七大晶系十四种布喇菲格子

合集下载

空间点阵空间点阵到底有多少种排列形式?按照每个阵点的周围环境

空间点阵空间点阵到底有多少种排列形式?按照每个阵点的周围环境

-空间点阵空间点阵到底有多少种排列形式?按照“每个阵点的周围环境相同”的要求,在这样一个限定条件下,法国晶体学家布拉菲(A. Bravais)曾在1848年首先用数学方法证明,空间点阵只有14种类型。

这14种空间点阵以后就被称为布拉菲点阵。

空间点阵是一个三维空间的无限图形,为了研究方便,可以在空间点阵中取一个具有代表性的基本小单元,这个基本小单元通常是一个平行六面体,整个点阵可以看作是由这样一个平行六面体在空间堆砌而成,我们称此平行六面体为单胞。

当要研究某一类型的空间点阵时,只需选取其中一个单胞来研究即可。

在同一空间点阵中,可以选取多种不同形状和大小的平行六面体作为单胞,如图1-8所示。

一般情况下单胞的选取有以图1-8 空间点阵及晶胞的不同取法图1-9面心立方阵胞中的固体物理原胞图1-10晶体学选取晶胞的原则下两种选取方式:1.固体物理选法在固体物理学中,一般选取空间点阵中体积最小的平行六面体作为单胞,这样的单胞只能反映其空间点阵的周期性,但不能反映其对称性。

如面心立方点阵的固体物理单胞并不反映面心立方的特征,如图1-9所示。

2.晶体学选法由于固体物理单胞只能反映晶体结构的周期性,不能反映其对称性,所以在晶体学中,规定了选取单胞要满足以下几点原则(如图1-10所示):①要能充分反映整个空间点阵的周期性和对称性;②在满足①的基础上,单胞要具有尽可能多的直角;③在满足①、②的基础上,所选取单胞的体积要最小。

根据以上原则,所选出的14种布拉菲点阵的单胞(见图1-12)可以分为两大类。

一类为简单单胞,即只在平行六面体的 8个顶点上有结点,而每个顶点处的结点又分属于 8个相邻单胞,故一个简单单胞只含有一个结点。

另一类为复合单胞(或称复杂单胞),除在平行六面体顶点位置含有结点之外,尚在体心、面心、底心等位置上存在结点,整个单胞含有一个以上的结点。

14种布拉菲点阵中包括7个简单单胞,7个复合单胞。

图1-11 单晶胞及晶格常数根据单胞所反映出的对称性,可以选定合适的坐标系,一般以单胞中某一顶点为坐标原点,相交于原点的三个棱边为X、Y、Z三个坐标轴,定义X、Y轴之间夹角为γ,Y、Z之间夹角为α,Z、X轴之间夹角为β,如图1-11所示。

布拉维晶格在三维平面上的七大晶系14种晶格

布拉维晶格在三维平面上的七大晶系14种晶格

布拉维晶格在三维平面上有七大晶系,14种晶格分别为三斜晶系、单斜晶系、正交晶系、四方晶系、立方晶系、三方晶系、六角晶系。

依照简单、体心、面心及底心一、等轴晶系(立方晶系)等轴晶系的三个轴长度一样,且相互垂直,对称性最强。

这个晶系的晶体通俗地说就是方块状、几何球状,从不同的角度看高低宽窄差不多。

如正方体、八面体、四面体、菱形十二面体等,它们的相对晶面和相邻晶面都相似,这种晶体的横截面和竖截面一样。

此晶系的矿物有黄铁矿、萤石、闪锌矿、石榴石,方铅矿等。

请看这种晶系的几种常见晶体的理论形态:等轴晶系的三个晶轴(x轴y轴z轴)一样长,互相垂直常见的等轴晶系的晶体模型图等轴晶系的各种宝石金刚石晶体翠榴石黄铁矿萤石八面体和立方体的聚形的方铅矿二、四方晶系四方晶系的三个晶轴相互垂直,其中两个水平轴(x轴、y轴)长度一样,但z轴的长度可长可短。

通俗地说,四方晶系的晶体大都是四棱的柱状体,(晶体横截面为正方形,但有时四个角会发育成小柱面,称“复四方”),有的是长柱体,有的是短柱体。

再,四方晶系四个柱面是对称的,即相邻和相对的柱面都一样,但和顶端不对称(不同形);所有主晶面交角都是九十度交角。

请看模型图:四方晶系的晶体如果z轴发育,它就是长柱状甚至针状;如果两个横轴(x、y)发育大于竖轴z轴,那么该晶体就是四方板状常见的一些四方晶系的晶体模型符山石的晶体锡石的长柱状晶体(顶端另有斜生的小晶体)。

请注意看柱体的棱角发育成窄小晶面,此种晶体又叫“复四方”——四个主柱面,四个小柱面这是短柱状锆石,柱体几乎不发育。

象个四方双锥体或假八面体三、三方晶系和六方晶系三方晶系和六方晶系有许多相似之处,一些矿物专著和科普书刊往往将二者合并在一起,或干脆就称晶体有六大晶系。

与前面讲的五个晶系最大的不同是三方/六方晶系的晶轴有四根,即一根竖直轴(z轴)三根水平横轴(x、y、u轴)。

竖轴与三根横轴的交角皆为90度垂直,三根横轴间的夹角为120度(六方晶系为60度,也可说成三横轴前端交角120度。

布拉菲点阵

布拉菲点阵

关于奥古斯特·布拉菲及布拉菲点阵浅析奥古斯特·布拉菲(August Bravais,1811—1863),法国物理学家,于1845年推导出了三维晶体原子排列的所有14种点阵结构,首次将群的概念应用到物理学,为固体物理学做出了重大贡献。

这是非常有意义的结论,为了纪念他,后人称这14种点阵为布拉菲点阵。

除此之外,布拉菲还对磁性、极光、气象、植物地理学、天文学和水文学等方面进行过研究。

图1 奥古斯特·布拉菲在几何学以及晶体学中,布拉菲晶格(又译布拉菲点阵)是为了纪念奥古斯特·布拉维在固态物理学的贡献命名的。

法国晶体学家布拉菲(A.Bravais)于1850年用数学群论的方法推导出空间点阵只能有十四种: 简单三斜、简单单斜、底心单斜、简单正交、底心正交、体心正交、面心正交、简单六方、简单菱方、简单四方、体心四方、简单立方、体心立方、面心立方。

根据其对称特点,它们分别属于七个晶系。

空间点阵到底有多少种排列形式?按照“每个阵点的周围环境相同”的要求,在这样一个限定条件下,法国晶体学家布拉菲(A. Bravais)曾在1848年首先用数学方法证明,空间点阵只有14种类型。

这14种空间点阵以后就被称为布拉菲点阵。

空间点阵是一个三维空间的无限图形,为了研究方便,可以在空间点阵中取一个具有代表性的基本小单元,这个基本小单元通常是一个平行六面体,整个点阵可以看作是由这样一个平行六面体在空间堆砌而成,我们称此平行六面体为单胞。

当要研究某一类型的空间点阵时,只需选取其中一个单胞来研究即可。

在同一空间点阵中,可以选取多种不同形状和大小的平行六面体作为单胞,如下图所示:其选取方式有,1.固体物理选法:在固体物理学中,一般选取空间点阵中体积最小的平行六面体作为单胞,这样的单胞只能反映其空间点阵的周期性,但不能反映其对称性。

如面心立方点阵的固体物理单胞并不反映面心立方的特征。

2.晶体学选法:由于固体物理单胞只能反映晶体结构的周期性,不能反映其对称性,所以在晶体学中,规定了选取单胞要满足以下几点原则:①要能充分反映整个空间点阵的周期性和对称性;②在满足①的基础上,单胞要具有尽可能多的直角;③在满足①、②的基础上,所选取单胞的体积要最小。

布拉菲点阵

布拉菲点阵

关于奥古斯特·布拉菲及布拉菲点阵浅析奥古斯特·布拉菲(August Bravais,1811—1863),法国物理学家,于1845年推导出了三维晶体原子排列的所有14种点阵结构,首次将群的概念应用到物理学,为固体物理学做出了重大贡献。

这是非常有意义的结论,为了纪念他,后人称这14种点阵为布拉菲点阵。

除此之外,布拉菲还对磁性、极光、气象、植物地理学、天文学和水文学等方面进行过研究。

图1 奥古斯特·布拉菲在几何学以及晶体学中,布拉菲晶格(又译布拉菲点阵)是为了纪念奥古斯特·布拉维在固态物理学的贡献命名的。

法国晶体学家布拉菲(A.Bravais)于1850年用数学群论的方法推导出空间点阵只能有十四种: 简单三斜、简单单斜、底心单斜、简单正交、底心正交、体心正交、面心正交、简单六方、简单菱方、简单四方、体心四方、简单立方、体心立方、面心立方。

根据其对称特点,它们分别属于七个晶系。

空间点阵到底有多少种排列形式?按照“每个阵点的周围环境相同”的要求,在这样一个限定条件下,法国晶体学家布拉菲(A. Bravais)曾在1848年首先用数学方法证明,空间点阵只有14种类型。

这14种空间点阵以后就被称为布拉菲点阵。

空间点阵是一个三维空间的无限图形,为了研究方便,可以在空间点阵中取一个具有代表性的基本小单元,这个基本小单元通常是一个平行六面体,整个点阵可以看作是由这样一个平行六面体在空间堆砌而成,我们称此平行六面体为单胞。

当要研究某一类型的空间点阵时,只需选取其中一个单胞来研究即可。

在同一空间点阵中,可以选取多种不同形状和大小的平行六面体作为单胞,如下图所示:其选取方式有,1.固体物理选法:在固体物理学中,一般选取空间点阵中体积最小的平行六面体作为单胞,这样的单胞只能反映其空间点阵的周期性,但不能反映其对称性。

如面心立方点阵的固体物理单胞并不反映面心立方的特征。

2.晶体学选法:由于固体物理单胞只能反映晶体结构的周期性,不能反映其对称性,所以在晶体学中,规定了选取单胞要满足以下几点原则:①要能充分反映整个空间点阵的周期性和对称性;②在满足①的基础上,单胞要具有尽可能多的直角;③在满足①、②的基础上,所选取单胞的体积要最小。

!七大晶系十四种布喇菲格子

!七大晶系十四种布喇菲格子

晶系
晶胞基矢的 特性
布喇菲 格子
所属点群
三斜晶系
简单三斜
单斜晶系
简单单斜 底心单斜
01_07_晶格的对称性 —— 晶体结构
正交晶系 三角晶系
简单正交 底心正交 体心正交 面心正交
三角
01_07_晶格的对称性 —— 晶体结构
四方晶系 六角晶系 立方晶系
简单四方 体心四方
六角
简单立方 体心立方 面心立方
01_07_晶格的对称性 —— 晶体结构
9) 简单四方(四角) 10) 体心四方(四角)
01_07_晶格的对称性 —— 晶体结构
11) 六角
01_07_晶格的对称性 —— 晶体结构
12) 简立方 13) 体心立方 14) 面心立方
01_07_晶格的对称性 —— 晶体结构
七大晶系的布喇菲格子、晶胞和所属点群
立方 三角
四方
正交
三斜
按晶胞个点分布特点分为14种布喇菲原胞 1) 简单三斜
01_07_晶格的对称性 —— 晶体结构
2) 简单单斜 3) 底心单斜
01_07_晶格的对称性 —— 晶体结构
4) 简单正交 5) 底心正交 6) 体心正交 7) 面心正交
01_07_晶格的对称性 —— —— 晶体结构
底心立方?=简单四方
底心四方=简单四方
01_07_晶格的对称性 —— 晶体结构
体心四方与面心四方等价
01_07_晶格的对称性 —— 晶体结构
§1.7 晶格的对称性
—— 32种点群描述的晶体对称性 —— 对应的只有14种布喇菲格子 —— 分为7个晶系
—— 晶胞的三个基矢
沿晶体的对称轴或对称面
的法向,在一般情况下,它们构成斜坐标系

七种晶系

七种晶系
单斜晶系 monoclinic crystal system
含轴次高于 2 的高次轴而只在一个晶轴方向存 在二重轴或二重反轴(即镜面)的晶体归属于单斜晶 系。 属于低级晶系
对单斜晶系晶体,晶体学的传统习惯常取具有 特征二重轴或二重反轴的方向为轴(主轴)并取 β 为 钝角,因而晶胞参数呈,a≠b≠c,α=γ=90°,β>90° 的关系。需注意,单斜晶系副轴的选取方式往往是非惟一的。 单斜晶系无高次对称轴,二次对称轴和对称面都不多于一个。晶体以唯一一 个二次轴或对称面法线为 b 轴。b 轴和 a 轴、C 轴均正交,a 轴,c 轴斜交。α=γ=90°, β≠90°;a≠b≠c。折射率有 3 个,其中仅有一个主折射率方向和 b 轴重合。 属低级晶族。特征对称元素是二重对称轴或对称面。晶胞类型为:轴长 a≠b≠c, 轴角 α=γ=90°≠β。是自然界中最常见的晶系例如石膏。
斜方晶系(正交晶系) orthorhombic system;
rhombic system;trimetric system
斜方晶系,也叫正交晶系。 该晶系特点是没有高次对称轴,二次对称轴和 对称面总和不少于三个。
斜方晶系,也叫正交晶系。 该晶系特点是没有高次对称轴,二次对称轴和 对称面总和不少于三个。晶体以这三个互相垂直的二次轴或对称面法线为结晶轴。 轴角 α=β=γ=90°,但轴单位 a≠b≠c,故斜方晶系具有更强的非均质性。非均质性 强,平行 c 轴、b 轴和 a 轴的折射率均不相同,具有三个不同的主折射率。
三斜晶系 triclinic system
三斜晶系是几种晶系中对称程度最低级的晶系。无任 何特征对称元素。晶胞类型为:轴长 a≠b≠c,轴角 α≠β≠γ≠90°。
不含任何轴次高于 1 的对称轴而以一重轴或一重反轴 (即对称中心)为其晶系特征对称元素的晶体归属于三斜 晶系,这是 7 个晶系中对称性最低的晶系。三斜晶系晶体 的空间群只有含对称中心的 P1′与不含对称中心的 P1 两种 形态。晶体是否有对称中心,可由晶体外形或晶体物理性 质考察中予以识别。三斜晶胞参数 a≠b≠c,α≠β≠γ≠90°与最一般的平行六面体对 应。例如蓝晶石。

十四种布拉菲格子

十四种布拉菲格子
晶体的十四种Bravais Bravais格子简介 §1.2.6 晶体的十四种Bravais格子简介
就目前所知,晶体多达20000多种以上,它们的几何 就目前所知,晶体多达 多种以上, 多种以上 外形更是多姿多彩、精美绝伦、奥妙无比, 外形更是多姿多彩、精美绝伦、奥妙无比,足以让所有 的能工巧匠叹为观止!然而,种类繁多、 的能工巧匠叹为观止!然而,种类繁多、形状各异的晶 体在微观结构的周期性特征上却是极其简单的, 体在微观结构的周期性特征上却是极其简单的,描述晶 体微观结构周期性特征的Bravais格子总共只有十四种不 格子总共只有十四种不 体微观结构周期性特征的 格子总共只有十四种 同的类型。 同的类型。
Pearson记法 →
hR
7°立方(Cubic) 晶系 立方(Cubic) Bravais格子之惯用元胞的几何特征为: Bravais格子之惯用元胞的几何特征为: 格子之惯用元胞的几何特征为
a = b = c,α = β = γ = 90 0
格点有三种分布方式:其一,分布于惯用元胞的八个顶点上; 格点有三种分布方式:其一,分布于惯用元胞的八个顶点上; 其二,除顶点外,还分布于体心;其三,除顶点外,还分布于六 其二,除顶点外,还分布于体心;其三,除顶点外, Bravais格子 简单立方Bravais格子、 个面心 有 三种Bravais格子,分别称为简单立方Bravais格子、 → 三种Bravais格子,分别称为简单立方Bravais格子 体心立方Bravais格子和面心立方Bravais格子 体心立方Bravais格子和面心立方Bravais格子 Bravais格子 Bravais cP、 cP Pearson记法 → 、
cI和cF,惯用元胞分别如图1.2.6- 中的( cI和cF,惯用元胞分别如图1.2.6-1中的(l)图、(m)图和(n) 1.2.6 (m)图 图所示 背景音乐: 背景音乐:

布拉维格子的名词解释

布拉维格子的名词解释

布拉维格子的名词解释布拉维格子是固体中一种特殊的晶体结构,由于其独特的构造和性质,在物理学领域中被广泛研究和应用。

本文将对布拉维格子进行详细的解释和探讨。

布拉维格子的概念最早由瑞士物理学家勃拉维(Bravais)提出,他将晶体结构的排列方式进行了系统地分类和命名。

在布拉维格子中,晶体的原胞(最小重复单位)无限重复堆积而成,形成了整体具有周期性的结构。

布拉维格子的基本单位可以是点、线或面,其分类依据是基元(基本单位)的对称性。

布拉维格子的分类有14种,分别为简单立方格子、面心立方格子、体心立方格子、六方密堆积格子、多面体格子等。

这些不同类型的布拉维格子由于原胞中基元的排列不同,因而具有不同的对称性和性质。

在布拉维格子的研究中,晶格常数是一个重要的参数,它表示了格子中基元之间的距离。

晶格常数决定了布拉维格子的结构和性质,不同的晶格常数对应着不同的晶体特征。

更进一步地,布拉维格子的点阵常数是指晶体中相邻的两个基元之间距离的最小值,它是晶格常数的一个函数。

布拉维格子的性质和应用涵盖了多个领域。

在材料科学中,人们通过研究和改变布拉维格子的结构,可以获得具有特殊功能和性能的材料。

例如,面心立方格子具有良好的可塑性和导电性,因此广泛应用于金属制品的生产中。

而六方密堆积格子被广泛应用于光纤和半导体等领域,其特殊的结构使得其具有优异的机械和光学性能。

在纳米科技领域,布拉维格子也发挥着重要的作用。

纳米颗粒可以通过控制布拉维格子的大小和形状来调控其物理和化学性质。

这对于设计和制造高性能的纳米材料尤为重要,因为纳米尺度的材料往往具有与其宏观尺度不同的独特性质。

不仅如此,布拉维格子还在凝聚态物理、量子力学和电子结构等领域起到了关键作用。

通过对布拉维格子的研究,物理学家们可以深入理解材料的电子结构和输运行为,从而发现新的物理现象和规律。

总而言之,布拉维格子作为晶体结构的基本单位,其独特的结构和对称性赋予了物质一些特殊的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六角
C4, C4h D4 , C4v D4h , S4 , D2d
C6 , C6h , D6 , C3v D6h , C3h , D2h
立方晶系
a1 a2 a3
900
简单立方 体心立方 面心立方
T , Th , Td O, Oh
01_07_晶格的对称性 —— 晶体结构
底心立方?=简单四方
D2 , C2v , D2h
三角晶系
a1 a2 a3
900 1200
三角
C3v , D3d C3, C3i , D3
01_07_晶格的对称性 —— 晶体结构
四方晶系 六角晶系
a1 a2 a3
900
a1a2 1200
a3 a1, a2 a1 a2 a3
简单四方 体心四方
01_07_晶格的对称性 —— 晶体结构
4) 简单正交 5) 底心正交 6) 体心正交 7) 面心正交
a1 a2 a3 a1 a2 a3
01_07_晶格的对称性 —— 晶体结构
05 /13
8) 三角
a1 a2 a3 90 120
01_07_晶格的对称性 —— 晶体结构
9) 简单四方(四角) a1 a2 a3 10) 体心四方(四角) 900
晶系
晶胞基矢的 特性
布喇菲 格子
所属点群
三斜晶系 单斜晶系
பைடு நூலகம்
a1 a2 a3
a2 a1, a3 a1 a2 a3
简单三斜
C1, Cs
简单单斜
底心单斜 C2 , Cs , C2h
01_07_晶格的对称性 —— 晶体结构
10 /13
正交晶系
a1 a2 a3 a1 a2 a3
简单正交 底心正交 体心正交 面心正交
01/13


胞 六角





分 为
单斜




01_07_晶格的对称性 —— 晶体结构
立方 三角
四方
正交
三斜
按晶胞个点分布特点分为14种布喇菲原胞
1) 简单三斜 a1 a2 a3
01_07_晶格的对称性 —— 晶体结构
2) 简单单斜 a2 a1, a3 3) 底心单斜 a1 a2 a3
底心四方=简单四方
01_07_晶格的对称性 —— 晶体结构
体心四方与面心四方等价
01_07_晶格的对称性 —— 晶体结构
§1.7 晶格的对称性
—— 32种点群描述的晶体对称性
—— 对应的只有14种布喇菲格子
—— 分为7个晶系
—— 晶胞的三个基矢
a,
b,
c 沿晶体的对称轴或对称面
的法向,在一般情况下,它们构成斜坐标系
v (b,
cv)
三个晶轴之间的夹角
(cv, av )
(av,
v
b)
01_07_晶格的对称性 —— 晶体结构
01_07_晶格的对称性 —— 晶体结构
11) 六角
a1 a2 a3
a3 a1, a2
a1a2 1200
01_07_晶格的对称性 —— 晶体结构
12) 简立方 13) 体心立方 14) 面心立方
a1 a2 a3
900
01_07_晶格的对称性 —— 晶体结构
七大晶系的布喇菲格子、晶胞和所属点群
相关文档
最新文档