斜面上平抛运动问题

合集下载

斜面上的平抛运动分类例析

斜面上的平抛运动分类例析

斜面上的平抛运动分类例析一、物体从空中某点水平抛出落在斜面上例1.将一个小球以速度v 0水平抛出,要使小球能够垂直打到一个斜面上,斜面与水平方向的夹角为θ,那么,下列说法中正确的是( )A .若保持水平速度v 0不变,斜面与水平方向的夹角θ越大,小球的飞行时间越B .若保持水平速度v 0不变,斜面与水平方向的夹角θ越大,小球的飞行时间越短C .若保持斜面倾角θ不变,水平速度v 0越大,小球的飞行时间越长D .若保持斜面倾角θ不变,水平速度v 0越大,小球的飞行时间越短 解析 将小球垂直打到斜面上的速度v 沿水平和竖直分解,如图1所示,由几何知识知,v 和竖直方向的夹角也为θ,由平抛运动的规律得gtv v v y x 0tan ==θ解得:θtan 0g v t =由上式不难看出,若保持v 0不变,θ越大,小球的飞行时间越短;若保持θ不变,v 0越大,小球的飞行时间越长.所以,本题答案应选BC .点评:“小球的末速度v 垂直于斜面”是本题的关键条件,由于本题没有涉及到高度或距离,因此,应想到利用速度和时间的关系式而不用位移和时间的关系式,进而想到应分解速度不分解位移,画好分解图就可看到,θ角架起了速度分解图和斜面相联系的桥梁.例2.斜面上有a 、b 、c 、d 四个点,如图2所示,ab =bc =cd ,从a 点正上方的O 点以速度v 水平抛出一个小球,它落在斜面上b 点,若小球从O 点以速度2v 水平抛出,不计空气阻力,则它落在斜面上的()A .b 与c 之间某一点B .c 点C .c 与d 之间某一点D .d 点解析 本题可采用假设法:假设斜面是一层很薄的纸,小球落上就可穿透且不损失能量,过b 点作水平线交Oa 于a',由于小球从O 点以速度v 水平抛出时,落在斜面上b 点,则小球从O 点以速度2v 水平抛出,穿透斜面后应落在水平线a' b 延长线上的c'点,如图3所示,因ab =bc ,则a ' b =bc ',即c'点在c 点的正下方.显然.其轨迹交于斜面上b 与c 之间.所以,本题答案应选A .点评 本题部分同学认为平抛的初速度由v 增加到2v ,则水平位移也将变成原来的2倍,则它恰落在斜面上的c 点.该错误是由于没有准确把握平抛运动的规律所造成的,只有落在同一水平线上时,水平位移才与速度成正比.本题若沿斜面比较位移又较烦琐,而变换思考角度,灵活应用假设法和画图法省去了烦琐的计算,使解题过程简洁明快,达到事半功倍的效果. 二、物体从斜面上某点水平抛出又落回斜面上例3 如图4所示,从倾角为θ的斜面上A 点,以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上B 点时所用的时间为( )A .g v θsin 20B .g tg v θ02C .g v 2sin 0θD .gtg v 20θ图1图3 O 图4图2解析 设小球从抛出至落到斜面上所用时间为t ,其水平位移和竖直位移分别为x ,y ,如图4所示,由平抛运动的规律得t v x 0= ① 221gt y =② 由几何关系知 xy=θtan ③ 由①②③式得 gtg v t θ02=所以,本题答案应选B .点评:本题由于小球运动的起点和终点都在斜面上,即水平位移和竖直位移的关系与斜面的倾角有关.因此,应利用位移和时间的关系式而不用速度和时间的关系式,再利用θ角的桥梁作用,将位移分解图和斜面联系起来,从而使问题得以解决.例4. 从倾角为θ的足够长的斜面上A 点,先后将同一小球以不同的初速度水平向左抛出,第一次初速度为v 1,球落到斜面上前一瞬间的速度方向与斜面的夹角为α1,第二次初速度v 2,球落在斜面上前一瞬间的速度方向与斜面间的夹角为α2,若v 2>v 1,则α1、α2的大小关系为( )A .α1>α2B .α1<α2C .α1=α2D .无法确定 解析 设将小球以初速度v 0水平抛出时,经时间t 落在斜面上的速度为v ,其方向与斜面间的夹角为α,将这一速度v 沿水平和竖直分解,如图5所示,由几何知识知,v 和水平方向的夹角为θα+,则)tan(v gtv v xy ==+θα ① 设物体落在斜面上时,其水平位移和竖直位移分别为x ,y ,则有 水平方向:t v x 0= ②竖直方向:221gt y =③ 由几何关系知x y=θtan ④由②③④式得:02tan v gt=θ⑤比较①⑤两式得:θθαtan 2)tan(=+显然,α只由斜面倾角θ决定,而与抛出的初速度无关,即,以不同初速度平抛的物体落在斜面上各点的速度是互相平行的.所以,本题答案应选C .点评:本题既用到了速度和时间的关系式又用到了位移和时间的关系式,因而既需要分解速度又需要分解位移,全面考察了平抛运动的规律.本题的解题过程告诉我们,当涉及到两种情况的比较时,我们可以只研究其中一种情况,从中得出要比较的物理量是由哪些因素决定的,而这些因素往往分布在两种情况之中,找出相同因素(如本题中斜面倾角θ)的和不同因素(初速度v 2>v 1),从而使问题得以解决,这是解决物“比较”问题的一般方法.图5AABC图2 跟踪练习1、如图1所示,以v 0=10m/s 的初速度水平抛出的物体,不计空气阻力,飞行一段时间后,垂直地撞在倾角为θ=300的斜面上。

斜面平抛运动练习题

斜面平抛运动练习题

斜面平抛运动练习题在物理学中,有一种非常经典的运动模式叫做斜面平抛运动。

斜面平抛运动指的是物体沿着斜面上抛后自由落体的过程。

这个运动模式是学习物理的基础,对于学生来说是非常重要的。

为了帮助大家更好地理解和掌握斜面平抛运动,我给大家推荐几道练习题。

题目一:小球沿着角度为30度的斜面以速度8m/s的初速度做斜面平抛运动,求小球飞行的最远水平距离。

解析:首先我们要找到小球的初速度分解成斜面上沿和法线方向上的分速度。

由于小球是斜着上抛的,所以垂直向上的分速度为v*sin(30°),沿斜面的分速度为v*cos(30°)。

接下来,我们需要根据公式计算小球的飞行时间。

由于沿斜面运动的距离和斜面长度相关,所以我们需要计算小球下落到斜面底部的时间。

根据自由落体公式h=1/2*g*t^2,其中h为斜面高度,g为重力加速度,t为下落时间。

将斜面高度代入公式,可以求得小球下落到斜面底部的时间。

最后,我们可以根据飞行时间和水平分速度计算小球的最远水平距离。

题目二:一个小球从斜面顶部以角度60度和初速度5m/s进行斜面平抛运动,求小球到达最高点的高度和到达地面的时间。

解析:与题目一类似,首先我们将小球的速度进行分解,沿斜面上沿的分速度为v*sin(60°),沿斜面下滑的分速度为v*cos(60°)。

接下来,我们需要计算小球从斜面顶部到达最高点的时间。

可以利用重力加速度在垂直方向上的分速度v*sin(60°)和下落时间计算实现。

根据自由落体公式v=gt,可以得到上升时间为v*sin(60°)/g。

于是,小球从斜面顶部到达最高点的时间为2倍的上升时间。

最后,可以利用重力加速度在垂直方向上的分速度和上升时间计算小球到达最高点的高度。

根据斜面长度可以算出小球沿斜面运动的距离,进一步求得小球到达地面的时间。

通过练习这些斜面平抛运动的题目,我们可以更好地理解和掌握斜面平抛运动的规律和计算方法。

平抛运动中的典型问题

平抛运动中的典型问题
水平:x=v0t 竖直:y=gt2/2
tan y gt
x 2v0
分解速度: 水平:vx=v0 竖直:vy=gt
v0
α
θ
v
θ vy
第4页
返回目录
v0 y x
结束放映
数字媒体资源库
【例1】如图所示,在与水平方向成37°角
的斜坡上的A点,以10m/s的速度水平抛出
一个小球,求落在斜坡上的B点与A点的距
可算出(ABC ).
A.轰炸机的飞行高度 B.轰炸机的飞行速度 C.炸弹的飞行时间 D.炸弹投出时的动能
审题设疑
1、审题中的关键着眼点在哪里?
2、通过什么办法找出各量之间的 关系,列方程求解?
第8页
数字媒体资源库ຫໍສະໝຸດ Hxv0H-h=12vyt x=v0t, vv0y=ta1n θ x=tahn θ vy=返g回t 目录
第14页
返回目录
结束放映
数字媒体资源库
典型问题二 平抛运动的临界问题
第15页
返回目录
结束放映
数字媒体资源库
【例6】如图,排球场总长18m,设网的高度为2m,运动员 站在离网3m远的线上正对网前竖直跳起把球水平击出 .(g=10m/s2). (1)设击球点的高度为2.5m,问球被水平击出时的速度在 什么范围内才能使球既不触网也不出界? (2)若击球点的高度小于某个值,那么无论球被水平击出 的速度多大,球不是触网就是出界,试求此高度?
B.小球的抛出点距斜面的竖直高度约是 15 m
C.若将小球以水平速度 v0′=5 m/s 向右抛出, 它一定落在 AB 的中点 P 的上方
D.若将小球以水平速度 v0′=5 m/s 向右抛出, 它一定落在 AB 的中点 P 处

2-3斜面上的平抛运动

2-3斜面上的平抛运动

斜面上的平抛运动一、斜面上的平抛运动○顺着斜面运动(斜面足够长)<落到斜面>1.【典型例题】如图所示,斜面倾角为θ,小球从A点以初速度v0水平抛出,恰好落到斜面B点,求:①AB间的距离;②物体在空中飞行的时间;2.如图所示,从倾角为θ的斜面上的A点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上B点所用的时间为()答案:B 〔同类题〕3. 跳台滑雪是勇敢者的运动,它是利用山势特别建造的跳台,运动员穿着专用滑雪板,不带雪杖在助滑路上获得高速后水平飞出,在空中飞行一段距离后着陆,这项运动极为壮观。

设一位运动员由山坡顶部的A 点沿水平方向飞出,到山坡上的B 点着陆。

如图所示,已知运动员水平飞行的速度为v 0=20m/s ,山坡倾角为θ=37°,山坡可以看成一个斜面。

(取g=10m/s 2,sin37°=0.6,cos37°=0.8)求:(1)运动员在空中飞行的时间t ; (2)AB 间的距离s 。

答案:(1)3s (2)75m解析:(1)设运动员从A 到B 时间为t ,则有x =v 0t y =gt 2由数学关系知tan θ=y /x 所以t =3s 。

(2)A 、B 间的距离为:s = m =75m 。

〔STS 〕跳台滑雪4. 如图所示,在足够长的斜面上的A 点,以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上所用的时间为t 1;若将此球改用2v 0抛出,落到斜面上所用时间为t 2,则t 1与t 2之比为( ) A .1∶1 B .1∶2 C .1∶3 D .1∶4 答案:B解析:因小球落在斜面上,所以两次位移与水平方向的夹角相等,由平抛运动规律知tan θ=12gt 21v 0t 1=12gt 222v 0t 2,所以t 1t 2=12。

〔延展题〕变初速度5. [多选]如图所示,斜面上有a 、b 、c 、d 、e 五个点,ab =bc =cd =de ,从a 点以初速度v0水平抛出一个小球,它落在斜面上的b点,速度方向与斜面之间的夹角为θ。

平抛运动斜面问题

平抛运动斜面问题

4.2 平抛运动的规律和应用(二)考点:斜面上的平抛运动典型例题[例1] 如图4-2-1所示,斜面倾角为300,小球从A 点以初速度v 0水平抛出,恰好落到斜面B 点,求:①AB 间的距离;②物体在空中飞行的时间;③从抛出开始经多少时间小球与斜面间的距离最大?[例2]一斜面倾角为θ,A 、B 两个小球均以水平初速度v0水平抛出(如图4-2-2所示,A 球垂直撞在斜面上,B 球落到斜面上的位移最短,不计空气阻力,则A 、B 两个小球下落时间tA 与tB 之间的关系为( )A .tA =tB B .tA =2tBC .tB =2tAD .无法确定[例3] 如图4-2-3所示,一个斜面固定在水平面上,从斜面顶端以不同初速度v0水平抛出一小球,得到小球在`空中运动时间t 与初速度v0的关系如下表所示,g 取10 m/s2试求:v 0/m ·s -1…2…910…t /s …0.400… 1.000 1.000…(1)v0=2 m/s 时平抛水平位移s ;(2)斜面的高度h ;(3)斜面的倾角θ。

针对训练:1.某同学在篮球训练中,以一定的初速度投篮,篮球水平击中篮板,现在他向前走一小段距离,与篮板更近,再次投篮,出手高度和第一次相同,篮球又恰好水平击中篮板上的同一点,则( )A .第二次投篮篮球的初速度大些B .第二次击中篮板时篮球的速度大些图4-2-1C.第二次投篮时篮球初速度与水平方向的夹角大些D.第二次投篮时篮球在空中飞行时间长些2.如图1所示,在水平地面上固定一倾角为θ=37°、表面光滑的斜面体,物体A以v1=6 m/s的初速度沿斜面上滑,同时在物体A的正上方,有一物体B以某一初速度水平抛出.如果当A上滑到最高点时恰好被B物体击中.(A、B均可看做质点,sin37°=0.6,cos37°=0.8,取g=10 2m/s)求:(1)物体A上滑到最高点所用的时间t;(2)物体B抛出时的初速度v2;(3)物体A、B间初始位置的高度差h.图13.如图2所示,在距地面2l的高空A处以水平初速度v0=gl投掷飞镖,在与A点水平距离为l的水平地面上的B点有一个气球,选择适当时机让气球以速度v0=gl匀速上升,在升空过程中被飞镖击中。

模型10 斜面上的平抛运动(解析版)

模型10 斜面上的平抛运动(解析版)

【变式训练 3】(多选)如图所示,一质点以速度 v0 从倾角为 θ 的斜面底端斜向上抛出,落到斜面上的 M 点且速 度水平向右。现将该质点以 2v0 的速度从斜面底端朝同样方向抛出,落在斜面上的 N 点。下列说法正确的是 ( )。
【解析】(1)设石块击中物块的过程中,石块运动的时间为 t 对物块,运动的位移 s=vt 对石块,竖பைடு நூலகம்方向有(l+s)sin37°= gt2 水平方向有(l+s)cos37°=v0t 解得 v0=20m/s。 (2)对物块有 x1=vt 对石块,竖直方向有 h= gt2
解得 t= =4s
水平方向有 +x1=v1t 联立可得 v1=41.7m/s。 【典例 3】(多选)如图所示,从倾角为 θ 的斜面上某点先后将同一小球以不同的初速度水平抛出,小球均落在斜 面上,当抛出的速度为 v1 时,小球到达斜面时速度方向与斜面的夹角为 α1;当抛出速度为 v2 时,小球到达斜面时 速度方向与斜面的夹角为 α2,则( )。
根据几何关系可知,水平位移 x=tahnα=60 m
水平方向上,v0=xt=20 m/s.
(2)竖直方向上的位移 y=12gt2
水平方向上位移 x=v0t 根据平抛运动规律可知 tanα=yx=2gvt0 竖直分速度 vy=gt
根据平行四边形定则可知,合速度 v= v20+v2y
联立解得 v=
13 2
【变式训练 2】如图所示,在倾角为 37°的固定斜坡上有一人,前方有一物块沿斜坡匀速下滑,且速度 v=15 m/s, 在二者相距 l=30 m 时,此人以速度 v0 水平抛出一石块打击物块,人和物块都可看成质点。(已知 sin 37°=0.6,g=10 m/s2)
(1)若物块在斜坡上被石块击中,求 v0 的大小。 (2)当物块在斜坡末端时,物块离人的高度 h=80 m,此刻此人以速度 v1 水平抛出一石块打击物块,同时物块开始 沿水平面运动,物块速度 v=15 m/s,若物块在水平面上能被石块击中,求速度 v1 的大小。 【答案】(1)20m/s (2)41.7m/s

平抛运动典型例题(含答案)

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P点, 以水平速度向斜面下方抛出一个物体, 落在斜面上的Q 点, 证明落在Q点物体速度。

解析:设物体由抛出点P运动到斜面上的Q点的位移是, 所用时间为, 则由“分解位移法”可得, 竖直方向上的位移为;水平方向上的位移为。

又根据运动学的规律可得竖直方向上,水平方向上,所以Q点的速度[例2] 如图3所示, 在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B, 两侧斜坡的倾角分别为和, 小球均落在坡面上, 若不计空气阻力, 则A和B两小球的运动时间之比为多少?图3解析: 和都是物体落在斜面上后, 位移与水平方向的夹角, 则运用分解位移的方法可以得到所以有同理则[例3] 如图6所示, 在倾角为的斜面上以速度水平抛出一小球, 该斜面足够长, 则从抛出开始计时, 经过多长时间小球离开斜面的距离的达到最大, 最大距离为多少?图6解析: 将平抛运动分解为沿斜面向下和垂直斜面向上的分运动, 虽然分运动比较复杂一些, 但易将物体离斜面距离达到最大的物理本质凸显出来。

取沿斜面向下为 轴的正方向, 垂直斜面向上为 轴的正方向, 如图6所示, 在 轴上, 小球做初速度为 、加速度为 的匀变速直线运动, 所以有①②当 时, 小球在 轴上运动到最高点, 即小球离开斜面的距离达到最大。

由①式可得小球离开斜面的最大距离当 时, 小球在 轴上运动到最高点, 它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。

由②式可得小球运动的时间为例4: 在平直轨道上以 的加速度匀加速行驶的火车上, 相继下落两个物体下落的高度都是2.45m. 间隔时间为1s. 两物体落地点的间隔是2.6m, 则当第一个物体下落时火车的速度是多大? (g 取 )分析: 如图所示. 第一个物体下落以 的速度作平抛运动, 水平位移 , 火车加速到下落第二个物体时, 已行驶距离 . 第二个物体以 的速度作平抛运动水平位移 . 两物体落地点的间隔是2.6m.解: 由位置关系得物体平抛运动的时间 20.7ht s g'=00021002000.710.252()(0.5)0.7s v t v s v t at v s v at t v '===+=+'=+⋅=+⨯由以上三式可得201sin 22sin 2/L gt L t gv m sαα===例5: 光滑斜面倾角为 , 长为L, 上端一小球沿斜面水平方向以速度 抛出(如图所示), 小球滑到底端时, 水平方向位移多大?解:小球运动是合运动, 小球在水平方向作匀速直线运动, 有0s v t = ①沿斜面向下是做初速度为零的匀加速直线运动, 有212L at =② 根据牛顿第二定律列方程sin mg ma θ= ③由①, ②, ③式解得例6: 某一物体以一定的初速度水平抛出, 在某 内其速度方向与水平方向成 变成 , 则此物体初速度大小是________ , 此物体在 内下落的高度是________ ( 取 )选题目的: 考查平抛物体的运动知识的灵活运用.解析:作出速度矢量图如图所示, 其中 . 分别是 及 时刻的瞬时速度.在这两个时刻, 物体在竖直方向的速度大小分别为 及 , 由矢量图可知:037gt v tg =︒ 0(1)53g t v tg +=︒由以上两式解得017.1/v m s = 97t s =物体在这1s 内下落的高度2211(1)22y g t gt ∆=+- 221919(1)()2727g g =+-17.9m =(1) 例7如图, 跳台滑雪运动员经过一段加速滑行后从O 点水平飞出, 经过3.0s 落到斜坡上的A 点. 已知O 点是斜坡的起点, 斜坡与水平面的夹角θ=37°, 运动员的质量m=50kg. 不计空气阻力. (取sin37°=0.60, cos37°=0.80;g 取10m/s2)求: (1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;从O 点水平飞出后, 人做平抛运动, 根据水平方向上的匀速直线运动, 竖直方向上的自由落体运动可以求得A 点与O 点的距离L ; (2)运动员离开O 点时的速度就是平抛初速度的大小, 根据水平方向上匀速直线运动可以求得;设A 点与O 点的距离为L, 运动员在竖直方向做自由落体运动, 则有: Lsin37°=0.5gt2L=gt22sin37°=75m(2)设运动员离开O点的速度为v0, 运动员在水平方向做匀速直线运动,即: Lcos37°=v0t解得: v0=20m/s答: (1)A点与O点的距离是75m;(2)运动员离开O点时的速度大小是20m/s.1: 在倾角为的斜面上的P点, 以水平速度向斜面下方抛出一个物体, 落在斜面上的Q点, 证明落在Q点物体速度。

与斜面有关的平抛运动

与斜面有关的平抛运动

与斜面有关的平抛运动与斜面有关的平抛运动,包括两种情况:(1)物体从空中抛出落在斜面上;(2)物体从斜面上抛出落在斜面上.在解答该类问题时,除要运用平抛运动的位移和速度规律外,还要充分利用斜面倾角,找出斜面倾角同位移和速度的关系,从而使问题得到顺利解决.两种情况的特点及分析方法对比如下:方法内容斜面飞行时间总结分解速度水平方向:v x=v0竖直方向:v y=gt合速度:v=v x2+v y2特点:tan θ=v xv y=v0gtt=v0g tan θ分解速度,构建速度三角形分解位移水平方向:x=v0t竖直方向:y=12gt2合位移:s=x2+y2特点:tan θ=yx=gt2v0t=2v0tan θg分解位移,构建位移三角形【例1】如图所示,以9.8 m/s的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的固定斜面上,这段飞行所用的时间为(不计空气阻力,g取9.8 m/s2)()A.23s B.223s , C. 3 s D.2 s【例2】如图所示,AB为固定斜面倾角为30°,小球从A点以初速度v0水平抛出,恰好落到B点.求:(空气阻力不计,重力加速度为g)(1)A、B间的距离及小球在空中飞行的时间;(2)从抛出开始,经过多长时间小球与斜面间的距离最大?最大距离为多大?【例3】如图所示,B 为竖直圆轨道的左端点,它和圆心O 的连线与竖直方向的夹角为α.一小球在圆轨道左侧的A 点以速度v 0平抛,恰好沿B 点的切线方向进入圆轨道.已知重力加速度为g ,则A 、B 之间的水平距离为( )A.v 20tan αgB.2v 20tan αgC.v 20g tan αD.2v 20g tan α【例4】如图所示,在倾角为37°的斜面上从A 点以6 m/s 的初速度水平抛出一个小球,小球落在B 点,求:(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力)(1)A 、B 两点间的距离和小球在空中飞行的时间;(2)小球刚碰到斜面时的速度方向与水平方向夹角的正切值.【例5】如图所示,一个小球从高h =10 m 处以水平速度v 0=10 m/s 抛出,撞在倾角θ=45°的斜面上的P 点,已知AC =5 m .g =10 m/s 2,不计空气阻力,求:(1)P 、C 之间的距离;(2)小球撞击P 点时速度的大小和方向.课后作业1.如图所示,位于同一高度的小球A、B分别以v1和v2的速度水平抛出,都落到了倾角为30°的斜面上的C点,小球B恰好垂直打在斜面上,则v1、v2之比为()A.1∶2B.2∶1 C.3∶2 D.2∶32.如图所示,斜面与水平面之间的夹角为45°,在斜面底端A点正上方高度为10 m处的O 点,以5 m/s的速度水平抛出一个小球,飞行一段时间后撞在斜面上,不计空气阻力,这段飞行所用的时间为(g取10 m/s2)()A.2 s B. 2 s C.1 s D.0.5 s3.如图所示,一个倾角为37°的斜面固定在水平面上,在斜面底端正上方的O点将一小球以速度v0=3 m/s水平抛出,经过一段时间后,小球垂直打在斜面P点处.(小球可视为质点,不计空气阻力,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8),则()A.小球击中斜面时的速度大小为5 m/sB.小球击中斜面时的速度大小为4 m/sC.小球做平抛运动的水平位移是1.6 mD.小球做平抛运动的竖直位移是1 m4.将一小球以水平速度v0=10 m/s从O点向右抛出,经 3 s小球恰好垂直落到斜面上的A点,不计空气阻力,g=10 m/s2,B点是小球做自由落体运动在斜面上的落点,如图所示,下列判断正确的是()A.斜面的倾角是60°B.小球的抛出点距斜面的竖直高度约是15 mC.若将小球以水平速度v0′=5 m/s向右抛出,它一定落在AB的中点P的上方D.若将小球以水平速度v0′=5 m/s向右抛出,它一定落在AB的中点P处5.如图所示,在斜面顶端先后水平抛出同一小球,第一次小球落到斜面中点,第二次小球落到斜面底端,从抛出到落至斜面上(忽略空气阻力)( )A.两次小球运动时间之比t 1∶t 2=1∶2B.两次小球运动时间之比t 1∶t 2=1∶2C.两次小球抛出时初速度之比v 01∶v 02=1∶2D.两次小球抛出时初速度之比v 01∶v 02=1∶46.如图所示,从斜面上的A 点以速度v 0水平抛出一个物体,飞行一段时间后,落到斜面上的B 点,已知AB =75 m ,α=37°,不计空气阻力,g =10 m/s 2,sin 37°=0.6,下列说法正确的是( )A.物体的位移大小为60 mB.物体飞行的时间为6 sC.物体的初速度v 0大小为20 m/sD.物体在B 点的速度大小为30 m/s7.如图所示,可视为质点的小球,位于半径为3m 半圆柱体左端点A 的正上方某处,以一定的初速度水平抛出小球,其运动轨迹恰好能与半圆柱体相切于B 点.过B 点的半圆柱体半径与水平方向的夹角为60°,则初速度为(不计空气阻力,重力加速度g 取10 m/s 2)( )A.553 m/sB.4 3 m/sC.3 5 m/sD.152m/s8.如图所示,一小球从平台上水平抛出,恰好落在平台前一倾角为α=53°的固定斜面顶端并刚好沿斜面下滑,已知平台到斜面顶端的高度为h =0.8 m ,不计空气阻力,g =10 m/s 2,sin 53°=0.8,cos 53°=0.6,求: (1)小球水平抛出的初速度大小v 0; (2)斜面顶端与平台边缘的水平距离x .与斜面有关的平抛运动参考答案【例1】【答案】 C【解析】 如图所示,把末速度分解成水平方向的分速度v 0和竖直方向的分速度v y ,则有:tan 30°=v 0v y ,v y =gt ,联立得:t=v 0g tan 30°=3v 0g= 3 s ,故C 正确. 【例2】【答案】 (1)4v 0 23g 23v 03g (2)3v 03g 3v 0 212g【解析】 (1)设飞行时间为t ,则有:水平方向位移l AB cos 30°=v 0t 竖直方向位移l AB sin 30°=12gt 2解得:t =2v 0g tan 30°=23v 03g ,l AB =4v 023g .(2)方法二(结合斜抛运动分解)如图所示,把初速度v 0、重力加速度g 都分解成沿斜面和垂直斜面的两个分量.在垂直斜面方向上,小球做的是以v 0y 为初速度、g y 为加速度的“竖直上抛”运动.小球到达离斜面最远处时,速度v y =0, 由v y =v 0y -g y t ′可得:t ′=v 0y g y =v 0sin 30°g cos 30°=v 0g tan 30°=3v 03g小球离斜面的最大距离y =v 0y22g y =v 0 2sin 2 30°2g cos 30°=3v 0 212g.【例3】【答案】 A【解析】 如图所示,对在B 点时的速度进行分解,小球运动的时间t =v y g =v 0tan αg,则A 、B 间的水平距离x =v 0t =v 20tan αg,故A 正确,B 、C 、D 错误.【例4】【答案】 (1)6.75 m 0.9 s (2)32【解析】 (1)如图所示,小球落到B 点时位移与初速度的夹角为37°,设运动时间为t . 则tan 37°=h x =12gt 2v 0t =56t又因为tan 37°=34,解得:t =0.9 s所以x =v 0t =5.4 m则A 、B 两点间的距离l =xcos 37°=6.75 m(2)设小球落到B 点时速度方向和水平方向的夹角为α,则tan α=v y v 0=gt v 0=32.【例5】【答案】 (1)5 2 m (2)10 2 m/s 方向垂直于斜面向下 【解析】 (1)设P 、C 之间的距离为L ,根据平抛运动规律有: AC +L cos θ=v 0t ,h -L sin θ=12gt 2联立解得:L =5 2 m ,t =1 s.(2)小球撞击P 点时的水平速度v 0=10 m/s 竖直速度v y =gt =10 m/s所以小球撞击P 点时速度的大小v =v 02+v y 2=10 2 m/s设小球撞击P 点时的速度方向与水平方向的夹角为α,则tan α=v yv 0=1 解得:α=45°故小球撞击P 点时速度方向垂直于斜面向下.课后作业1.【答案】C【解析】球A 做平抛运动,根据分位移公式,有x =v 1t ,y =12gt 2,又tan 30°=yx ,联立解得v 1=32gt ;小球B 恰好垂直打到斜面上,则有tan 30°=v 2v y =v 2gt ,则得v 2=33gt ,可得v 1∶v 2=3∶2,故C 正确,A 、B 、D 错误. 2.【答案】C【解析】设小球撞到斜面AB 中的一点D 上,则小球的水平运动的时间与竖直下落的时间相等,设飞行时间为t ,则根据几何关系可得v 0t =10 m -12gt 2,代入数据解得t =1 s ,故选项C正确. 3.【答案】 A【解析】 P 点小球的速度方向与斜面垂直,则有:tan 37°=v 0v y ,解得:v y =v 0tan 37°=334 m/s=4 m/s ,小球击中斜面时的速度大小为:v =v 20+v 2y =32+42 m/s =5 m/s ,A 正确,B 错误;小球运动的时间:t =v y g =410 s =0.4 s ,可知水平位移:x =v 0t =3×0.4 m =1.2 m ,竖直位移:y =12gt 2=12×10×0.42 m =0.8 m ,C 、D 错误.4.【答案】 C【解析】 设斜面倾角为θ,对小球在A 点的速度进行分解有tan θ=v 0gt,解得θ=30°,A 错误;小球距过A 点水平面的距离为h =12gt 2=15 m ,所以小球的抛出点距斜面的竖直高度一定大于15 m ,B 错误;若小球的初速度为v 0′=5 m/s ,过A 点做水平面,小球落到水平面的水平位移是小球以初速度v 0=10 m/s 抛出时的一半,延长小球运动的轨迹线,可知小球应该落在P 、A 之间,C 正确,D 错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斜面上的平抛运动问题一、情景描述:如果物体是从斜面上平抛的,若以斜面为参考系,平抛运动有垂直(远离)斜面和平行斜面两个方向的运动效果,如果题目要求讨论相对斜面的运动情况,如求解离斜面的最远距离等,往往沿垂直斜面和平行斜面两个方向进行分解,这种分解方法初速度、加速度都需要分解,难度较大,但解题过程会直观简便。

平抛运动中的“两个重要结论”是解题的关键,一是速度偏向角a二是位移偏向角3,画出平抛运动的示意图,抓住这两个角之间的联系,即tan a= 2tan 3如果物体落到斜面上,则位移偏向角3和斜面倾角B相等, 此时由斜面的几何关系即可顺利解题。

推论I:做平抛(或类平抛)运动的物体在任一时刻任一位置处,方向与水平方向的夹角为幅贝U tan启2tan如设其末速度方向与水平方向的夹角为0,位移证明:如右图所示,由平抛运动规律得V y gt tan 0= - =v-,V x V0+ 丄y o= 1gl!= gtan"= x o 2 v o t 2v o,所以tan 0= 2tan(j)o推论H:做平抛(或类平抛)运动的物体,任意时刻的瞬时速度方向的反向延长线一定通过此时水平位移的中证明:如右图所示,tan片yox oy otan 0= 2tan $= x o/2即末状态速度方向的反向延长线与x轴的交点B必为此时水平位移的中点。

(1)在平抛运动过程中,位移矢量与速度矢量永远不会共线。

⑵它们与水平方向的夹角关系为tan 0= 2tan札但不能误认为0= 2如【典例精析】:如图所示,一物体自倾角为0的固定斜面顶端沿水平方向抛出后落在斜面上, 物体与斜面接触时速度与水平方向的夹角满足()A. tan 0= sin 0 C. tan 0= tan 0B. tan 0 = cos0 D. tan 0= 2tan 0[解析]竖直速度与水平速度之比为:tan 0= V0,竖直位移与水平位移之比为: tan 0=2v o t,故tan 0= 2tan 0,D正确。

(注意:只要落点在斜面上,该结论与初速度大小无关关于物体在斜面上运动,若选取鞋面为参照物时,我们可以更具所需将速度沿加速度方向和垂直于加速度方向分 解、将加速度沿速度方向和垂直于速度方向分解或者两者同时进行分解从而进行有效阶梯【典例精析】:如右图所示,足够长斜面 OA 的倾角为e ,固定在水平地面上, 现从顶点O 以速度v o 平抛一小球,不计空气阻力,重力加速度为 g ,求小球在飞行 过程中经过多长时间离斜面最远?最远距离是多少?解法一:常规分解方法(不分解加速度) 当小球的速度方向与斜面平行时,小球与斜面间的距离最大。

此过程中小球的水平位移 x = V o t 1小球的竖直位移 y = 0gt 2Ssin 2 e最大距离 s = (x — ycot R s in a= .2gcos e解法二:将速度和加速度分别沿垂直于斜面和平行于斜面方向进行分解,如右图 所示。

【注意】:速度与斜面平行的时刻有如下特征: (i) 竖直速度与水平速度之比等于斜面倾角的正切; (速度分解图可以证明得到)v tan V o(2) 该时刻是全运动过程的中间时刻;,、“ ,丄 2ta n v o “丄丄 tan v o全程时间t- 此时时间v tan Vo =gt =;> t -gg(3) 该时刻之前与该时刻之后竖直方tan a= V^= V x gtv o速度v o 沿垂直斜面方向上的分量为 v i = v o sin e,加速度g 在垂直于斜面方向上的分量为 g i = gcos e根据分运动的独立性原理,小球离斜面的最大距离仅由 V i 和g i 决定,当垂直于斜面的分速度减小为零时,小球离斜面和距离最远。

由vi = g i t ,解得t = v o tan e g 由s =着,解得s =Ssin 2 e 2gcos e全程竖直方向位移此时数值方向位移垣2=如(2 22ta n V o 9 2ta n v °g )2= V 22gs sta 2n v 2 2g(4) 该时刻之前与该时刻之后斜面方向上的位移之比不是 i : 3。

(三角形的相似或者直接推到)还有一类问题是平抛后垂直撞击斜面,在撞击斜面的时刻,速度方向与水平方向的夹角与斜面的倾角互余;向上的位移之比为i : 3;与全程竖直位移之比为i:4答案为C o【典例精析】:若质点以V 0正对倾角为B 的斜面水平抛出,如果要求质 点到达斜面的位移最小,求飞行时间为多少 ?[解析]:(1)连接抛出点 O 到斜面上的某点 01 ,其间距001为位移大 小。

当。

1垂直于斜面时位移最小。

(2) 分解位移:利用位移的几何关系可得丄xV o t 丄 2V Otg,ty l gt 2 gtg【小结】:研究平抛运动的基本思路是:(1) 突出落点问题一般要建立水平位移和竖直位移之间的关系。

(2) 突出末速度的大小和方向问题的,一般要建立水平速度和竖直速度之间的关系。

(3) 要注意挖掘和利用好合运动、分运动及题设情景之间的几何关系。

平抛运动中的“两个重要结论”是解题的关键,一是速度偏向角另一情况是平抛过程的位移与斜面垂直。

【典例精析】:如图甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角 的斜面上。

可知物体完成这段飞行的时间是C. 3sD.2S[解析]:先将物体的末速度 V t 分解为水平分速度V x 和竖直分速度V y (如图乙所示)。

根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以V x V o ;又因为V t 与斜面垂直、V y 与水平面垂直, 所以V t 与V y 间的夹角等于斜面的倾角 。

再根据平抛运动的分解可知物体在竖直方向做自由落体运动,那么我们根据V ygt 就可以求出时间t 了。

则由图得tanV x V y所以V y V x ta nV o tan 30%/S9.8 3m/ S.3 V y gt所以tv y9.8 3 9.8二是位移偏向角 3,画出平抛运动的示乙xeyA意图,抓住这两个角之间的联系,即 tan a= 2tan 3,如果物体落到斜面上,则位移偏向角B 和斜面倾角B 相等,此时由斜面的几何关系即可顺利解题。

推论I:做平抛(或类平抛)运动的物体在任一时刻任一位置处, 方向与水平方向的夹角为幅贝U tan 启2tan 如证明:如右图所示,由平抛运动规律得 tan 0= Vy = gt ,V x V 02+ 丄 y o = 1gl_= gt an"= x o 2 v o t 2v o , 所以 tan 0= 2tan (j )o推论H :做平抛(或类平抛)运动的物体,任意时刻的瞬时速度方向的反向延长线一定通过此时水平位移的中证明:如右图所示,tan # x o y otan 0= 2tan $=亦即末状态速度方向的反向延长线与x 轴的交点B 必为此时水平位移的中点。

(1)在平抛运动过程中,位移矢量与速度矢量永远不会共线。

⑵它们与水平方向的夹角关系为tan 0= 2tan 札 但不能误认为 0= 2如【注意】:速度与斜面平行的时刻有如下特征: (4)竖直速度与水平速度之比等于斜面倾角的正切;v tan V o(5)该时刻是全运动过程的中间时刻;,、“,丄 2ta n V o “丄 丄 tan V o全程时间t - 此时时间V tan V °=gt => t-gg⑹该时刻之前与该时刻之后竖直方向上的位移之比为1 : 3;与全程竖直位移之比为1:4设其末速度方向与水平方向的夹角为0,位移(速度分解图可以证明得到)全程竖直方向位移此时数值方向位移 V 22gs s22 tan v o 、2 2ta n )=一ggta 2n v 2 2g2 Vo⑷该时刻之前与该时刻之后斜面方向上的位移之比不是 1 : 3o (三角形的相似或者直接推到)1••如图所示,从倾角为0的斜面上某点先后将同一小球以不同的初速度水平抛出,小球均落在斜面上•当抛出3•如右图所示,足够长斜面 OA 的倾角为e =300,固定在水平地面上,现从顶点 o 以速度v o=2m/s 平抛一小球, 不计空气阻力,重力加速度为g=10m/s 2,求小球再次接触鞋面历时多少?在飞行过程中经过多长时间离斜面最远?最远距离是多少?的速度为V 1时,小球到达斜面时速度方向与斜面的夹角为 斜面的夹角为a ,则( )A .当 v i > V 2 时,a >a B. 当 v i >V 2时,av aC. 无论v i 、V 2关系如何,均有 a i = aD. a 、a 的关系与斜面倾角 B 有关a;当抛出速度为V 2时,小球到达斜面时速度方向与2.如图所示,在斜面顶端先后水平抛出同一小球,第 到落至斜面上(忽略空气阻力)( ) A .两次小球运动时间之比 11 : 12= 1 : ;'2 B. 两次小球运动时间之比 11 : 12= 1 :2 C.两次小球抛出时初速度之比v : V = 1 : '2次小球落到斜面中点,第二次小球落到斜面底端,从抛出。

相关文档
最新文档