红外热像仪对于医学的重要价值

合集下载

医用红外热成像系统技术应用

医用红外热成像系统技术应用

医用红外热成像系统前言随着我国经济的快速发展, 人民生活水平的提高以及健康意识的不断加强, 人们对于体检的早期、快速、准确、方便、无创有了更高的要求。

开创绿色健康检查评估也是各个医疗机构及体检中心的一个新兴项目, 并且有了快速的发展和进步。

中国健康体检产业无疑是当前的朝阳产业, 得到了国家卫生部及中华医学会等有关部门和领导的大力支持和肯定。

医用红外热成像技术无疑是医疗影像领域的一支奇葩。

由于它是被动接收检查者自身的热量, 因为没有辐射, 又被行业中称为“绿色检查”。

如今, 数字式医用红外热像仪已与B超、MRI、CT、X线等组成了现代医学影像体系。

目前, 医用红外热成像技术主要用于医疗机构和体检中心的健康普查、疾病的初筛、肿瘤的早期预警、心脑血管疾病、疼痛、神经疾病、中医“治未病”等方面。

做到了疾病的早期发现和疗效评估作用, 为现代医学作出了杰出的贡献。

医用红外热像仪技术一、医用红外热像仪发展综述红外热像技术被应用到医学领域已有40多年历史, 自从1956年英国医生Lawson 用红外热像技术诊断乳腺癌以来, 医用红外热像技术逐步受到人们的关注。

中华医学会成立了中华医学会红外热像分会, 并将红外热成像技术列入医科大学课程2011年红外热成像被中华医学会疼痛分会列入二级以上挂牌医院五项基本设备之一, 同年被国家卫生部中医药管理局列入二级及三级中医院设备配置标准案中的医院共有诊断设备之一。

2012年中国中医药管理局将红外热成像正式列入中医医院诊疗配置表中, 成为中医医院必备的仪器。

二、红外热像诊断技术的基本原理任何温度大于绝对零度(-273. 1 5℃)的物体都要向外辐射能量, 而人体所辐射电磁波的波长主要是在远红外区域, 其波长范围为4~14µm, 峰值为9. 34µm, 故利用波长为8~14µm的红外探测器可以方便地检测到人体辐射的红外线。

通过接收人体辐射的红外线, 利用影像光学和计算机技术, 将人体表面的不同温度分布以黑白或伪彩色图像显示并记录下来。

红外热成像技术在儿科疾病诊疗中的应用

红外热成像技术在儿科疾病诊疗中的应用

引言体温异常通常被认为是疾病的自然指标。

红外热成像(Infrared Thermography ,IRT )技术是一种以红外热成像为基础,锁定机体细胞相对新陈代谢强度为途径的测量人体体表温度的功能影像技术。

19世纪,威廉·赫歇尔爵士确定红外辐射的存在,其子约翰·赫歇尔利用热辐射制作出第一幅“热成像图”,为温度测量开辟了新道路。

1934年,Hardy 等阐述了人体红外辐射的生理作用,将IRT 技术应用于临床,确立了通过IRT 技术进行检测人体温度的诊断方法。

1940年初,世界上第一台可用于热成像的红外辐射电子传感器诞生,十年之后在伦敦的Middlesex 医院和巴斯的皇家风湿病国家医院拍摄了第一批医学红外热像图。

1963年,巴恩斯证明热像图可以提供身体异常的信息,确立了IRT 技术对人体热异常相关病理表现的诊断意义[1]。

1977年,全球已有75个医疗机构将IRT 技术用于疾病诊断。

而在国内,该项技术的临床应用较晚,20世纪70年代末,国内仅有几所医院和学术机构开始将IRT 技术用于临床研究。

由于其具有非接触式和非侵入性、高效便捷等优势,IRT 技术应用研究迅速增多,由最初的乳腺癌早期诊断,扩大到发热、烧伤、疼痛、血管疾病、癌症等疾病筛查和药物疗效监测等多领域[2]。

此外,IRT 技术还与中医学理论相结合,广泛运用于中医学领域,如辅助中医诊断、疗效评估、中医体质辨识[3]。

目前,国内外医学IRT 技术的研究多聚焦于成人,儿童领域研究较少。

随着儿科学的发展,IRT 技术在儿科疾病诊疗中应用逐渐增多。

1 儿童生理学体温研究人体任何局部生理温度或总体温度的异常,都提示临床可能存在功能性或器质性病理反应。

常用温度计通过腋窝、口腔等局部进行测温,不同部位或工具测量结果不一样,并且部分温度计可能存在安全隐患。

IRT 技术作为非接触式和非侵入性功能学影像技术,没有任何生物学副作用,且不需要镇静或麻醉配合完成就能够绘制出人体“体温云雨图”。

红外热像仪的原理和应用

红外热像仪的原理和应用

红外热像仪的原理和应用1. 红外热像仪的原理红外热像仪是一种能够将对象的红外辐射转化为可视化图像的设备。

它利用红外辐射能够通过物体的特性,通过红外探测器将这些辐射转化为电信号,再通过电子元件将电信号转化为可视化图像。

红外热像仪的原理主要包括以下几个方面:1.1 热辐射:物体在温度高于绝对零度时,会发出热辐射。

热辐射的强度和频率分布与物体的温度有关。

1.2 探测器:红外热像仪的探测器通常采用半导体材料,如铟锗(InSb)、铟镉锌(InGaAs)等。

这些材料具有对红外波长辐射的敏感性。

1.3 光学系统:红外热像仪的光学系统主要包括透镜、滤光片和光学轴等。

透镜用于聚集红外辐射,滤光片则可以屏蔽非红外波段的辐射,并通过光学轴将红外辐射传输到探测器上。

1.4 信号处理:红外热像仪的信号处理主要包括信号放大、滤波、数字化和图像处理等。

通过这些信号处理,可以将红外辐射转化为可视化的图像。

2. 红外热像仪的应用红外热像仪的应用广泛,涵盖了许多领域。

以下是红外热像仪常见的应用场景:2.1 工业检测红外热像仪在工业领域中被广泛应用于机械设备的故障检测和预防维护。

通过检测机器设备表面的温度分布,可以快速识别出异常热点,从而及时预警并采取相应的维修措施,避免机器设备的停机造成的损失。

2.2 建筑热损失检测红外热像仪可以检测建筑物的热损失情况,帮助用户识别出建筑物中的热能漏失,从而进行相应的绝热处理,提高建筑物的能源效率。

2.3 消防安全红外热像仪可用于火灾的早期探测,能够快速发现火源和烟雾,并生成可视化的热像图,帮助消防人员定位和扑灭火源,提高灭火效率和安全性。

2.4 医学诊断红外热像仪在医学领域中被用于进行体温测量、血液灌注的观察等。

通过观察人体或动物的红外辐射,可以快速检测出体温的异常变化以及血液供应的情况,提供诊断参考。

2.5 安全监控红外热像仪在安全监控领域中常用于夜视和隐蔽监控等。

它可以将物体的红外辐射转化为可视化图像,提供夜间监控的能力,并通过隐蔽的方式进行监控,更好地保护安全。

(完整版)医用红外热像仪的发展、原理及应用

(完整版)医用红外热像仪的发展、原理及应用

一:医用红外热成像技术的发展史最早使用生物热学诊断技术的记录可以在大约公元前480年希波克拉底(希腊名医)的著作中找到。

方法是将病人的身体表面涂满泥巴,观察什么部位干的最快,以此判断器官疾病情况。

20世纪50年代,军队开始使用红外热成像技术监控夜间行进的队伍,引领了热成像诊断技术的新纪元.到了20世纪50年代中期红外热成像技术允许医学目的的应用。

红外热成像技术第一次的诊断应用是在1956年,Lawson发现患有乳癌的乳房皮肤表面温度要高于正常的组织温度。

他还发现癌症患者的血管温度要高于动脉温度。

在1972年美国卫生教育和福利部发表一篇论文,其中部长Thomas Tiernery写到,“医学顾问证实当前红外热成像技术作为一种诊断技术在以下4个领域的发展已经超越了实验阶段:(1)女性乳房病理检查,(2)…”.1982年1月29日,美国食品药品监督局批准红外热成像技术做为一种乳癌成像检测手段。

20世纪70年代之后,大量的医学中心和诊所开始将红外热成像技术用于各种目的的诊断.二、医用红外热成像技术的原理上海欧美大地的医用红外热成像技术的原理,所有高于绝对温度(-273K)的物体都会发射红外辐射,霍尔兹-波兹曼发现红外辐射及温度之间的关系。

物体表面发射的红外辐射与物体表面的辐射率及绝对温度成正比。

人体的辐射率接近1%,类似黑体,即几乎能100%辐射红外能量。

这样就可以通过人体皮肤的红外辐射得出人体温度分布。

医用红外热成像技术就是通过接收病人身体表面的红外辐射,对病人身体表面及热区温度进行检测、记录、成像。

图像可以提供被检测区域的温度对比信息,对被检测区域进行定性和定量检测。

三、医用红外热成像技术与其他诊断技术的区别目前医院一般常用的检查设备有B超、12导心电图机、生化分析仪、骨密度测定仪、近红外乳透仪、彩色超声多谱乐、电子胃肠镜、肺功能仪、X光机等.常规的检查设备在疾病的的诊断方面都有其局限性,对病人有侵入或伤害性。

红外成像的原理和应用

红外成像的原理和应用

红外成像的原理和应用原理介绍红外成像技术是利用物体发出的热辐射来获取物体的热像图。

红外成像的原理主要基于物体的热辐射特性。

一般情况下,物体的温度越高,辐射的能量越大,同时辐射的频率也越高。

红外成像技术利用红外传感器和红外相机来接收物体发出的红外辐射,然后通过处理和分析,将辐射信号转换为可视化的热像图。

应用领域1. 工业领域•红外成像技术在工业领域中被广泛应用于故障检测和预防维护。

通过红外成像技术,可以实时监测机械设备和电子元器件的温度变化,及时发现异常情况,并采取相应的修复措施,避免设备故障和生产事故的发生。

•红外成像技术还可以用于检测电力系统中的热点,提前发现电线、插座和电器设备等可能存在的隐患,预防火灾和安全事故的发生。

2. 建筑领域•在建筑领域中,红外成像技术可以用于检测建筑物的能量损失,帮助设计和改善建筑物的能源效率。

通过检测建筑物表面的热辐射分布,可以发现热桥、隔热层缺陷和漏风等问题,从而提出相应的改进方案。

•红外成像技术还可以用于检测建筑物的结构裂缝,通过监测裂缝周边的热辐射变化,可以提前发现结构问题,避免建筑物的倒塌和安全事故的发生。

3. 医学领域•红外成像技术在医学领域中也有重要的应用。

例如,红外热像仪可以用于乳腺癌的早期筛查,通过检测乳房组织的热辐射分布,可以发现异常的温度变化,帮助医生进行早期诊断和治疗。

•另外,红外成像技术还可以用于皮肤病的诊断和治疗。

通过检测皮肤的温度变化,可以帮助医生判断皮肤病的严重程度和疗效,指导治疗方案的制定和调整。

优势和局限性•优势:–红外成像技术可以在暗光环境下工作,对照明要求较低。

–红外成像技术具有非接触性,可以远距离观测目标,减少人工干预的需要。

–红外成像技术可以实时监测温度变化,及时发现异常情况,避免事故的发生。

•局限性:–红外成像技术的分辨率相对较低,无法获取目标的精确图像信息。

–红外成像技术对目标的器件、颜色和表面材质有一定的限制,可能存在误差。

红外热成像技术在医疗诊断中的应用

红外热成像技术在医疗诊断中的应用

红外热成像技术在医疗诊断中的应用随着科技的发展和进步,红外热成像技术在医疗领域的应用越来越广泛。

红外热成像技术是一种高精度的无创检测方法,可以快速、准确地获取人体表面的热辐射图像。

在医学诊断中,通过这种技术可以有效地识别疾病和伤病区域,为医生提供重要的诊断信息。

一、红外热成像技术的原理红外热成像技术依据人体表面散发出来的红外热辐射,通过红外热像仪捕捉热辐射信息,形成一个实时的高分辨率热像图。

人体组织由于其不同的化学成分和组织结构,在辐射、吸收和传导热量时会表现出不同的热特性。

当人体受到外界的刺激而形成疾病时,它会改变其表面的温度分布,因此将疾病区域的热图与对称对应的参考区域的热图进行比较,就能得到有关疾病位置的相关信息。

二、红外热成像技术在医学诊断中的应用1.早期乳腺癌筛查红外热成像技术可以快速、准确地识别出乳腺组织温度分布的变化,从而发现早期的乳腺癌。

该技术不需要使用任何放射性物质,是一种无创的检测方法。

研究表明,使用红外热成像技术进行乳腺癌检测的检测准确度达到了90%以上。

2.体表创伤检测在医疗急救中,对于表皮受损的烧伤和创伤等情况,红外热成像技术可以快速、准确地测量出不同部位的温度分布情况,为医生提供重要的诊断信息,迅速制定相应的治疗方案。

3.疼痛诊断与管理疼痛是大部分病患在求医的时候最常诉说的症状之一。

红外热成像技术可以通过测量疼痛部位表面的温度分布情况,来推断疾病的原因和病情的严重程度,帮助医生更好地管理疼痛问题。

4.心血管疾病诊断红外热成像技术可以帮助医生诊断心血管疾病。

这是因为心血管疾病往往会导致局部血管的阻力增加,血流速度减缓,血管温度升高。

因此,通过对身体不同部位进行红外热成像扫描,可以发现该部位的热量分布与周围组织的差异,从而推断出该部位存在心血管疾病的可能性。

5.动态化学反应分析红外热成像技术不仅可以应用于人体医学诊断,还可以用于化学反应分析。

通过红外吸收光谱和红外热成像技术,可以快速检测化学反应中的变化和反应比例,为化学领域的研究提供了更高效、更准确的方法。

中波红外热像仪用途

中波红外热像仪用途

中波红外热像仪用途中波红外热像仪是一种先进的探测设备,利用中波红外辐射技术进行目标识别和热像采集。

它可以将红外辐射能够转化为可见光信号,从而实现对目标的非接触式测量和成像。

这种设备在各个领域中有着广泛的应用,具有重要的意义。

首先,中波红外热像仪在军事安全方面发挥着重要作用。

它可以用于夜间侦察和目标识别,有效提高作战能力和战场感知能力。

在战术部署中,军事人员可以利用该设备探测隐藏在暗处的敌方目标,提前做出反应。

此外,它还可以用于武器系统的热成像导引,提高射击精度和命中率,从而实现精确打击目标。

其次,中波红外热像仪在安防监控领域也有着广泛的应用。

它可以用于夜间巡逻和监控活动,能够有效防范和打击犯罪行为。

在城市安保中,该设备可以用于警察机构的巡逻、排爆和反恐等任务,提高应急处置能力。

同时,在工业企业和重要基础设施等领域,中波红外热像仪可以用于实时监控和故障诊断,提高设备安全性和生产效率。

此外,中波红外热像仪在医疗领域也发挥着重要的作用。

它可以用于体温检测、疾病筛查和医学诊断。

尤其在传染病爆发期间,快速准确测量人体体温可以帮助医护人员及时发现患者并采取相应措施,防止病毒传播。

此外,热像仪还可以用于肿瘤早期诊断、血液循环研究等领域,在医学科研中有广阔的应用前景。

总之,中波红外热像仪作为一种先进的探测设备,在军事安全、安防监控和医疗领域中具有广泛的应用前景。

它的运用不仅提高了工作效率和安全性,也为人们的生活带来了更多便利和安全。

相信随着科学技术的不断发展,中波红外热像仪将在更多领域中发挥重要的作用,为人类社会的进步和发展做出更大的贡献。

红外线测温技术在医疗领域的发展与应用

红外线测温技术在医疗领域的发展与应用

红外线测温技术在医疗领域的发展与应用随着科技的不断进步,红外线测温技术在医疗领域的发展和应用也越来越广泛。

红外线测温技术通过测量物体散发的热量,可以非接触地获取高精度的温度数据。

在医疗领域,红外线测温技术被广泛应用于体温检测、医学影像、手术导航等方面,具有快速、准确、无创伤等优点。

首先,红外线测温技术在体温检测中发挥着重要作用。

传统的体温检测方法需要接触式测温,而红外线测温技术可以在不接触人体的情况下,迅速测量体表温度。

它特别适用于在公共场所对人群进行快速筛查,例如机场、车站、学校等地。

而且,红外线测温技术的高精度可以有效地筛选出患有发热症状的人,为疾病的早期诊断和防控提供了极大的帮助。

其次,红外线测温技术在医学影像方面的应用也越来越广泛。

通过红外线热像仪可以获取人体表面的热图,反映出人体各部位的温度分布。

这对于医学影像的诊断和治疗起着重要的作用。

例如,运动损伤后的热图可以帮助医生精确地确定伤势的位置和范围,为治疗提供指导。

此外,在皮肤病的诊断中,红外线热像技术可以帮助医生观察皮肤的温度变化,从而帮助判断病情的严重程度。

红外线测温技术还在手术导航方面发挥着重要的作用。

传统的手术导航需要依赖医生经验和人工测量,往往存在一定的主观性和误差。

而红外线测温技术可以通过测量器械表面的温度,精确地指导手术。

例如,在癌症手术中,红外线测温技术可以帮助医生确定肿瘤的位置和范围,以减少手术的创伤和提高手术的成功率。

此外,红外线测温技术在医疗器械的研发和制造中也起着重要的作用。

在研发新型医疗器械时,红外线测温技术可以用来测试器械的温度分布和热传导性能,从而帮助改进器械的设计和材料选择。

在医疗器械的制造过程中,红外线测温技术可以用来监测生产线上的温度变化,确保产品质量和生产效率。

这些应用不仅提高了医疗器械的质量和效果,还带来了更好的治疗效果和患者体验。

尽管红外线测温技术在医疗领域的应用已取得了显著的成果,但仍存在一些挑战和亟待解决的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热像仪技术用于医用临床诊断已有几十年的历史,使用范围也在不断扩大,现已可用于多种疾病的诊断。

医用热像仪已成为诊断浅表肿瘤、血管疾病和皮肤病症等的有效工具,红外热成像技术能够进行非接触式的、高分辨率的温度成像,能够生成高质量的图像,可提供测量目标的众多信息,弥补了人类肉眼的不足。

1、工作原理:人体是一个天然红外辐射源。

人体皮肤的红外辐射波段为3-50mm。

当人体患病时,人体的热平衡受到破坏,因此测定人体温度的变化是临床医学诊断疾病的一项重要指标。

根据人体表面温度分布、红外线辐射量大小、肢体血液量的多少,可得到人体各部位、各器官的热像图。

医生结合临床,从而了解了人体病理、生理变化,不仅可以诊断体表病变,也能诊断体内深层病变,还可揭示某些疾病的发生、发展与结果。

2、医用红外热像技术的应用
红外热像仪应用于临床诊断涉及多领域、多学科。

随着红外热像技术的不断发展,当代红外热像仪已成功用于神经学、血管功能障碍、风湿性疾病、组织移
植、是乳腺癌、皮肤科、眼科及外科等。

(1)乳腺瘤的早期诊断
乳腺检查是较早开始使用热像仪的。

一般来说健康的妇女,两侧乳房的热图是对称的,如果乳房热图出现不对称,往往与疾病和细胞活性有关,更多地与肿瘤有关。

恶性肿瘤的周围血管丰富,其温度大多高于正常组织。

医学研究表明,大多数乳腺癌的热图像具有明显的不对称性,患侧的乳房热图像呈明显的局域性热区,乳晕周围也明显出现高温。

由于肿瘤组织代谢旺盛,供血丰富,其热量势必从局部向外辐射,使用热像仪探测乳腺癌有其独特的优势。

(2)皮肤损伤病症的诊断
红外热图一般反映皮肤本身温度的分布,很适合热像仪的应用领域。

比如皮肤冻伤,用热像仪就很容易查出冻伤面积。

这是因为冻伤部位坏死,无血供应,其温度会比周围皮肤低。

再说皮肤烧伤,热像仪不但可准确诊断烧伤面积内血管损坏的程度,判定烧伤度数,识别可存活皮肤面积、确定需植皮的面积,且在治
疗过程中也可以使用热像仪观察烧伤组织血运恢复情况,掌握发炎和感染情况及判断植皮的成败与否,方便采取措施,为用药及手术提供参考数据。

(3)代谢性疾病(糖尿病)的诊断
糖尿病是典型的一种代谢功能性疾病,跟人体温有着密切的联系,使用红外热像仪诊断糖尿病的方法更可靠。

糖尿病的代谢功能异常多发生在微循环部位,通过使用施加温度负荷的方法,可以在短时间内诱发异常的功能状况,将体内的代谢功能异常状况通过温度变化诱发到体表。

当然,体表温度也受到各种周围环境的影响,因此测量过程中要对环境和测量结果进行正确处理,以得出正确的代谢性疾病结论数据。

(4)各种炎症的诊断
急性炎症由于局部充血,皮温上升,很容易通过热像仪显示出来。

但需与肿瘤皮肤温度升高相区别。

炎症皮温高于周围皮温,而在炎症中心点的皮温更高于
炎症区皮温,这是炎症热像的特征。

此外,用热像技术还可鉴别各种关节炎的类型,探测出发炎面积大小和热变化程度。

热像仪在医学领域的应用范围,还远远不止上述几个方面,且随着发展领域还在不断扩大。

让我们一起期待吧!
由于测试往往产生的温度场差异不大和现场环境复杂等因素,好的热像仪必须具备320*240像素、分辨率小于0.1℃、空间分辨率小、具备红外图像和可见光图像合成功能等。

相关文档
最新文档