产生电能。

光伏发电则是通过光能将太阳光转化为电能。

两者都属于可再生能源,具有环保、清洁的特点。

风光互补发电系统的运行需要充分考虑风力和光照的变化因素。

一般情况下,当风力较强时,风力发电系统将主导能源的生产;而在风力较弱或没有风的情况下,光伏发电系统则发挥主要作用。

通过这种互补方式,可以最大程度地充分利用两种能源,提高系统的发电效率。

此外,风光互补发电系统还需要具备适当的能量储存装置,以便在能源生产过剩时储存多余的电能,在风力或光照不足时释放储存的电能。

能量储存装置可以采用电池组、储热装置等形式。

风光互补发电系统的优势在于能够有效弥补风力发电和光伏发电各自的不足之处,提高了系统的稳定性和可靠性。

同时,风光互补发电系统也能够减少能源依赖、降低碳排放,实现可持续发展。

总之,风光互补发电系统利用风力发电和光伏发电相结合,通
过互补和互补利用的方式提高发电效率和稳定性,具有重要的应用前景和环境保护意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风光互补发电系统
Wind-Solar Photovoltaic Hybrid Generate
Generation System
风光互补,是一套发电应用系统,该系统是利用太阳能电池方阵、风力发电机(将交流电转化为直流电)将发出的电能存储到蓄电池组中,当用户需要用电时,逆变器将蓄电池组中储存的直流电转变为交流电,通过输电线路送到用户负载处;对于富余的电能则送入外电网。

由于是风力发电机和太阳电池方阵两种发电设备共同发电,可以在资源上弥补风电和光电独立系统的缺陷:实现昼夜互补——中午太阳能发电,夜晚风能发电;季节互补——夏季日照强烈,冬季风能强盛;稳定性高——利用风光的天然互补性,大大提高系统供电稳定性。

小型风光互补发电系统
小型风光互补发电系统一般由一个或几个中小型风力发电机与若干太阳电池组件组成电力来源,电力送入风光互补控制器,在控制器内先转换成直流电,根据控制需要直流电可向蓄电池组充电与逆变成交流电。

小型风光互补发电系统可以是离网的独立供电系统,发出的交流电供用户自己使用,也可以组成并网系统,把多余的交流电可送向电网。

图1是小型风光互补发电系统组成示意图。

图1 小型风光互补发电系统示意图
图2是小型(容量为数千瓦至数十千瓦)风光互补发电系统主电路示意图,在控制器有风电的直流变换电路;光伏输入的直流变换电路;产生工频的逆变电路,以及相关的检测与控制电路。

各电路主要功能如下:
为了使系统能满足常用电器的需要,系统多余电量能送入外电网,系统输出为380V 三相交流电,逆变器具有并网功能。

逆变器由三相桥式逆变电路组成,输出有滤波器,滤波器类型根据本地负荷与电网的特性选择;逆变器输出供给本地用户使用,可通过并网开关连接外电网。

逆变器从直流母线输入,为了使逆变器正常工作,直流母线电压应在650V 左右。

较小型逆变器因蓄电池电压较低造成直流母线电压较低,需在逆变器直流输入侧增加升压电路。

一般风力发电机输出为交流输出,1kW以下的微型风力发电机有低压单相交流输出或三相交流输出;1kW以上的小型风力发电机为三相交流输出。

小型风力发电机多自带整流器,许多小型风力发电机可选配各种控制器。

在本例中,风力发电机的输出经三相桥式整流后再通过Boost 变换器(升压电路)送到直流母线;同样,太阳电池阵列的输出也通过Boost 变换器送到直流母线,直流母线向逆变器输送直流电。

若系统经常作为独立电源使用,还应配备蓄电池,蓄电池接在直流母线上。

直流母线可同时并入几个小型风力发电机与太阳电池阵列。

为简化电路图在图中未绘出卸载电路。

图2 小型风光互补发电系统主电路
图3 是网络上的小型风光互补发电系统照片,左图采用的是小型水平轴风力发电机,右图采用的是小型垂直轴风力发电机。

图3 小型风光互补发电系统(照片来自网络)
风光互补LED路灯系统
微型风光互补系统在公共照明领域得到较广泛的应用,每个路灯完全利用风和太阳光
能为灯具供电(无需外接电网),具有风能和太阳能产品的双重优点,由风、光能协同发电,电能储于蓄电池中,开关智能控制,自动感应外界光线变化,无须人工操作,特别适
用于高速公路、城市道路、防洪堤、景观道路与乡村结合道路。

风光互补路灯系统电路结构简单,特别是现在采用低电压的LED路灯,不需高压电路,系统相对简单,图4是一个风光互补路灯的主电路图。

微型风力发电机与光伏电池组件通过各自的变换电路输出相同的直流电压连接在一起,并通过防反流二极管向蓄电池充电。

LED电流控制电路可输出稳定的电流,并可控制电流
大小,同时也是LHD灯的开关,待天黑时系统启动LED电流控制输出电流到LED灯,天亮
后关闭。

电路中还有卸载电路,在蓄电池充满电后,电有富余时,为保护风力发电机与光
伏组件,开通卸载电路把富余电量泄放掉。

图4 风光互补路灯主电路图
图5是网络上的风光互补路灯照片,左图是垂直轴风力机,右图是水平轴风力机。

图5 风光互补路灯(照片来自网络)
大型并网风光互补发电系统
在阳光与风力充沛的荒漠地带可建大型并网风光互补电站。

图6是一个数百千瓦的中
型风光互补电站组成示意图。

风力发电机经风力发电并网控制器将电能并入380V母线;
太阳电池阵列经光伏发电并网控制器将电能并入380V母线;380V母线电能再经过电力变
压器升压至35kV送入输配电网,这里风能与太阳能是通过380V母线并在一起的,系统可
能有多个风力发电机与多个太阳电池阵列组成。

考虑特殊情况,系统有蓄电池备份电能。

图6 大型风光互补发电系统示意图
图7是该系统主电路示意图,各单元工作原理与前面相同,这里不再介绍了。

不同的
是各并网控制器都有高频变压器进行输入与输出的隔离,因为系统可能由多个风力发电机
与多个太阳电池阵列组成,防止个别机组漏电影响整个系统运行。

图7 大型风光互补发电系统主电路
图8与图9是网络上大型风光互补发电系统的照片。

图8 大型风光互补发电系统(照片来自网络)
图9 大型风光互补发电系统(照片来自网络)。

相关文档
最新文档