七年级数学不等式练习题及答案
七年级数学下册《一元一次不等式》练习题附答案(苏科版)

七年级数学下册《一元一次不等式》练习题附答案(苏科版)班级:___________姓名:___________考号:___________一、选择题1.数学表达式:①﹣5<7;②3y ﹣6>0;③a=6;④x ﹣2x ;⑤a ≠2;⑥7y ﹣6>5y+2中,是不等式的有( )A.2个B.3个C.4个D.5个2.语句“x 的18与x 的和不超过5”可以表示为( )A.18x+x ≤5B.18x+x ≥5 C.≤5 D.18x+x=53.如果a >b ,则下列不等式中不正确的是( )A.a+2>b+2B.a ﹣2>b ﹣2C.﹣2a >﹣2bD.0.5a>0.5b4.下列各数中,不是不等式2﹣3x >5的解的是( )A.﹣2B.﹣3C.﹣1D.1.355.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A.⎩⎨⎧x -1<3x +1<3B.⎩⎨⎧x -1<3x +1>3C.⎩⎨⎧x -1>3x +1>3D.⎩⎨⎧x -1>3x +1<3 6.若不等式组无解,则m 的取值范围是( )A.m >2B.m <2C.m ≥2D.m ≤27.不等式23>7+5x 的正整数解的个数是( )A.1个B.无数个C.3个D.4个8.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h9.某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A.60B.70C.80D.9010.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有( )A.2种B.3种C.4种D.5种二、填空题11.如果a >0,b >0,那么ab 0. 12.写出一个解集为x >1的一元一次不等式:_________.13.不等式3x+1>7的解集为_______.14.不等式14x+5>2-x 的负整数解是 .15.某试卷共有30道题,每道题选对得10分,选错了或者不选扣5分,至少要选 对 道题,其得分才能不少于80分.16.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共 张.三、解答题17.解不等式:2(2x -3)<5(x -1).18.解不等式:13(2x-1)-12(3x+4)≤1.19.解不等式组:20.解不等式组:.21.不等式13(x -m)>3-m 的解为x >1,求m 的值.22.定义新运算:对于任意实数a ,b ,都有a ¤b=a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2¤5=2x(2-5)+1=2x(-3)+1=-6+1=-5.(1)求(-2)¤3的值;(2)若3¤x 的值小于13,求x 的取值范围,并在如图所示的数轴上表示出来.23.解不等式x 3<1-x -36,并求出它的非负整数解.24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知购买较为合算;(2)当x>20时①该客户按方案一购买,需付款元;(用含x的式子表示)②该客户按方案二购买,需付款元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?25.某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的3 2倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?参考答案1.C2.A3.C4.C5.B6.D7.C8.B9.C10.A.11.答案为:>. 12.答案为:x ﹣1>013.答案为:x >2.14.答案为:-1,-2.15.答案为:16.16.答案为:3117.解:x >-1;18.解:x ≥﹣4.19.解:解①得x <3解②得x >﹣1所以不等式组的解集为﹣1<x <3.20.解:﹣1<x ≤2.21.解:∵13(x -m)>3-m∴x -m >9-3m解得x>9-2m.又∵不等式13(x-m)>3-m的解为x>1∴9-2m=1解得m=4.22.解:(1)11.(2)x>-1数轴表示如图所示:23.解:去分母,得2x<6-(x-3).去括号,得2x<6-x+3移项,得x+2x<6+3.合并同类项,得3x<9.两边都除以3,得x<3.∴非负整数解为0,1,2.24.解:(1)方案一;(2)(40x+3200);(36x+3600).若按方案一购买更省钱,则有40x+3200<36x+3600.解得x<100.即当买的领带数少于100时,方案一付费较少.若按方案二购买更省钱,则有40x+3200>36x+3600.解得x>100.即当买的领带数超过100时,方案二付费较少;若40x+3200=36x+3600,解得x=100.即当买100条领带时,两种方案付费一样.25.解:(1)设A,B两种品牌运动服的进货单价各是x元和y元,根据题意可得:,解得:答:A,B两种品牌运动服的进货单价各是240元和180元;(2)设购进A品牌运动服m件,购进B品牌运动服(32m+5)件则240m+180(32m+5)≤21300,解得:m ≤40 经检验,不等式的解符合题意 ∴32m+5≤32×40+5=65答:最多能购进65件B 品牌运动服.。
初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)1. 楠楠老师在解方程2x−13=x +a 2−1去分母时,因为手抖发作,将方程右侧的-1漏乘了,因而求得的方程的解为x =2,请帮助楠楠老师求出正确的解. 答案:x =-3. 解析:漏乘后方程为:2(2X -1)=3(x +a )-1. 4x -2=3x +3a -1. x =3a +1 .∵ x =2.∴ a =13.∴ 原方程去分母后得: 2(2X -1)=3(x +13)-6. 4x -2=3x +1-6. X =-3.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—错解方程.2. 已知关于x 的方程3[x −2(x −a2)]=4x 与3x +a 12−1−5x 8=1有相同的解,求 a 的值及方程的解.答案:a =2711,方程的解为x =8177.解析:把a 当作常数,方程3[x −2(x −a2)]=4x 的解为x =37a .方程3x +a 12−1−5x 8=1的解为x =27−2a 21.故37a =27−2a 21.解得a =2711,所以x =8177.考点:方程与不等式—一元一次方程—同解方程—同解方程求参数.3. 解方程组.(1){m +n3−n−m4=24m +n 3=14 (2){1−0.3(y −2)=x +15y−14=4x +920−1答案:(1){m =185n =−65.(2){x =4y =2.解析:(1)化简方程组得,{7m +n =2412m +n =42,加减消元可解得答案为{m =185n =−65.(2)化简方程组得,{2x +3y =144x −5y =6,加减消元可解得答案为{x =4y =2.考点:方程与不等式—二元一次方程组—解二元一次方程组.4. 回答下列小题.(1)当k = 时,方程组{4x +3y =1kx +(k −1)y =3的解中,x 与y 的值相等.(2)关于x ,y 的方程组{ax +by =2cx −7y =8,甲正确的解得{x =3y =−2,乙因为把c 看错了,解得{x =−2y =2,求a ,b ,c 的值. (3)若方程组{2x +3y =7ax −by =4与方程组{ax +by =64x −5y =3有相同的解,则a ,b 的值为( ).A.{a =2b =1B. {a =2b =−3C. {a =2.5b =1D. {a =4b =−5 答案:(1)11.(2)a =4,b =5,c =-2. (3)C .解析:(1)因为x 和y 的值相等,所以x =y ,代入1式可得x =y =17,再代入2式可得k =11.(2)乙看错了c ,说明乙的解只满足1式;甲是正确的解,说明甲的解满足两个等式.将解代入方程可得{3a −2b =23c +14=8−2a +2b =2,解得a =4,b =5,c =-2.(3)由题中条件:有相同的解可知,这两个方程组可以联立,即{2x +3y =7ax−by =4ax +by =64x−5y =3,由1式和4式可以解得{x =2y =1,代入2式和3式可得{2a −b =42a +b =6. 解得{a =2.5b =1,故选C.考点:方程与不等式—二元一次方程组—同解方程组.5. 台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 解析:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.依题意,列方程组得:{x +y =245x =2y +50.解得{x =180y =65.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 考点:方程与不等式—二元一次方程组—二元一次方程(组)的解.6.如图所示,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 cm2.答案:400.解析:设一个小长方形的长为x,宽为y,则可列方程组{x+y=50x+4y=2x.解得{x=40y=10.则一个小长方形的面积=40cm×10cm=400cm2.考点:方程与不等式—二元一次方程组—二元一次方程(组)的应用.7.高新区某水果店购进800千克水果,进价每千克7元,售价每千克12元,售出总量一半后,发现剩下的水果己经有5﹪受损(受损部分不可出售),为尽快售完,余下的水果准备打折出售.(1)若余下的水果打6折出售,则这笔水果生意的利润为多少元?(2)为使总利润不低于2506元,在余下的水果的销售中,营业员最多能打几折优惠顾客(限整数折,例如:5折、6折等)?答案:(1)这笔水果生意的利润为1936元.(2)营业员最多能打8折优惠顾客.解析:(1)根据题意得:400×12+(400-400×5﹪)×0.6×12-800×7=1936(元).答:这笔水果生意的利润为1936元.(2)设余下的水果应按原出售价打x折出售,根据题意列方程:400×12+(400-400×5﹪)×0.1x×12-800×7=2506.解方程得:x=7.25.答:营业员最多能打8折优惠顾客.考点:方程与不等式—一元一次方程—一元一次方程的应用.打折销售问题—经济利润问题.8. 二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(﹪)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(﹪)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示.(1)线段OB 表示的是 (填“甲”或“乙”),它的表达式是 (不必写出自变量的取值范围).(2)求直线OA 的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米. (3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b 百万米处,同时报废,请你确定方案中a 、b 的值. 答案:(1)1.甲.2.y =20x. (2)OA 的解析式是y =1003x ,这辆自行车最多可骑行3百万米.(3){a =158b =154.解析:(1)∵ 线段OB 表示的是甲,设OB 的解析式是y =kx.∴ 1.5k =30. ∴ 解得:k =20. ∴ OB 的表达式是y =20x. ∴ 答案是:甲,y =20x .(2)∵ 设直线OA 的表达式为y =mx.∴ 根据题意得:1.5m =50. ∴ 解得:m =1003.∴ 则OA 的解析式是y =1003x .∵ 当y =100时,100=1003x .∴ 解得:x =3.答:这辆自行车最多可骑行3百万米.(3)∵ 根据题意,得:{1003a +20(b −a )=10020a +1003(b −a )=100. ∴ 解这个方程组,得{a =158b =154.考点:方程与不等式—二元一次方程组—解二元一次方程组.函数—一次函数—待定系数法求正比例函数解析式—一次函数的应用—一次函数应用题.9. 若关于x 的一元二次方程(x +1)2=1-k 无实根,则k 的取值范围为 .答案:k >1.解析:若方程(x +1)2=1-k 无实根,则1-k >0.∴k >1.考点:方程与不等式—一元二次方程—一元二次方程的定义—一元二次方程的相关概念.10. 小明在探索一元二次方程2x2-x -2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是( ).A.4B.3C.2D.1答案:D.解析:根据表格中的数据,可知:方程的一个解x的范围是:1<x<2.所以方程的其中一个解的整数部分是1.考点:方程与不等式—一元二次方程—估算一元二次方程的近似解.11.已知m、n、p分别是Rt△ABC的三边长,且m≤n<p.(1)求证:关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)若x=-1是一元二次方程mx2+√2px+n=0的一个根,且Rt△ABC的周长为√2+2,求Rt△ABC的面积.答案:(1)证明见解析.(2)1.解析:(1)∵ m、n、p分别是Rt△ABC的三边长,且m≤n<p.∴ p2=m2+n2.∴ b2-4ac=2p2-4mn=2(m2+n2)-4mn=2(m-n)2≥0.∴关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)∵ x=-1是一元二次方程mx2+√2px+n=0的一个根.∴ m-√2p+n=0 ①.∵ Rt△ABC的周长为2√2+2.∴ m+n+p=2√2+2②.由①、②得:m+n=2√2,p=2.∴(m+n)2=8.∴ m2+2mn+n2=8.又∵ m2+n2=p2=4.∴ 2mn=4.∴1=mn=1.2∴ Rt△ABC的面积是1.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.根与系数的关系—韦达定理应用.三角形—三角形基础—三角形面积及等积变换.12.关于x的方程(k-3)x2+2x+1=0有两个不等的实数根,则k的取值范围为.答案:k<4且k≠3.解析:∵关于x的方程(k-3)x2+2x+1=0有两个不等的实数根.∴ {k−3≠0△=4−4(k−3)>0.∴ k<4且k≠3.考点:方程与不等式—一元二次方程—一元二次方程的定义—根据一元二次方程求参数值.根的判别式—已知一元二次方程根的情况,求参数的取值范围.13.设a、b是方程x2+x-9=0的两个实数根,则a2+2a+b的值为.答案:8.解析:∵ a是方程x2+x-9=0的根.∴ a2+a==9.由根与系数的关系得:a+b=-1.∴ a2+2a+b=(a2+a)+(a+b)=9+(-1)=8.考点:方程与不等式—一元二次方程—根与系数的关系—韦达定理应用.14.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12cm的住房墙.另外三边用25cm长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门.(1)所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?(2)能否围成一个面积为100 m2的矩形猪舍?如能,说明了围法;如不能,请说明理由.答案:(1)矩形猪舍的长为10m,宽为8m.(2)不能围成一个面积为100 m2的矩形猪舍.解析:(1)设矩形猪舍垂直于房墙的一边长为xm,则矩形猪舍的另一边长为(26-2x)m.由题意得:x(26-2x)=80.解得:x1=5,x2=8,当x=5时,26-2x=16>12(舍去).当x=8时,26-2x=10<12.答:矩形猪舍的长为10m,宽为8m.(2)由题意得:x(26-2x)=100.整理得:x2-13x+50=0.∵△=(-13)2-4×1×50=-31<0.∴方程无解.故不能围成一个面积为100 m2的矩形猪舍.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.一元二次方程的应用.15.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为 120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售__________件,每件盈利__________元(用x的代数式表示).(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想每天赢利2000元,可能吗?请说明理由.答案:(1)(20+2x),(40-x).(2)20元或10元.(3)不可能,理由见解析.解析:(1)根据题意得:每天可销售(20+2x);每件盈利(40-x).(2)根据题意得:(40-x)(20+2x)=1200.解得:x1=20,x2=10.答:每件童装降价20元或10元时,平均每天赢利1200元.(3)(40-x)(20+2x)=2000.整理得:x2-30x+600=0.△=62-4ac=(-30)2-4×1×600=900-2400<0.∴方程无解.答:不可能做到平均每天赢利2000元.考点:式—整式—代数式.方程与不等式—一元二次方程—一元二次方程的解.根的判别式—判断一元二次方程根的情况—一元二次方程的应用.16.若a>b,则下列不等式中正确的是.(填序号)① a-2<b-2 ② 5a<5b ③-2a<-2b ④a3<b3答案:③.解析:不等式的两边同时乘以(或除以)同一个负数,不等号改变方向.考点:方程与不等式—不等式与不等式组—不等式的基础—不等式的性质.17.解不等式:2−x+23>x+x−12.答案:x<1.解析:12-2(x+2)>6x+3(x-1).12-2x-4>6x+3x-3.-11x>-11.X<1.考点:方程与不等式—不等式与不等式组—解一元一次不等式.18.解不等式组{2x+4≤5(x+2)x−1<23x,把它的解集在数轴上表示出来,并求它的整数解.答案:原不等式组的整数解为-2,-1,0,1,2.解析:由2x+4≤5(x+2)得x≥-2.由x−1<23x得x<3.不等式组的解集在数轴上表示如下.∴原不等式组的解集为-2≤x<3.∴原不等式组的整数解为-2,-1,0,1,2.考点:方程与不等式—不等式与不等式组—在数轴上表示不等式的解集—一元一次不等式组的整数解.19.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表.已知可供建造沼气池的占地面积不超过370m2,该村农户共有498户.(1)满足条件的方案共有哪几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?答案:(1)方案共三种:分别是A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)A型建8个的方案最省,最低造价52万元.解析:(1)设A型的建造了x个,得不等式组:{15x+20(20−x)≤370 18x+30(20−x)≥498.解得:6≤x≤8.5.三方案:A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)当x=6时,造价2×6+3×14=54.当x=7时,造价2×7+3×13=53.当x=8时,造价2×8+3×12=52.故A型建8个的方案最省,最低造价52万元.考点:方程与不等式—不等式与不等式组—一元一次不等式组的应用—最优化方案.20.服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?答案:(1)甲种服装最多购进75件.(2)当0<a<10时,购进甲种服装75件,乙种服装25件.当a=10时,按哪种方案进货都可以.当10<a<20时,购进甲种服装65件,乙种服装35件.解析:(1)设购进甲种服装x件,由题意可知.80x+60(100-x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75.W=(40-a)x+30(100-x)=(10-a)x+3000.方案1:当0<a<10时,10-a>0,w随x的增大而增大.所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件.方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以.方案3:当10<a<20时,10-a<0,w随x的增大而减小.所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.考点:方程与不等式—不等式与不等式组—一元一次不等式的应用—一元一次不等式组的应用—最优化方案.21.解答下列问题:(1)计算:2xx+1−2x+6x2−1÷x+3x2−2x+1.(2)解分式方程:3x+1+1x−1=6x2−1.答案:(1)2x+1.(2)x=2.解析:(1)原式=2xx+1−2(x+3)(x+1)(x−1)÷(x−1)2x+3.=2xx+1−2(x−1)x+1=2x+1.(2)3(x-1)+x+1=6.3x-3+x+1=6.4x=8.x=2.检验:当x=2时,x2+1≠0.故x=2是该分式方程的解.考点:式—分式—分式的加减法—简单异分母分式的加减.方程与不等式—分式方程—解分式方程—常规法解分式方程.22.解下列方程:(1)5x−4x−2=4x+103x−6−1.(2)x−2x+2−x+2x−2=8x2−4.答案:(1)x=2是方程的增根,原方程无解.(2)x=-1.解析:(1)等式两边同乘以3(x-2)得,3(5x-4)=4x+10.解得x=2.检验x=2时,2(x-2)=0.∴ x=2是方程的增根,原方程无解.(2)两边同乘x2-4.得:-8x=8.X=-1.经检验x=-1是原方程的解.考点:方程与不等式—分式方程—解分式方程—常规法解分式方程.分式方程解的情况—分式方程有解—分式方程有增根.23.若分式方程2xx+1−m+1x2+x=x+1x产生增根,则m的值为.答案:-2或1.解析:方程两边都乘x(x+1).得x2-(m+1)=(x+1)2.∵原方程有增根.∴最简公分母x(x+1)=0.解得x=0或-1.当x=0时,m=-2.当x=-1时,m=0.故m的值可能是-2或0.考点:方程与不等式—分式方程—分式方程解的情况—根据增根求参数.24.在“春节”前夕,某花店用13000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的12,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?答案:第二批鲜花每盒的进价是 120元.解析:设第二批鲜花每盒的进价是x元.依题意有:6000x =12×13000x+10.解得x=120.经检验:x=120是原方程的解,且符合题意.答:第二批鲜花每盒的进价是120元.考点:方程与不等式—分式方程—分式方程的应用.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独完成此项任务比乙队单独完成此项任务多用10天,且乙队每天的工作效率是甲队每天工作效率的1.5倍.(1)甲、乙两队单独完成此项任务各需要多少天?(2)若甲、乙两队共同工作4天后,乙队因工作需要停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,如果要完成任务,那么甲队再单独施工多少天?答案:(1)甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)甲队再单独施工10天.解析:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天.由题意可得:1x = 1.5x+10.解得:x=20.经检验,x=20是原方程的解.∴x+10=30(天).答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)设甲队再单独施工a天,由题意可得:(130+120)×4+230×a=1.解得:a=10.答:甲队再单独施工10天.考点:方程与不等式—一元一次方程—一元一次方程的应用—工程问题.分式方程—分式方程的应用.。
七年级数学下册《不等式的性质》练习题及答案(人教版)

=
∵不论m为何值, <0
∴A-B<0
即A<B;
(3)(3a+2b)-(2a+3b)
=3a+2b-2a-3b
=a-b
当a>b时,a-b>0,此时3a+2b>2a+3b;
当a=b时,a-b=0,此时3a+2b=2a+3b;
当a<b时,a-b<0,此时3a+2b<2a+3b.
A.第一象限B.第二象限C.第三象限D.第四象限
8.下列命题错误的是()
9.已知 ,下列不等式中,变形正确的是()
A. B. C. D.
10.若 ,且 ,则().
A. 有最小值 B. 有最大值1
C. 有最大值2D. 有最小值
二、填空题
11.比较大小: _____ (填“>”、“ ”、“<”号).
12.如果a<b,那么3-2a_______3-2b.
(1)试比较代数式5 ﹣4m+2与4 ﹣4m﹣7的值之间的大小关系;
(2)已知A=5 ﹣4( m﹣ ),B=7( ﹣m)+3,请你运用前面介绍的方法比较代数式A与B的大小.
(3)比较3a+2b与2a+3b的大小.
参考答案
1.C
2.D
3.D
4.B
5.B
6.B
7.D
8.Bห้องสมุดไป่ตู้
9.C
10.C
11.<
12.>
13.x>2
A. B. C. D.
5.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()
A.a﹣c>b﹣cB.a+c<b+cC.ac>bcD.
初一数学一元一次不等式练习题汇总(复习用)含答案

一元一次不等式和一元一次不等式组培优训练一、填空题1. 比较大小:-3________-π,-0.22______(-0.2)2;2. 若2-x<0,x________2;3. 若>0,则xy_________0;4. 代数式的值不大于零,则x__________;5. a、b关系如下图所示:比较大小|a|______b,-6. 不等式13-3x>0的正整数解是__________;7. 若|x-y|=y-x,是x___________y;8. 若x≠y,则x2+|y|_________0;9. 不等式组的解集是____________.二、选择题在下列各题中的四个备选答案中,只有一个是正确的,将正确答案前的字母填在括号内:1.若|a|>-a,则a的取值范围是( ).(A)a>0; (B)a≥0; (C)a<0; (D)自然数.2.不等式23>7+5x的正整数解的个数是( ).(A) 1个;(B)无数个;(C)3个;(D)4个.3.下列命题中正确的是( ).(A) 若m≠n,则|m|≠|n|; (B)若a+b=0,则ab>0;(C)若ab<0,且a<b,则|a|<|b|; (D)互为例数的两数之积必为正.4.无论x取什么数,下列不等式总成立的是( ).(A) x+5>0; (B)x+5<0; (C)-(x+5)2<0;(D)(x-5)2≥0.5.若,则x的取值范围是( ).(A)x>1; (B)x≤1;(C)x≥1; (D)x<1.三、解答题1.解不等式(组),并在数轴上表示它们的解集.(1)(x-1)≥1; (2);(3)(4)2. x取什么值时,代数式的值不小于代数式的值.3. K取何值时,方程=5(x-k)+1的解是非负数.4. k为何值时,等式|-24+3a|+中的b是负数?参考答案一、1.-3>-π,-22 <(-0.2)2; 2.x>2; 3.xy>0; 4.X≥2; 5.|a|>b,-,-b<-; 6.1,2,3,4; 7.x≤y; 8.x2+|y|>0; 9.无解.二、1.A; 2.C; 3.D 4.D; 5.B.三、1.(1)x≤-3;(2)x<1;(3)2≤x<8;(4)x<0;2.x≤-;3.k≥;4.k>-48.一元一次不等式能力测试题一、填空题(每空3分,共27分)1.(1)不等式的解集是________;(2)不等式的非负整数解是________;(3)不等式组的解集是______________;(4)根据图1,用不等式表示公共部分x的范围______________.2.当k________时,关于x的方程2x-3=3k的解为正数.3.已知,且,那么ab________b2(填“>”“<”“=”).4.一个三角形的三边长分别是3,1-2m,8,则m的取值范围是________.5.若不等式的解集为,则m的值为________.6.若不等式组无解,则m的取值范围是________.二、选择题(每小题4分,共24分)7. 如果不等式的解集为,那么( )A.B.C.D.m为任意有理数8.如果方程有惟一解,则( )A.B.C.D.9.下列说法①是不等式的一个解;②当时,;③不等式恒成立;④不等式和解集相同,其中正确的个数为( )A.4个 B.3个 C.2个 D.1个10.下面各个结论中,正确的是( )A.3a一定大于2a B.一定大于aC.a+b一定大于a-b D.a2+1不小于2a11.已知-1<x<0,则x、x2、三者的大小关系是( )A.B.C.D.12.已知a=x+2,b=x-1,且a>3>b,则x的取值范围是( ) A.x>1 B.x<4 C.x>1或x<4 D.1<x<4三、解答题13.解下列不等式(组).(12分)(1)(2)14.已知满足不等式的最小正整数是关于x的方程的解,求代数式的值.(12分)15.某人9点50分离家赶11点整的火车.已知他家离火车站10千米.到火车站后,进站、“非典”健康检查、检票等事项共需20分钟.他离家后以3千米/时的速度走了1千米,然后乘公共汽车去火车站.问公共汽车每小时至少行驶多少千米才能不误当次火车?(12分)16.某企业为了适应市场经济的需要,决定进行人员结构调整.该企业现有生产性行业人员100人,平均每人全年可创造产值a元.现欲从中分流出x人去从事服务性行业.假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业全年总产值的一半,试确定分流后从事服务性行业的人数.(12分)一元一次不等式能力测试题参考答案一、填空题1. (1)(2)0,1,2 (3)(4)2.k>-13.>4.5.6.二、选择题7.C 8.D 9.A 10.D 11.D 12.D三、解答题13.(1)(2)x<2 14.15.18千米/时 16.15人功16人一、选择题:(每小题3分,共30分)1、下列不等式中,是一元一次不等式的是()A; B; C; D;2、“x大于-6且小于6”表示为()A -6<x<6;B x>-6,x≤6;C -6≤x≤6; D -6<x≤6;3、解集是x≥5的不等式是()A x+5≥0B x–5≥0C –5–x ≤0D 5x–2 ≤–94、不等式组的解是( )A、x≤2B、x≥2C、-1<x≤2D、x>-15、不等式组的解集在数轴上表示正确的是()6、下列不等式组无解的是()A.B.C.D.7、不等式组的正整数解的个数是()A.1个 B.2个 C.3个 D.4个8、等式组的解集是,则m的取值范围是()A.m ≤2 B.m≥2 C.m≤1 D. m>19、关于x的一元一次方程4x-m+1=3x-1的解是负数,则m的取值范围是()A m=2B m>2C m<2 Dm≤210、ax>b的解集是()A.; B.; C.; D.无法确定;二、填空题(每题4分,共20分)1、不等式的解集是:;不等式的解集是:;2、不等式组的解集为 . 不等式组的解集为 .3、不等式组的解集为 . 不等式组的解集为 .4、当x 时,3x-2的值为正数;x为时,不等式的值不小于7;5、已知不等式组无解,则的取值范围是三、解不等式(组),并在数轴上表示它的解集(每题6分,共24分)(1)(2)(3)(4)三、根据题意列不等式(组)——只列式,不求解;(每题6分,共12分)1、某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?解:设,依题意得:2、小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?解:设,依题意得:四、解答题:(每题7分,共14分)1、若方程组的解、的值都不大于1,求的取值范围。
七年级数学下册不等式与不等式组练习题

七年级数学下册不等式与不等式组练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____2.已知关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,那么实数m 的取值范围是__________. 3.已知3a ≤,则负整数=a _____.4.已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____. 5.已知函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,则m =_____. 6.若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.二、单选题7.在二元一次方程12x +y =8中,当y <0时,x 的取值范围是( ).A .23x <B .23x >-C .23x >D .23x <- 8.已知x a <的解中最大的整数解为3,则a 的取值范围为( )A .34x <<B .34x <≤C .34x ≤<D .34x ≤≤9.下列结论:①一个数和它的倒数相等,则这个数是±1和0;①若﹣1<m <0,则21m m m <<;①若a +b <0,且0b a>,则33a b a b +=--;①若m 是有理数,则|m |+m 是非负数;①若c <0<a <b ,则(a ﹣b )(b ﹣c )(c ﹣a )>0;其中正确的有( )A .1个B .2个C .3个D .4个10.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个11.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠ 12.已知方程3a 1a a 44a --=--,且关于x 的不等式a x b <≤只有4个整数解,那么b 的取值范围是( ) A .23b <≤ B .34b <≤ C .23b ≤< D .34b ≤<三、解答题13.在数轴上有A ,B 两点,其中点A 所对应的数是a ,点B 所对应的数是1.已知A ,B 两点的距离小于3,请你利用数轴.(1)写出a 所满足的不等式;(2)数﹣3,0,4所对应的点到点B 的距离小于3吗.14.解方程:-314x x +=.15.比较大小:和4;和12.参考答案:1.12y <- 【分析】根据不等式的性质可得b a-2=,0a >,进而可得0b <,据此即可求解. 【详解】解:①关于x 的不等式ax <-b 的解集x <2,①b x a<-,b a -2=,0a >, 0b ∴<,∴关于y 的不等式by >a 的解集为a y b<, 2b a=-, ①1=2a b - ∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a=-是解题的关键. 2.m <94且m ≠0##m ≠0且m <94 【分析】根据判别式①>0时一元二次方程有两个不相等的实数根求解不等式即可.【详解】解:①关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,①①=(2m -3)2-4m (-2+m )=-4m +9>0,且m ≠0,解得:m <94且m ≠0, 故答案为:m <94且m ≠0. 【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,熟练掌握一元二次方程根与判别式的关系是解答的关键,注意二次项系数不为0.3.1-,2-,3-.【分析】直接根据绝对值的概念可得a 的取值范围,然后列举出负整数即可.【详解】①3a ≤,①33a -≤≤.①a 为负整数,①a 为1-,2-,3-.故答案为:1-,2-,3-.【点睛】此题主要考查绝对值的概念及一元一次不等式组的整数解,正确理解绝对值的概念是解题关键. 4.1a >.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a 的代数式表示出x y -,再根据0x y ->,即可求得a 的取值范围,本题得以解决.【详解】解:235423x y a x y a +=⎧⎨+=+⎩①②①-①,得33x y a -=-①0x y ->①330a ->,解得1a >,故答案为:1a >.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键. 5.-3【分析】根据解析式是关于x 的一次函数,只经过二、四象限可知函数为正比例函数,k <0,b =0,列方程与不等式求解即可.【详解】解:函数y =(2m ﹣4)x +m 2﹣9是关于x 的一次函数,①函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,①224090m m -⎧⎨-=⎩<, 解得23m m ⎧⎨=±⎩<, ①m =3>2舍去,m =-3<2,满足条件,①m=-3,故答案为-3.【点睛】本题考查一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程,掌握一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程是解题关键.6.1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=-- 去分母得:323x x -+-=-解得:1x =经检验,1x =是分式方程的解把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则. 7.C【解析】略8.B【分析】根据x a <的解中最大的整数解为3,则3x =是不等式的解,则3a >,同时4x =不是不等式的解,则4a ≤,从而求解.【详解】解:①x a <的解中最大的整数解为3,①3x =是不等式的解,则3a >,又①同时4x =不是不等式的解,则4a ≤,①34a <≤,故选B .【点睛】本题主要考查了不等式的整数解,解题的关键在于能够熟练掌握相关知识进行求解.9.C【分析】根据绝对值的性质,倒数的性质,不等式的性质,有理数的运算法则依次判断即可.【详解】①0没有倒数,①①错误.①﹣1<m <0, ①1m<0,2m >0, ①①错误.①a +b <0,且0b a>,①a <0,b <0,①a +3b <0,①|a +3b |=﹣a ﹣3b .①①正确.①|m |≥﹣m ,①|m |+m ≥0,①①正确.①c <0<a <b ,①a ﹣b <0,b ﹣c >0,c ﹣a <0,①(a ﹣b )(b ﹣c )(c ﹣a )>0正确,①①正确.故选:C .【点睛】本题考查绝对值,倒数,不等式的性质,有理数的运算法则,正确掌握相关法则是求解本题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11.D【分析】方程为一元二次方程,故a ≠0,再结合根的判别式:当24b ac -≥0时,方程有实数根;即可求解.【详解】解:①原方程为一元二次方程,且有实数根,①a ≠0,24b ac -≥0时,方程有实数根;①2(2)40a --≥,解得:a ≤1,①1a ≤且0a ≠,故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练地掌握根的判别式与根的关系是解题的关键.当24b ac -≥0时,方程有实数根,当24b ac -<0时,方程无实数根.12.D【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:分式方程去分母得:3-a -a 2+4a =-1,即a 2-3a -4=0,分解因式得:(a -4)(a +1)=0,解得:a =-1或a =4,经检验a =4是增根,分式方程的解为a =-1,当a =-1时,由a <x ≤b 只有4个整数解,得到3≤b <4.故选:D .【点睛】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键. 13.(1) −2<a<4;(2) 小于3【分析】根据数轴上两点之间的距离为这两个数差的绝对值,列出不等式并解出结果.【详解】解:(1)根据题意得:|a −1|<3,得出−2<a <4,(2)由(1)得:到点B 的距离小于3的数在−2和4之间,①在−3,0,4三个数中,只有0所对应的点到B 点的距离小于3.【点睛】本题考查了数轴上两点之间的距离为两个数差的绝对值,以及解不等式,难度适中.14.x =32 或x =﹣54【分析】利用绝对值的性质,将方程转化为314xx +﹣=或314x x +﹣=﹣,再分情况讨论: 当3x +1>0时可得到|3x +1|=3x +1;当3x +1<0时可得到|3x +1|=-3x -1,分别求出对应的方程的解即可. 【详解】解:原方程式化为-314x x +=或31-4xx +﹣=, 当3x +1>0时,即x >﹣13, 由-314x x +=得-3-14x x =,①x =﹣52与x >﹣13 不相符,故舍去; 由-31-4x x +=得314x x﹣﹣=﹣,①x=32,符合题意;当3x+1<0时,即x<﹣13,由-314x x+=得314x x++=,①x=34与x<﹣13不相符,故舍去;由-31-4x x+=得314x x++=﹣,①x=﹣54,符合题意;故原方程的解是x=32或x=﹣54.【点睛】本题主要考查的是含有绝对值符号的一元一次方程的解法.分类讨论是解题的关键.15.412<【分析】(1)根据无理数的估算即可得;(22,由此即可得.(1)解:1216<,4.(2)解:34<,<2,121<-11<,12<.【点睛】本题考查了实数的大小比较、无理数的估算,熟练掌握无理数的估算是解题关键.。
完整版)初中数学不等式精选典型试题及答案

完整版)初中数学不等式精选典型试题及答案1.不等式组的整数解是指所有不等式同时成立时,所有变量取整数的解集。
2.解不等式2x-7<5-2x的正整数解有1个。
3.已知关于x的不等式组为x-30,则整数解共有6个,a的取值范围为-4≤a≤2.4.不等式x>2的解集为{x|x>2},不等式-3x>23的解集为{x|x<-7}。
5.不等式组{x+1>2x。
x-32},不等式组{x-5>x-5.5-x>6-2x}的解集为{x|x<1}。
6.不等式组{2x>x+16.5-x>mx+1/x+3}的解集为{x|x<16/3},则m值为-1.7.如果不等式5-2m>0,即m-3的解是正数,m所能取的最小整数是3.8.如果k=1,则{x+y=2.x-y=4}的解为{x=3.y=-1},满足x>1且y<1,因此k=1时成立。
9.不等式2<|x-4|<3的解集为{x|6<x<7}。
10.已知a,b和c满足a≤2,b≤2,c≤2,且a+b+c=6,则abc的最大值为8.11.已知a是自然数,关于x的不等式组{3x-4≥a。
x-2>a}的解集是{x|x≥(a+4)/3},因此a=(3x-4)-2x= x-4.12.如果关于x的不等式组{2x+7≥3x-1.x-2≤5}的解集为{x|x≥-6},则关于x的不等式组{3x-4≥a。
x-2>a}的解集为{x|x≥(a+4)/3},因此a=3(-6)-4=-22.13.不等式(2a-b)x+3a-4b4,则不等式(a-9/4b)x+2a-3b>0的解是x<9/4.14.不等式|x|+|y|<100的整数解有9901组。
15.钝角三角形的三边a,a+1,a+2满足a+2>a+1>a,且a+2>a,因此a的取值范围为1≤a≤3.16.不等式组{5x-3≥2x。
人教版七年级数学下册不等式的性质同步测试题(含解析)

人教版七年级数学下册不等式的性质同步测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列命题是真命题的是( )A .相等的两个角是对顶角B .相等的圆周角所对的弧相等C .若a b <,则22ac bc <D .在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是132.对于任意的11x -,230ax a +->恒成立,则a 的取值范围为( )A .1a >或0a =B .3a >C .3a >或0a =D .13a << 3.关于x 的不等式1ax b x -≥-在条件2(1)0a +=且|1|1b b +=--下的解( ) A .11b x a +≥+ B .11b x a +≤+ C .任一个数 D .无解 4.不等式3x +1<2x 的解在数轴上表示正确的是( )A .B .C .D .5.若关于x 的方程()251x m +=-有两个实数根,则m 的取值范围是( )6.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠ 7.不等式523x -->的非负整数解的个数是A .5个B .4个C .3个D .2个8.已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a c <<)经过点(1,0),有下列结论: ①20a b +<;①当1x >时,y 随x 的增大而增大;①关于x 的方程2()0ax bx b c +++=有两个不相等的实数根.其中,正确结论的个数是( )A .0B .1C .2D .39.已知关于x 的一元二次方程2104x x m -+=有实数根,设此方程得一个实数根为t ,令24454y t t m =--+,则( )A .2y >-B .2y ≥-C .2y ≤-D .2y <-10.下列不是不等式5x -3<6的一个解的是( )A .1B .2C .-1D .-2二、填空题11.如图所示,在①ABC 中,DE ,MN 是边AB 、AC 的垂直平分线,其垂足分别为D 、M ,分别交BC 于E 、N ,若AB =8,AC =9,设①AEN 周长为m ,则m 的取值范围为_____.12.不等式112943x x ->+的正整数解的个数为___________________. 13.已知关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,那么实数m 的取值范围是__________.14.二次函数y =ax 2﹣2ax +c (a <0)的图象过A (﹣3,y 1),B (﹣1,y 2),C (2,y 3),D (4,y 4)四个点.(1)y 3=____(用关于a 或c 的代数式表示);(2)若y 4•y 2<0时,则y 3•y 1____0(填“>”、“<”或“=”)15.不等式312x -≥的解集为________. 16.方程()2314x y z x y z ++=<<的正整数解是________.17.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____18.定义:[]x 表示不大于x 的最大整数,()x 表示不小于x 的最小整数,例如:[]2.32=,()2.33=,[]2.33-=-,()2.32-=-.则[]()1.7 1.7+-=___________.19.用四个不等式①a >b ,①a +b >2b ,①a >0,①a 2>ab 中的两个不等式作为题设,余下的两个不等式中选择一个作为结论,组成一个真命题:_______________________________.20.比大小:﹣17___﹣0.14,|5|--_______(4)--.三、解答题21.定义新运算为:对于任意实数a 、b 都有()1a b a b b ⊕=--,等式右边都是通常的加法、减法、乘法运算,比如()1212213⊕=-⨯-=-.(1)求23⊕的值.(2)若27x ⊕<,求x 的取值范围.(3)若不等式组1223x x a⊕≤⎧⎨⊕>⎩恰有三个整数解,求实数a 的取值范围. 22.关于x 的一元一次方程3132x m -+=,其中m 是正整数. (1)当2m =时,求方程的解;(2)若方程有正整数解,求m 的值.23.在班级元旦联欢会上,主持人邀李强、张华两位向学参加一个游戏.游戏规则是每人每次抽取四张卡片.如果抽到白色卡片,那么加上卡片上的数字;如果抽到黑色卡片,那么减去卡片上的数字,比较两人所抽4张卡片的计算结果,结果较小的为同学们唱歌,李强同学抽到如图(1)所示的四张卡片,张华同学抽到如图(2)所示的四张卡片.李强、张华谁会为同学们唱歌?参考答案:1.D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A 选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B 选项错误,不符合题意;若a b <,则22ac bc ≤,故C 选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D 选项正确,符合题意; 故选:D .【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.2.B【分析】分类讨论求出不等式230ax a +->的解集,再根据对于任意的11x -≤≤,230ax a +->恒成立,即可列出关于a 的不等式,解出a 即可.【详解】解:由230ax a +->,得32ax a >-,当0a >时,不等式的解集为32a x a->, 对于任意的11x -≤≤,230ax a +->恒成立, ∴321a a-<-, 解得,3a >;当0a =时,不等式无解,舍去;当0a <时,不等式的解集为32a x a-<, 对于任意的11x -≤≤,230ax a +->恒成立, ∴321a a->, 解得,1a >(与0a <矛盾,舍去);综上,3a >.故选:B .【点睛】本题考查解不等式和不等式的解集的应用.利用分类讨论的思想是解答本题的关键.3.C【分析】根据题意,先确定a 的值,进而解不等式即可. 【详解】2(1)0a +=,1a ∴=-,1ax b x -≥-,()11a x b ∴+≥+,即10b +≤由已知条件|1|1b b +=--,即10b +≤恒成立.∴不等式的解与x 的值无关,则关于x 的不等式1ax b x -≥-的解为任意一个数故选C .【点睛】本题考查了不等式的解集,非负数的性质,求得1a =-是解题的关键. 4.B【分析】先解不等式,得到不等式的解集,再在数轴上表示即可.【详解】解:3x +1<2x解得:1,x <-在数轴上表示其解集如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“小于向左拐”是解本题的关键.5.B【分析】令该一元二次方程的判根公式240b ac =-≥,计算求解不等式即可.【详解】解:①()251x m +=-①2102510x x m ++-+=①()2241042510b ac m =-=-⨯-+≥ 解得1m ≥故选B .【点睛】本题考查了一元二次方程的根与解一元一次不等式.解题的关键在于灵活运用判根公式.6.D【分析】方程为一元二次方程,故a ≠0,再结合根的判别式:当24b ac -≥0时,方程有实数根;即可求解.【详解】解:①原方程为一元二次方程,且有实数根,①a ≠0,24b ac -≥0时,方程有实数根;①2(2)40a --≥,解得:a ≤1,①1a ≤且0a ≠,故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练地掌握根的判别式与根的关系是解题的关键.当24b ac -≥0时,方程有实数根,当24b ac -<0时,方程无实数根. 7.B【分析】根据不等式的性质,解不等式即可,再根据非负整数解确定个数.【详解】解: 523x -->28284x x x ->-<<因此非负整数解有0,1,2,3.故选B【点睛】本题主要考查不等式的性质,注意0也是非负整数.8.C【详解】由题意可知:0a b c ++=,()b a c =-+,b c a +=-,0a c <<,2a c a ∴+>,即()2b a c a =-+<-,得出20b a +<,故①正确;20b a +<,∴对称轴012b x a=->,0a >,01x x ∴<<时,y 随x 的增大而减小,0x x >时,y 随x 的增大而增大,故①不正确; 22224()4()40b a b c b a a b a -+=-⨯-=+>,∴关于x 的方程2()0ax bx b c +++=有两个不相等的实数根,故①正确.故选:C .【点睛】本题考查二次函数的图象与性质及一元二次方程根的判别式,解题的关键是熟练掌握二次函数的性质并能应用求解.9.B【分析】由一元二次方程根的判别式先求解1,m ≤再利用根与系数的关系可得21,4t t m 从而可得64,y m 再利用不等式的性质可得答案. 【详解】解: 关于x 的一元二次方程2104x x m -+=有实数根, 2410,b ac m解得:1,m ≤设方程的两根分别为1,,t t111,14t t t t m 解得:41,m t t21,4t t m ∴ 24454y t t m =--+245464,t t m m1,m642,m 即 2.y故选B【点睛】本题考查的是一元二次方程根的判别式,根与系数的关系,一次函数的性质,不等式的性质,熟练的运用一元二次方程根的判别式与根与系数的关系是解本题的关键. 10.B【解析】略11.1<m <17【分析】根据线段垂直平分线的性质得到EA =EB ,NC =NA ,根据三角形的三边关系解答即可.【详解】解:①DE ,MN 是边AB 、AC 的垂直平分线,①EA =EB ,NC =NA ,①①AEN 周长为m =EA +EN +NA =EB +EN +NC =BC ,在①ABC 中,9-8<BC <9+8,①1<m <17,故答案为:1<m <17.【点睛】本题主要考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.2个【分析】先求出一元一次不等式的解,再找出其正整数解即可得. 【详解】112943x x ->+, 112943x x -->-, 152543x ->-, 209x <, 则不等式的正整数解为1,2,共2个,故答案为:2个.【点睛】本题考查了解一元一次不等式,熟练掌握不等式的解法是解题关键.13.m <94且m ≠0##m ≠0且m <94 【分析】根据判别式①>0时一元二次方程有两个不相等的实数根求解不等式即可.【详解】解:①关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根, ①①=(2m -3)2-4m (-2+m )=-4m +9>0,且m ≠0,解得:m <94且m ≠0, 故答案为:m <94且m ≠0. 【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,熟练掌握一元二次方程根与判别式的关系是解答的关键,注意二次项系数不为0.14.c<【分析】将x=2代入抛物线解析式可得y3=c,根据抛物线解析式可得抛物线开口方向及对称轴,根据各点到对称轴的距离可判断y3>y2>y4>y1,再由y4•y2<0判断出原点位置,进而求解.【详解】解:将x=2代入y=ax2﹣2ax+c得y=c,①y3=c,①y=ax2﹣2ax+c(a<0),①抛物线开口向下,对称轴为直线212axa-==-,①与抛物线对称轴距离越近的点的纵坐标越大,①A点离对称轴距离为4,B点离对称轴距离为2,C点离对称轴距离为1,D点离对称轴距离为3,①y3>y2>y4>y1,若y4•y2<0,则y3>y2>0>y4>y1,①y3•y1<0,故答案为:c,<.【点睛】本题考查二次函数图象的性质,根据二次函数的对称性求出y3>y2>y4>y1再由不等式的性质找出原点位置是解题关键.15.5x≥【分析】根据解一元一次不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1可得答案.【详解】解:31 2x-≥去分母,得x-3≥2,移项,得x≥2+3,合并同类项,系数化1,得,x≥5,故答案为:x≥5.【点睛】本题考查了解一元一次不等式,解题的关键掌握解一元一次不等式的方法步骤.16.123x y z =⎧⎪=⎨⎪=⎩【分析】由()2314x y z x y z ++=<<,可得出73x <,73z >,又由,,x y z 均为正整数,分析即可得到正确答案.【详解】解:①x y z <<, ①2233x y x z <⎧⎨<⎩①62314x x y z <++= ①73x <, 同理可得:73z > 又①,,x y z 均为正整数①满足条件的解有且只有一组,即123x y z =⎧⎪=⎨⎪=⎩故答案为:123x y z =⎧⎪=⎨⎪=⎩【点睛】本题考查三元一次方程的变式,牢记相关的知识点并能够灵活应用是解题关键.17.12y <- 【分析】根据不等式的性质可得b a-2=,0a >,进而可得0b <,据此即可求解. 【详解】解:①关于x 的不等式ax <-b 的解集x <2, ①b x a<-,b a -2=,0a >, 0b ∴<,∴关于y 的不等式by >a 的解集为a y b<, 2b a=-, ①1=2a b -∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a=-是解题的关键. 18.0【分析】根据题意,[1.7]中不大于1.7的最大整数为1,(-1.7)中不小于-1.7的最小整数为-1,则可解答【详解】解:依题意:[1.7]=1,(-1.7)=-1①[]()1.7 1.711=0+-=-故答案为:0【点睛】此题主要考查有理数大小的比较,读懂题意,即可解答.19.题设:①a b >,①0a >,结论:①2a b b +>,①2a ab >【分析】根据题意写出命题,根据不等式的性质1、性质2证明即可.【详解】题设:①a b >,①0a >,结论:①2a b b +>,①2a ab >,是真命题.证明:①a b >,①a b b b +>+,即2a b b +>,①a b >,且0a >,①2a ab >,故答案为:题设:①a b >,①0a >,结论:①2a b b +>,①2a ab >.【点睛】本题考查了命题和定理,掌握真命题的概念、不等式的性质是解题的关键. 20. < <【分析】根据两个负数比较大小,其绝对值大的反而小比较即可;先化简符号,再比较即可. 【详解】解:﹣17=15049,0.147350350-=-=, ①5049350350>, ①﹣17<﹣0.14; ①|5|--=-5<0,(4)--=4,①|5|--<(4)--,故答案为:<,<.【点睛】本题考查了绝对值,有理数的大小比较,能熟记有理数的大小比较法则和绝对值的意义是解此题的关键.21.(1)4-(2)6x <(3)42a -≤<【分析】(1)利用新运算的规则直接进行计算即可;(2)利用新运算的规则对不等式转化,再进行求解;(3)利用新运算的规则对不等式组进行转化,然后解不等式组,再结合该不等式组恰有3个整数解确定a 的取值范围.(1)解:23(23)314⊕=-⨯-=-.(2) 解:27x ⊕<,∴(2)217x -⨯-<,∴6x <.(3)解:由1223x x a ⊕≤⎧⎨⊕>⎩,得(1)112(23)31x x a -⨯-≤⎧⎨-⨯->⎩①②, 解不等式①,得4x ≤;解不等式①,得106a x +>. ∴原不等式组的解集为1046a x +<≤. 又原不等式组恰有3个整数解,∴原不等式的整数解为2,3,4. ∴10126a +≤<, 解得42a -≤<.【点睛】本题考查了对定义新运算理解与运用,解不等式(组),解决本题的关键是将新运算转化为普通四则运算进行求解.22.(1)1x =(2)2m =【分析】(1)把m =2代入方程,求解即可;(2)把m 看做常数,求解方程,然后根据方程解题正整数,m 也是正整数求解即可. (1)解:当2m =时,原方程即为31232x -+=. 去分母,得3146x -+=.移项,合并同类项,得33x =.系数化为1,得1x =.∴当2m =时,方程的解是1x =. (2)解:去分母,得3126x m -+=.移项,合并同类项,得372x m =-.系数化为1,得723m x -=. m 是正整数,方程有正整数解,2m ∴=.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程是解题的关键.23.张华为同学们唱歌.【分析】首先根据游戏规则,分别求出李强、张华同学抽到的四张卡片的计算结果各是多少;然后比较大小,判断出结果较小的是哪个即可.【详解】解:李强同学抽到的四张卡片的计算结果为:13(5)422⎛⎫-+---+ ⎪⎝⎭ 135422=--++ 7=张华同学抽到的四张卡片的计算结果为:7110563⎛⎫----+ ⎪⎝⎭ 78566=-++ 156= ①1756>,①张华为同学们唱歌.答:张华为同学们唱歌.【点睛】本题以游戏为载体考查了有理数的加减运算以及有理数的比较大小,还是那个知识点但出题的形式变了,题目较为新颖.。
初中七年级数学不等式应用题专项练习(含答案解析)

初中七年级数学不等式应用题专项练习(含答案解析)1.两名教师和若干名学生要选择旅游公司。
甲公司的优惠条件是1名教师全额收费,其余7.5折收费;乙公司的优惠条件是全部师生8折收费。
要求求出学生人数超过多少人时,甲公司比乙公司更优惠。
2.老师说班级一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还有不足6位学生在玩足球。
求班级学生总数。
3.某工程队要招聘甲、乙两种工人150人。
甲、乙两种工种的月工资分别为600元和1000元。
现要求乙种工种的人数不少于甲种工种人数的2倍。
问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?4.某商店以每辆300元的进价购入200辆自行车,并以每辆400元的价格销售。
两个月后自行车的销售款已超过这批自行车的进货款。
问这时至少已售出多少辆自行车?5.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。
如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本。
设该校买了m本课外读物,有x名学生获奖。
解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数。
6.某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地。
已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出。
求:(1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示);(2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?7.用甲、乙两种原料配制成某种果汁。
已知这两种原料的维生素C的含量及购买这两种原料的价格如表。
现制作这种果汁200kg,要求至少含有52,000单位的维生素C。
试写出所需甲种原料的质量x(kg)应满足的不等式。
2.如果要求购买甲、乙两种原料的费用不超过1800元,那么需要满足以下不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学不等式练习题及答案
1.(2009•枣庄)实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()
D.a﹣b<0
A.a b>0 B.a+b<0 /
C.<1
2.(2005•丽水)据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)
的范围是()
A.t<17 ^
t>25 C.t=21 D.17≤t≤25
B.
3.(2009•临沂)若x>y,则下列式子错误的是()
>
x﹣3>y﹣3 B.3﹣x>3﹣y C.x+3>y+2 D.
A.
/
4.(2008•恩施州)如果a<b<0,下列不等式中错误的是()
A.a b>0 B.a+b<0 C.<1 |
a﹣b<0
D.
5.(2006•镇江)如果a<0,b>0,a+b<0,那么下列关系式中正确的是()
b>a>﹣b>﹣a D.﹣a>b>﹣b>a
A.a>b>﹣b>﹣a B.a>﹣a>b>﹣b ;
C.
6.下列说法:①x=0是2x﹣1<0的一个解;②不是3x﹣1>0的解;③﹣2x+1<0的解集是x>2;④
的解集是x>1.其中正确的个数是()
2个C.3个D.4个
A.1个-
B.
7.(2009•河池)一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()
&
B.C.D.
A.
@
8.(2007•武汉)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()
D.x>2
A.x<4 B.x<2 C..
2<x<4
9.(2008•无锡)不等式>1的解集是()
C.x<﹣2 D.x <﹣
A.x >﹣B.@
x>﹣2
10.(2007•双柏县)不等式2x>3﹣x的解集是()
B.x<3 C.x>1 D.x<1
A.}
x>3
11.(2007•枣庄)不等式2x﹣7<5﹣2x正整数解有()
¥A.1个B.2个C.3个D.】
4个
12.不等式12﹣4x≥13的正整数解的个数是()
A.0个B.1个C.…
D.3个
2个
13.“x的2倍与3的差不大于8”列出的不等式是()
C.2x﹣3<8 D.2x﹣3>8
A.2x﹣3≤8B.|
2x﹣3≥8
14.(2008•赤峰)用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么abc这三种物体按质
量从大到小的顺序排列应为()
/A.a=b>c B.b>a>c C.a>c>b D.[
c>b>a 15.(2009•鄂州)根据下面两图所示,对a、b、c三种物体的重量判断不正确的是()
a>c D.b<c
A.a<c B.a<b ;
C.
16.(2012•呼伦贝尔)不等式组的解集在数轴上表示正确的是()
A .{B
.
C
.
D
.
;
17.(2010•东阳市)不等式组的解集在数轴上表示正确的是()
A.B.C.【
D.
18.(2009•崇左)不等式组的整数解共有()
A.3个B.:
4个
C.5个D.6个
19.(2005•泰州)不等式组的正整数解的个数是()
)
A.
1个B.2个C.3个D.4个
%
20.(2005•菏泽)若使代数式的值在﹣1和2之间,x可以取的整数有()
A.1个B.2个C.
3个
D.4个
二.填空题(共2小题)
21.(2009•孝感)关于x的不等式组的解集是x>﹣1,则m= _________ .22.(2009•凉山州)若不等式组的解集是﹣1<x<1,则(a+b)2009= _________ .
三.解答题(共8小题)
"
23.(2007•滨州)解不等式组把解集表示在数轴上,并求出不等式组的整数解.24.(2005•南京)解不等式组,并写出不等式组的整数解.
25.(2002•潍坊)解不等式组,并求其整数解.。
26.(2010•楚雄州)某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.
(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;
(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1
300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?
:
27.(2008•自贡)解不等式组.
28.(2008•苏州)解不等式组:,并判断是否满足该不等式组.
29.(2009•天津)解不等式组
$
30.(2009•太原)某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案?
产品名称每件产品的产值(万元)
甲45
乙75
》
2014年06月01日1051948749的初中数学组卷
参考答案与试题解析
一.选择题(共20小题)
1.(2009•枣庄)实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()
¥A.a b>0 B.a+b<0 C.
<1 D.—
a﹣b<0
考
点
:
不等式的定义;实数与数轴.
分
析
:
先根据数轴上点的特点确定a、b的符号和大小,再逐一进行判断即可求解.
解答:解:由实数a,b在数轴上的对应点得:a<b<0,|a|>|b|,
A、∵a<b<0,∴ab>0,故选项正确;
B、∵a<b<0,∴a+b<0,故选项正确;
C、∵a<b<0,∴>1,故选项错误;
D、∵a<b<0,∴a﹣b<0,故选项正确.
故选C.
点评:本题考查的知识点为:两数相乘,同号得正;同号两数相加,取相同的符号;两数相除,同号得正.确定符号为正后,绝对值大的数除以绝对值小的数一定大于1较小的数减较大的数一定小于0.
2.(2005•丽水)据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)的范围是()
A.t<17 B.t>25 C.t=21 D.17≤t≤25
考点
:
不等式的定义.
分析
:
读懂题意,找到最高气温和最低气温即可.
解答:解:因为最低气温是17℃,所以17≤t,最高气温是25℃,t≤25,则今天气温t(℃)的范围是17≤t≤25.故选D .
点评
:
解答此题要知道,t包括17℃和25℃,符号是≤,≥.3.(2009•临沂)若x>y,则下列式子错误的是()。