云南省昆明市中考数学试卷

合集下载

2023年云南省中考数学试卷+答案解析

2023年云南省中考数学试卷+答案解析

2023年云南省中考数学试卷+答案解析(试卷部分)一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.(3分)中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作+60米,则向西走80米可记作()A.﹣80米B.0米C.80米D.140米2.(3分)云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为()A.340×104B.34×105C.3.4×105D.0.34×1063.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=35°,则∠2=()A.145°B.65°C.55°D.35°4.(3分)某班同学用几个几何体组合成一个装饰品美化校园,其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.球B.圆柱C.长方体D.圆锥5.(3分)下列计算正确的是()A.a2•a3=a6B.(3a)2=6a2C.a6÷a3=a2D.3a2﹣a2=2a26.(3分)为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65 B.60 C.75 D.807.(3分)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.B.C.D.8.(3分)若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为()A.3 B.﹣3 C.D.9.(3分)按一定规律排列的单项式:a,,,,,…,第n个单项式是()A.B.C.D.10.(3分)如图,A、B两点被池塘隔开,A、B、C三点不共线.设AC、BC的中点分别为M、N.若MN=3米,则AB=()A.4米B.6米C.8米D.10米11.(3分)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x米/分,则下列方程正确的是()A.B.C.D.12.(3分)如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A=()A.66°B.33°C.24°D.30°二、填空题(本大题共4小题,每小题2分,共8分)13.(2分)函数y=的自变量x的取值范围是.14.(2分)五边形的内角和等于度.15.(2分)分解因式:x2﹣4=.16.(2分)数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为分米.三、解答题(本大题共8小题,共56分)17.(6分)计算:|﹣1|+(﹣2)2﹣(π﹣1)0+()﹣1﹣tan45°.18.(6分)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.19.(7分)调查主题某公司员工的旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游.这5个示范区为:A.保山市腾冲市;B.昆明市石林彝族自治县;C.红河哈尼族彝族自治州弥勒市;D.大理白族自治州大理市;E.丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.20.(7分)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.21.(7分)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A、B两种型号的帐篷.若购买A种型号帐篷2顶和B种型号帐篷4顶,则需5200元;若购买A种型号帐篷3顶和B种型号帐篷1顶,则需2800元.(1)求每顶A种型号帐篷和每顶B种型号帐篷的价格;(2)若该景区需要购买A、B两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A种型号帐篷数量不超过购买B种型号帐篷数量的,为使购买帐篷的总费用最低,应购买A种型号帐篷和B种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?22.(7分)如图,平行四边形ABCD中,AE、CF分别是∠BAD、∠BCD的平分线,且E、F分别在边BC、AD上,AE=AF.(1)求证:四边形AECF是菱形;(2)若∠ABC=60°,△ABE的面积等于,求平行线AB与DC间的距离.23.(8分)如图,BC是⊙O的直径,A是⊙O上异于B、C的点.⊙O外的点E在射线CB上,直线EA与CD垂直,垂足为D,且DA•AC=DC•AB.设△ABE的面积为S1,△ACD的面积为S2.(1)判断直线EA与⊙O的位置关系,并证明你的结论;(2)若BC=BE,S2=mS1,求常数m的值.24.(8分)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象为图象T.(1)求证:无论a取什么实数,图象T与x轴总有公共点;(2)是否存在整数a,使图象T与x轴的公共点中有整点?若存在,求所有整数a的值;若不存在,请说明理由.2023年云南省中考数学试卷+答案解析(答案部分)一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.(3分)中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作+60米,则向西走80米可记作()A.﹣80米B.0米C.80米D.140米【分析】正数和负数可以表示具有相反意义的量,据此即可得出答案.【解析】解:∵向东走60米记作+60米,∴向西走80米可记作﹣80米,故选:A.【点评】本题考查正数与负数的实际意义,明确正数和负数是一对具有相反意义的量最为关键.2.(3分)云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为()A.340×104B.34×105C.3.4×105D.0.34×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:将340000用科学记数法表示为:3.4×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=35°,则∠2=()A.145°B.65°C.55°D.35°【分析】由对顶角相等可得∠3=∠1=35°,再由平行线的性质求解即可.【解析】解:如图,∵∠1=35°,∴∠3=∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:D.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.4.(3分)某班同学用几个几何体组合成一个装饰品美化校园,其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.球B.圆柱C.长方体D.圆锥【分析】由主视图和俯视图确定是柱体,锥体还是球体,再由左视图确定具体形状.【解析】解:根据主视图和左视图、俯视图都为圆形判断出是球.故选:A.【点评】此题主要考查了由三视图判断几何体,3个视图的大致轮廓为圆形的几何体为球体.5.(3分)下列计算正确的是()A.a2•a3=a6B.(3a)2=6a2C.a6÷a3=a2D.3a2﹣a2=2a2【分析】根据同底数幂乘法、幂的乘方与积的乘方、同底数幂除法以及合并同类项的法则计算即可.【解析】解:A、a2•a3=a2+3=a5,原式计算错误,故选项不符合题意;B、(3a)2=9a2,原式计算错误,故选项不符合题意;C、a6÷a3=a6﹣3=a3,原式计算错误,故选项不符合题意;D、3a2﹣a2=2a2,计算正确,故选项符合题意.故选:D.【点评】本题考查了同底数幂乘法、幂的乘方与积的乘方、同底数幂除法以及合并同类项,解题的关键是熟练掌握相关的定义和法则.6.(3分)为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65 B.60 C.75 D.80【分析】根据众数的定义解答即可,一组数据中出现次数最多的数据叫做众数.【解析】解:这组数据中,60出现的次数最多,故这组数据的众数为60.故选:B.【点评】本题考查了众数,熟记定义是解题的关键.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.7.(3分)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解析】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点评】本题主要考查了轴对称图形的概念,熟知:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.这条直线是它的对称轴.8.(3分)若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为()A.3 B.﹣3 C.D.【分析】将点A的坐标代入反比例函数的关系式即可求出k的值.【解析】解:∵点A(1,3)在反比例函数y=(k≠0)图象上,∴k=1×3=3,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,将点A的坐标代入反比例函数的关系式是正确解答的关键.9.(3分)按一定规律排列的单项式:a,,,,,…,第n个单项式是()A.B.C.D.【分析】根据题干所给单项式总结规律即可.【解析】解:第1个单项式为a,即a1,第2个单项式为a2,第3个单项式为a3,...第n个单项式为a n,故选:C.【点评】本题考查数式规律问题,根据已知单项式总结出规律是解题的关键.10.(3分)如图,A、B两点被池塘隔开,A、B、C三点不共线.设AC、BC的中点分别为M、N.若MN=3米,则AB=()A.4米B.6米C.8米D.10米【分析】根据三角形中位线定理计算即可.【解析】解:∵点M,N分别是AC和BC的中点,∴AB=2MN=6(m),故选:B.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.11.(3分)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x米/分,则下列方程正确的是()A.B.C.D.【分析】根据“乙同学比甲同学提前4分钟到达活动地点”列方程求解.【解析】解:∵乙同学的速度是x米/分,则甲同学的速度是1.2x米/分,由题意得:,故选:D.【点评】本题考查了分式方程的应用,找到相等关系是解题的关键.12.(3分)如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A=()A.66°B.33°C.24°D.30°【分析】根据圆周角定理解答即可,在同圆或等圆中,同弧所对的圆周角等于这条弧所对的圆心角的一半.【解析】解:∵∠A=∠BOC,∠BOC=66°,∴∠A=33°.故选:B.【点评】本题考查了圆周角定理,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.二、填空题(本大题共4小题,每小题2分,共8分)13.(2分)函数y=的自变量x的取值范围是x≠10.【分析】根据分式的分母不能为0即可求得答案.【解析】解:已知函数为y=,则x﹣10≠0即x≠10,故答案为:x≠10.【点评】本题考查函数自变量的取值范围,此为基础且重要知识点,必须熟练掌握.14.(2分)五边形的内角和等于540度.【分析】直接根据n边形的内角和=(n﹣2)•180°进行计算即可.【解析】解:五边形的内角和=(5﹣2)•180°=540°.故答案为:540.【点评】本题考查了n边形的内角和定理:n边形的内角和=(n﹣2)•180°.15.(2分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解析】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.16.(2分)数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为分米.【分析】根据勾股定理计算即可.【解析】解:由勾股定理得:圆锥的高为:=(分米),故答案为:.【点评】本题考查的是圆锥的计算,熟记勾股定理是解题的关键.三、解答题(本大题共8小题,共56分)17.(6分)计算:|﹣1|+(﹣2)2﹣(π﹣1)0+()﹣1﹣tan45°.【分析】利用绝对值的性质,有理数的乘方,零指数幂,负整数指数幂,特殊角的三角函数值进行计算即可.【解析】解:原式=1+4﹣1+3﹣1=4+3﹣1=6.【点评】本题考查实数的运算,实数的相关运算法则是基础且重要知识点,必须熟练掌握.18.(6分)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.【分析】求出BC=DC,根据全等三角形的判定定理证明即可.【解析】证明:∵C是BD的中点,∴BC=DC,在△ABC和△EDC中,,∴△ABC≌△EDC(SSS).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.19.(7分)调查主题某公司员工的旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游.这5个示范区为:A.保山市腾冲市;B.昆明市石林彝族自治县;C.红河哈尼族彝族自治州弥勒市;D.大理白族自治州大理市;E.丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.【分析】(1)把5个示范区的人数相加,求出总人数即可解决问题;(2)利用样本估计总体的思想解决问题即可.【解析】解:(1)30+18+15+24+13=100(人).故本次被抽样调查的员工人数是100人;(2)900×30.00%=270(人).故估计该公司意向前往保山市腾冲市的员工人数是270人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7分)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.【分析】(1)根据题意画出树状图,再由树状图求得所有等可能的结果即可;(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,再由概率公式求解即可.【解析】解:(1)画树状图如下:共有9种等可能的结果,分别为(A,A)、(A,B)、(A,C)、(B,A),(B,C),(B,B)、(C,A)、(C,B)、(C,C);(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,∴甲、乙两名同学选择种植同一种蔬菜的概率P=.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(7分)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A、B两种型号的帐篷.若购买A种型号帐篷2顶和B种型号帐篷4顶,则需5200元;若购买A种型号帐篷3顶和B种型号帐篷1顶,则需2800元.(1)求每顶A种型号帐篷和每顶B种型号帐篷的价格;(2)若该景区需要购买A、B两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A种型号帐篷数量不超过购买B种型号帐篷数量的,为使购买帐篷的总费用最低,应购买A种型号帐篷和B种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?【分析】(1)设每顶A种型号帐篷m元,每顶B种型号帐篷n元,根据若购买A种型号帐篷2顶和B种型号帐篷4顶,则需5200元;若购买A种型号帐篷3顶和B种型号帐篷1顶,则需2800元得:,即可解得答案;(2)设购买A种型号帐篷x顶,总费用为w元,由购买A种型号帐篷数量不超过购买B种型号帐篷数量的,可得x≤5,而w=600x+1000(20﹣x)=﹣400x+20000,根据一次函数性质可得答案.【解析】解:(1)设每顶A种型号帐篷m元,每顶B种型号帐篷n元,根据题意得:,解得:,∴每顶A种型号帐篷600元,每顶B种型号帐篷1000元;(2)设购买A种型号帐篷x顶,总费用为w元,则购买B种型号帐篷(20﹣x)顶,∵购买A种型号帐篷数量不超过购买B种型号帐篷数量的,∴x≤(20﹣x),解得x≤5,根据题意得:w=600x+1000(20﹣x)=﹣400x+20000,∵﹣400<0,∴w随x的增大而减小,∴当x=5时,w取最小值,最小值为﹣400×5+20000=18000(元),∴20﹣x=20﹣5=15,答:购买A种型号帐篷5顶,购买B种型号帐篷15顶,总费用最低,最低总费用为18000元.【点评】本题考查二元一次方程组和一次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.22.(7分)如图,平行四边形ABCD中,AE、CF分别是∠BAD、∠BCD的平分线,且E、F分别在边BC、AD上,AE=AF.(1)求证:四边形AECF是菱形;(2)若∠ABC=60°,△ABE的面积等于,求平行线AB与DC间的距离.【分析】(1)根据平行四边形对角相等得到∠BAD=∠BCD,再根据AE、CF分别是∠BAD、∠BCD的平分线,可得到∠DAE=∠BCF,再根据平行四边形对边平行得到∠DAE=∠AEB,于是有∠BCF=∠AEB,得出AE∥FC,根据两组对边分别平行的四边形是平行四边形可证得四边形AECF 是平行四边形,最后根据一组邻边相等的平行四边形是菱形即可得证;(2)连接AC,根据平行四边形的性质和角平分线的定义可证得AB=EB,结合已知∠ABC=60°得到△ABE是等边三角形,从而求出AB=AE=EB=EC=4,∠BAE=60°,再证得∠EAC=30°,即可得到∠BAC=90°,根据勾股定理求出AC的长,从而得出平行线AB与DC间的距离.【解析】(1)证明:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AD∥BC,∵AE、CF分别是∠BAD、∠BCD的平分线,∴,,∴∠DAE=∠BCF,∵AD∥BC,∴∠DAE=∠AEB,∴∠BCF=∠AEB,∴AE∥FC,∴四边形AECF是平行四边形,∵AE=AF,∴四边形AECF是菱形;(2)解:连接AC,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=EB,∵∠ABC=60°,∴△ABE是等边三角形,∴∠BAE=∠AEB=∠ABEA=60°,∵△ABE的面积等于,∴,∴AB=4,即AB=AE=EB=4,由(1)知四边形AECF是菱形,∴AE=CE=4,∴∠EAC=∠ECA,∵∠AEB是△AEC的一个外角,∴∠AEB=∠EAC+∠ECA=60°,∴∠EAC=∠ECA=30°,∴∠BAC=∠BAE+∠EAC=90°,即AC⊥AB,由勾股定理得,即平行线AB与DC间的距离是.【点评】本题考查了菱形的判定与性质,掌握一组邻边相等的平行四边形是菱形是此题的关键,理解平行线间的距离的定义,等边三角形的性质与判定.23.(8分)如图,BC是⊙O的直径,A是⊙O上异于B、C的点.⊙O外的点E在射线CB上,直线EA与CD垂直,垂足为D,且DA•AC=DC•AB.设△ABE的面积为S1,△ACD的面积为S2.(1)判断直线EA与⊙O的位置关系,并证明你的结论;(2)若BC=BE,S2=mS1,求常数m的值.【分析】(1)通过证明△ABC∽△DAC,可得∠ACB=∠ACD,可证OA⊥DE,即可求解;(2)设BO=OC=OA=a,则BC=2a,由相似三角形的性质可求CD的长,即可求解.【解析】解:(1)AE与⊙O相切,理由如下:如图,连接OA,∵DA•AC=DC•AB,∴,∵BC是⊙O的直径,∴∠BAC=90°=∠ADC,∴△ABC∽△DAC,∴∠ACB=∠ACD,∵OA=OC,∴∠OAC=∠ACB=∠ACD,∴OA∥CD,∴∠OAE=∠CDE=90°,∴OA⊥DE,又∵OA为半径,∴AE与⊙O相切;(2)如图,∵OA∥CD,∴△AOE∽△DCE,∴,设BO=OC=OA=a,则BC=2a,∵BC=BE=2a,∴S△ABE =S△ABC,EO=3a,EC=4a,∴,∴CD=a,∵△ABC∽△DAC,∴,∴AC2=BC•CD=a2,∵△ABC∽△DAC,∴=()2=,∴S2=S1,∴m=.【点评】本题考查了相似三角形的判定和性质,圆的有关知识,等腰三角形的性质,灵活运用这些性质解决问题是解题的关键.24.(8分)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象为图象T.(1)求证:无论a取什么实数,图象T与x轴总有公共点;(2)是否存在整数a,使图象T与x轴的公共点中有整点?若存在,求所有整数a的值;若不存在,请说明理由.【分析】(1)分一次函数和二次函数分别证明函数图象T与x轴总有交点即可;(2)当a=﹣时,不符合题意;当a≠时,由0=(4a+2)x2+(9﹣6a)x﹣4a+4,得x=﹣或x=,即x==2﹣,因a是整数,故当2a+1是6的因数时,是整数,可得2a+1=﹣6或2a+1=﹣3或2a+1=﹣2或2a+1=﹣1或2a+1=1或2a+1=2或2a+1=3或2a+1=6,分别解方程并检验可得a=﹣2或a=﹣1或a=0或a=1.【解析】(1)证明:当a=﹣时,函数表达式为y=12x+6,令y=0得x=﹣,∴此时函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象与x轴有交点;当a≠时,y=(4a+2)x2+(9﹣6a)x﹣4a+4为二次函数,∵Δ=(9﹣6a)2﹣4(4a+2)(﹣4a+4)=100a2﹣140a+49=(10a﹣7)2≥0,∴函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象与x轴有交点;综上所述,无论a取什么实数,图象T与x轴总有公共点;(2)解:存在整数a,使图象T与x轴的公共点中有整点,理由如下:当a=﹣时,不符合题意;当a≠时,在y=(4a+2)x2+(9﹣6a)x﹣4a+4中,令y=0得:0=(4a+2)x2+(9﹣6a)x﹣4a+4,解得x=﹣或x=,∵x==2﹣,a是整数,∴当2a+1是6的因数时,是整数,∴2a+1=﹣6或2a+1=﹣3或2a+1=﹣2或2a+1=﹣1或2a+1=1或2a+1=2或2a+1=3或2a+1=6,解得a=﹣或a=﹣2或a=﹣或a=﹣1或a=0或a=或a=1或a=,∵a是整数,∴a=﹣2或a=﹣1或a=0或a=1.【点评】本题考查二次函数的应用,涉及一次函数,二次函数与一元二次方程的关系,解题的关键是理解整点的意义.。

2024年云南省中考数学试卷(含详细解析)

2024年云南省中考数学试卷(含详细解析)

2024年云南省中考数学试卷一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1.(2分)(2024•云南)中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作+100米,则向南运动100米可记作()A.100米B.﹣100米C.200米D.﹣200米2.(2分)(2024•云南)某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A.5.78×104B.57.8×103C.578×102D.5780×103.(2分)(2024•云南)下列计算正确的是()A.x3+5x3=6x4B.x6÷x3=x5C.(a2)3=a7D.(ab)3=a3b34.(2分)(2024•云南)若在实数范围内有意义,则实数x的取值值围为()A.x≥0B.x≤0C.x>0D.x<05.(2分)(2024•云南)某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.正方体B.圆柱C.圆锥D.长方体6.(2分)(2024•云南)一个七边形的内角和等于()A.540°B.900°C.980°D.1080°7.(2分)(2024•云南)甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数(单位:环)和方差s2如下表所示:甲乙丙丁9.99.58.28.5s20.090.650.16 2.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁8.(2分)(2024•云南)已知AF是等腰△ABC底边BC上的高,若点F到直线AB的距离为3,则点F到直线AC的距离为()A.B.2C.3D.9.(2分)(2024•云南)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x,根据题意,下列方程正确的是()A.80(1﹣x2)=60B.80(1﹣x)2=60C.80(1﹣x)=60D.80(1﹣2x)=6010.(2分)(2024•云南)按一定规律排列的代数式:2x,3x2,4x3,5x4,6x5,⋯,第n个代数式是()A.2x n B.(n﹣1)x n C.nx n+1D.(n+1)x n11.(2分)(2024•云南)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.B.C.D.12.(2分)(2024•云南)如图,在△ABC中,若∠B=90°,AB=3,BC=4,则tan A=()A.B.C.D.13.(2分)(2024•云南)如图,CD是⊙O的直径,点A,B在⊙O上.若=,∠AOC=36°,则∠D=()A.9°B.18°C.36°D.45°14.(2分)(2024•云南)分解因式:a3﹣9a=()A.a(a﹣3)(a+3)B.a(a2+9)C.(a﹣3)(a+3)D.a2(a﹣9)15.(2分)(2024•云南)某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A.700π平方厘米B.900π平方厘米C.1200π平方厘米D.1600π平方厘米二、填空题(本大题共4小题,每小题2分,共8分)16.(2分)(2024•云南)若一元二次方程x2﹣2x+c=0无实数根,则实数c的取值范围为.17.(2分)(2024•云南)已知点P(2,n)在反比例函数y=的图象上,则n=.18.(2分)(2024•云南)如图,AB与CD交于点O,且AC∥BD.若=,则=.19.(2分)(2024•云南)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有人.三、解答题(本大题共8小题,共62分)20.(7分)(2024•云南)计算:70+()﹣1+|﹣|﹣()2﹣sin30°.21.(6分)(2024•云南)如图,在△ABC和△AED中,AB=AE,∠BAE=∠CAD,AC=AD.求证:△ABC≌△AED.22.(7分)(2024•云南)某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.23.(6分)(2024•云南)为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c 为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.(8分)(2024•云南)如图,在四边形ABCD中,点E、F、G、H分别是各边的中点,且AB∥CD,AD∥BC,四边形EFGH是矩形.(1)求证:四边形ABCD是菱形;(2)若矩形EFGH的周长为22,四边形ABCD的面积为10,求AB的长.25.(8分)(2024•云南)A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A 型号35aB 型号42b若顾客在该超市购买8个A 种型号吉祥物和7个B 种型号吉祥物,则一共需要670元;购买4个A 种型号吉祥物和5个B 种型号吉祥物,则一共需要410元.(1)求a 、b 的值;(2)若某公司计划从该超市购买A 、B 两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的,又不超过B 种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y 元,求y 的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26.(8分)(2024•云南)已知抛物线y =x2+bx ﹣1的对称轴是直线x =.设m 是抛物线y =x 2+bx ﹣1与x 轴交点的横坐标,记M =.(1)求b 的值;(2)比较M 与的大小.27.(12分)(2024•云南)如图,AB 是⊙O 的直径,点D 、F 是⊙O 上异于A 、B 的点.点C 在⊙O 外,CA =CD ,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,∠AMN =∠ABM ,AM •BM =AB •MN .点H 在直径AB 上,∠AHD =90°,点E 是线段DH 的中点.(1)求∠AFB 的度数;(2)求证:直线CM 与⊙O 相切;(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE +EB <CB ,CE +EB =CB ,CE +EB >CB ,你认为哪个正确?请说明理由.2024年云南省中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1.【解答】解:∵向北运动100米记作+100米,∴向南运动100米可记作﹣100米,故选:B.2.【解答】解:57800用科学记数法可以表示为5.78×104,故选:A.3.【解答】解:A、x3+5x3=6x3,故A选项错误;B、x6÷x3=x3,故B选项错误;C、(a2)3=a6,故C选项错误;D、(ab)3=a3b3,故D选项正确;故选:D.4.【解答】解:∵在实数范围内有意义,∴x≥0,故选:A.5.【解答】解:∵主视图、俯视图、左视图都是矩形,∴这个几何体是长方体.故选:D.6.【解答】解:一个七边形的内角和为:(7﹣2)×180°=5×180°=900°,故选:B.7.【解答】解:由表知甲、乙的平均数较大,∴从甲、乙中选择一人参加比赛,∵甲的方差较小,∴选择甲参加比赛,故选:A.8.【解答】解:∵AF是等腰△ABC底边BC上的高,∴AF是顶角∠BAC的平分线,∵点F到直线AB的距离为3,∴点F到直线AC的距离为3,故选:C.9.【解答】解:根据题意得:80(1﹣x)2=60.故选:B.10.【解答】解:∵按一定规律排列的代数式:2x,3x2,4x3,5x4,6x5,⋯,∴第n个代数式为(n+1)x n,故选:D.11.【解答】解:A、B、C中,图形不是轴对称图形,不符合题意;D中,图形是轴对称图形,符合题意.故选:D.12.【解答】解:∵在△ABC中,若∠B=90°,AB=3,BC=4,∴tan A==,故选:C.13.【解答】解:连接AD,∵,∴∠ADC=∠BDC=,故选:B.14.【解答】解:原式=a(a2﹣9)=a(a﹣3)(a+3),故选:A.15.【解答】解:圆锥的侧面积=×2π×30×40=1200π(平方厘米).故选:C.二、填空题(本大题共4小题,每小题2分,共8分)16.【解答】解:∵一元二次方程x2﹣2x+c=0无实数根,∴Δ=(﹣2)2﹣4c<0,∴c>1,故答案为:c>1.17.【解答】解:将点P(2,n)代入y=,∴,∴n=5,故答案为:5.18.【解答】解:∵AC∥BD.∴△AOC∽△BOD,∴=,∵=,∴=,故答案为:.19.【解答】解:根据题意得:1000×12%=120(人),答:该校喜欢跳绳的学生大约有120人.故答案为:120.三、解答题(本大题共8小题,共62分)20.【解答】解:70+()﹣1+|﹣|﹣()2﹣sin30°=1+6+﹣5﹣=2.21.【解答】证明:∵∠BAE=∠CAD,∴∠BAE+∠CAE=∠CAD+∠CAE,即∠BAC=∠EAD,在△ABC与△AED中,,∴△ABC≌△AED(SAS).22.【解答】解:设D型车的平均速度是x千米/小时,则C型车的平均速度是3x千米/小时,根据题意得:﹣=2,解得:x=100,经检验,x=100是所列方程的解,且符合题意.答:D型车的平均速度是100千米/小时.23.【解答】解:(1)根据题意列表如下:a b ca(a,a)(a,b)(a,c)b(b,a)(b,b)(b,c)c(c,a)(c,b)(c,c)共有9种等可能的情况数;(2)∵共有6种等可能的情况数,其中七年级年级组、八年级年级组选择的研学基地互不相同的有4种,∴该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P==.24.【解答】(1)证明:连接AC,BD交于点O,交FG于点N,交HG于点M,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵四边形EFGH是矩形,∴∠HGF=90°,∵H、G分别是AD、DC的中点,∴HG∥AC,HG=AC,∴∠HGF=∠GNC,∴∠GNC=90°,∵G,F分别是DC、BC的中点,∴GF∥BD,GF=BD,∴∠GNC=∠MOC=90°,∴BD⊥AC,∴四边形ABCD是菱形;(2)解:∵矩形EFGH的周长为22,∴HG+FG=11,∴AC+BD=22,∵,∴AC×BD=20,∵(AC+BD)2=AC2+2×AC×BD+BD2,∴AC2+BD2=444,∴,∴AO2+BO2=111,∴AB2=AO2+BO2=111,∴AB=.25.【解答】解:(1)根据题意,得,解得,∴a的值是40,b的值是50.(2)购买B种型号吉祥物的数量为(90﹣x)个.根据题意,得,解得≤x≤60;y=(40﹣35)x+(50﹣42)(90﹣x)=﹣3x+720,∵﹣3<0,∴y随x的减小而增大,∵≤x≤60且x为整数,=﹣3×52+720=564,∴当x=52时,y的值最大,y最大∴y的最大值是564元.26.【解答】解:(1)∵抛物线y=x2+bx﹣1的对称轴是直线x=.∴﹣=.解得b=﹣3;(2)由(1)知:b=﹣3,∴抛物线y=x2﹣3x﹣1,当y=0时,0=x2﹣3x﹣1,解得x=,∵m是抛物线y=x2+bx﹣1与x轴交点的横坐标,∴m=,方法一:直接计算化简,当m=时,M===,∴﹣=>0,即M>;当m=时,M==<0,∴M<;由上可得,当m=时,M>;当m=时,M<.方法二:∵m是抛物线y=x2﹣3x﹣1与x轴交点的横坐标,∴0=m2﹣3m﹣1,∴m2=3m+1,∴m5=(m2)2•m=(3m+1)2•m=(9m2+6m+1)•m=[9(3m+1)+6m+1]•m=(27m+9+6m+1)•m+1=(33m+10)•m=33m2+10m=33(3m+1)+10m=99m+33+10m=109m+33,∴M===m,由0=m2﹣3m﹣1,可得m=,当m=时,M﹣=m﹣=﹣=>0,此时M>;当m=时,M﹣=m﹣=﹣=<0,此时M<.27.【解答】(1)解:∵AB是⊙O的直径,∴∠AFB=90°;(2)证明:∵AM•BM=AB•MN,∴,∵∠AMN=∠ABM,∴△AMN∽△ABM,∴∠NAM=∠MAB.∵∠NAM+∠MAB=180°,∴∠NAM=∠MAB=90°,∴OA⊥CM.∵OA为⊙O的半径,∴直线CM与⊙O相切;(3)解:正确的结论为:CE+EB=CB,理由:连接OC,OD,过点B作⊙O的切线,交CD的延长线于点K,设BC与DH交于点G,如图,在△OAC和△ODC中,,∴△OAC≌△ODC(SSS),∴∠OAC=∠ODC.由(2)知:OA⊥CM,∴∠OAC=∠ODC=90°,∴OD⊥CD.∵OD为⊙O的半径,∴CK为⊙O的切线.∵BK为⊙O的切线,∴DK=BK,BK⊥AB.∵DH⊥AB,CA⊥AB,∴AC∥DH∥BK,∴△BHG∽△BAC,△CDG∽△CKB,.∴,,∴,,∴.∵CA=CD,∴GH=GD,∴点G是线段DH的中点,∵点E是线段DH的中点,∴点G与点E重合.∴线段BC经过点E,∴CE+EB=CB.。

2023年云南昆明中考数学试题及答案

2023年云南昆明中考数学试题及答案

2023年云南昆明中考数学试题及答案(全卷三个大题,共24个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走80米可记作()A.80-米B.0米C.80米D.140米【答案】A【解析】【分析】此题主要用正负数来表示具有意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可.【详解】解∶∵向东走60米记作60+米,∴向西走80米可记作80-米,故选A.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负是解题的关键.2.云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为()A.434010⨯ B.53410⨯ C.53.410⨯ D.60.3410⨯【答案】C【解析】【分析】根据科学记数法的记数方法,340000写成10n a ⨯的形式,其中01a <≤,据此可得到答案.【详解】解:533.04040001=⨯.故选C.【点睛】本题考查了科学记数法的定义,准确确定a 和n 的值是本题的解题关键.3.如图,直线c 与直线a b 、都相交.若,135a b ∠=︒∥,则2∠=()A.145︒B.65︒C.55︒D.35︒【答案】D【解析】【分析】根据平行线的性质,对顶角相等,即可求解.【详解】解:如图所示,∵a b ∥,1335==︒∠∠∴2335∠=∠=︒,故选:D.【点睛】本题考查了对顶角相等,平行线的性质,熟练掌握平行线的性质是解题的关键.4.某班同学用几个几何体组合成一个装饰品美化校园.其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.球B.圆柱C.长方体D.圆锥【答案】A【解析】【分析】根据球体三视图的特点确定结果.【详解】解:根据球体三视图的特点:球体的三视图都是大小相等的圆,确定该几何体为球.故选:A.【点睛】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.5.下列计算正确的是()A.236a a a ⋅= B.22(3)6a a = C.632a a a ÷= D.22232a a a -=【答案】D【解析】【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==,故A 错误;2222(3)39a a a ==,故B 错误;63633a a a a -÷==,故C 错误;()22223312a a a a -=-=,故D 正确.故本题选:D.【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键.6.为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65B.60C.75D.80【答案】B【解析】【分析】根据众数的定义求解即可.【详解】解:在65,60,75,60,80中,出现次数最多的是60,∴这组数据的众数是60,故选;B【点睛】本题考查了众数,众数是指一组数据中出现次数最多的数据,掌握众数的定义是解题的关键.7.中华文明,源远流长:中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可求解问题.【详解】解:由题意得:A、B、D 选项都不是轴对称图形,符合轴对称图形的只有C 选项;故选C.【点睛】本题主要考查轴对称图形,熟练掌握轴对称图形的定义是解题的关键.8.若点()1,3A 是反比例函数(0)k y k x =≠图象上一点,则常数k 的值为()A.3B.3-C.32D.32-【答案】A【解析】【分析】将点()1,3A 代入反比例函数(0)k y k x =≠,即可求解.【详解】解:∵点()1,3A 是反比例函数(0)k y k x =≠图象上一点,∴133k =⨯=,故选:A.【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.9.按一定规律排列的单项式:2345,a ,第n 个单项式是()A. B.1n - C.n D.1n-【答案】C【解析】【分析】根据单项式的规律可得,系数为,字母为a ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第n 个单项式是n,故选:C.【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.10.如图,A B 、两点被池塘隔开,、、A B C 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米,则AB =()A.4米B.6米C.8米D.10米【答案】B【解析】【分析】根据三角形中位线定理计算即可.【详解】解∶∵AC BC 、的中点分别为M N 、,∴MN 是ABC 的中位线,∴26(AB MN ==米),故选∶B.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11.阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是()A. 1.24800400x x -= B.1.24800400x x -= C.40080041.2x x -= D.80040041.2x x -=【答案】D【解析】【分析】设乙同学的速度是x 米/分,根据乙同学比甲同学提前4分钟到达活动地点,列出方程即可.【详解】解∶设乙同学的速度是x 米/分,可得:80040041.2x x-=故选∶D.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.12.如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=︒,则A ∠=()A.66︒B.33︒C.24︒D.30︒【答案】B【解析】【分析】根据圆周角定理即可求解.【详解】解:∵ BCBC =,66BOC ∠=︒,∴1332A BOC ∠=∠=︒,故选:B.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题(本大题共4小题,每小题2分,共8分)13.函数110y x =-的自变量x 的取值范围是________.【答案】10x ≠【解析】【分析】要使110-x 有意义,则分母不为0,得出结果.【详解】解:要使110-x 有意义得到100x -≠,得10x ≠.故答案为:10x ≠.【点睛】本题考查了函数自变量取值范围,分式有意义的条件,理解分母不为零是解决问题的关键.14.五边形的内角和是________度.【答案】540【解析】【分析】根据n 边形内角和为()2180n -⨯︒求解即可.【详解】五边形的内角和是()52180540-⨯︒=︒.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n 边形内角和为()2180n -⨯︒是解题关键.15.分解因式:24m -=_____.【答案】(2)(2)m m +-【解析】【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.16.数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为________分米.【答案】【解析】【分析】根据勾股定理得,圆锥的高2=母线长2-底面圆的半径2得到结果.【详解】解:由圆锥的轴截面可知:圆锥的高2=母线长2-底面圆的半径2圆锥的高==故答案为【点睛】本题考查了圆锥,勾股定理,其中对圆锥的高,母线长,底面圆的半径之间的关系的理解是解决本题的关键.三、解答题(本大题共8小题,共56分)17.计算:1201|1|(2)(1)tan 453π-⎛⎫-+---+- ⎪⎝⎭︒.【答案】6【解析】【分析】根据绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值分别化简计算即可得出答案.【详解】解:1201|1|(2)(1)tan 453π-⎛⎫-+---+- ⎪⎝⎭︒14131=+-+-6=.【点睛】本题考查了实数的运算,熟练掌握绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值是解题的关键.18.如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.【答案】见解析【解析】【分析】根据C 是BD 的中点,得到BC CD =,再利用SSS 证明两个三角形全等.【详解】证明: C 是BD 的中点,BC CD ∴=,在ABC 和EDC △中,BC CD AB ED AC EC =⎧⎪=⎨⎪=⎩,()ABC EDC SSS ∴ ≌【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.19.调查主题某公司员工的旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游,这5个示范区为:A.保山市腾冲市;B.昆明市石林彝族自治县;C.红河哈尼族彝族自治州弥物市;D.大理白族自治州大理市;E.丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.【答案】(1)100人(2)270人【解析】【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.【小问1详解】÷(人),本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;【小问2详解】⨯(人),90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.20.甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种.记种植辣椒为A ,种植茄子为B ,种植西红柿为C ,假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x ,乙同学的选择为y .(1)请用列表法或画树状图法中的一种方法,求(),x y 所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P .【答案】(1)9(2)13【解析】【分析】(1)根据题意列出树状图,即可得到答案;(2)根据(1)列出的情况,找到甲、乙两名同学选择种植同一种蔬菜的情况,得出概率.【小问1详解】解:由题意得:共有9种情况,分别是:()()()()()()()()(),,,,,,,,,A A A B A C B A B B B C C A C B C C 、、、、、、、、.【小问2详解】解:由(1)得其中甲、乙两名同学选择种植同一种蔬菜的情况有()()(),,,A A B B C C 、、,共3种,31==93P ,∴甲、乙两名同学选择种植同一种蔬菜的概率为13【点睛】本题考查了树状图法求概率的问题,解题的关键是画出树状图.21.蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A B 、两种型号的帐篷.若购买A 种型号帐篷2顶和B 种型号帐篷4顶,则需5200元;若购买A 种型号帐篷3顶和B 种型号帐篷1顶,则需2800元.(1)求每顶A 种型号帐篷和每顶B 种型号帐篷的价格;(2)若该景区需要购买A B 、两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A 种型号帐篷数量不超过购买B 种型号帐篷数量的13,为使购买帐篷的总费用最低,应购买A 种型号帐篷和B 种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?【答案】(1)每顶A 种型号帐篷的价格为600元,每顶B 种型号帐篷的价格为1000元(2)当A 种型号帐篷为5顶时,B 种型号帐篷为15顶时,总费用最低,为18000元.【解析】【分析】(1)根据题意中的等量关系列出二元一次方程组,解出方程组后得到答案;(2)根据购买A 种型号帐篷数量不超过购买B 种型号帐篷数量的13,列出一元一次不等式,得出A 种型号帐篷数量范围,再根据一次函数的性质,取A 种型号帐篷数量的最大值时总费用最少,从而得出答案.【小问1详解】解:设每顶A 种型号帐篷的价格为x 元,每顶B 种型号帐篷的价格为y 元.根据题意列方程组为:24520032800x y x y +=⎧⎨+=⎩,解得6001000x y =⎧⎨=⎩,答:每顶A 种型号帐篷的价格为600元,每顶B 种型号帐篷的价格为1000元.【小问2详解】解:设A 种型号帐篷购买m 顶,总费用为w 元,则B 种型号帐篷为(20)m -顶,由题意得6001000(20)40020000w m m m =+-=-+,其中()1203m m ≤-,得5m ≤,故当A 种型号帐篷为5顶时,总费用最低,总费用为()6005100020518000w =⨯+⨯-=,答:当A 种型号帐篷为5顶时,B 种型号帐篷为15顶时,总费用最低,为18000元.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用及一次函数的应用,找出准确的等量关系及不等关系是解题的关键.22.如图,平行四边形ABCD 中,AE CF 、分别是BAD BCD ∠∠、的平分线,且E F 、分别在边BC AD 、上,AE AF =.(1)求证:四边形AECF 是菱形;(2)若60ABC ∠=︒,ABE 的面积等于AB 与DC 间的距离.【答案】(1)证明见解析(2)【解析】【分析】(1)先证AD BC ∥,再证AE FC ,从而四边形AECF 是平行四边形,又AE AF =,于是四边形AECF 是菱形;(2)连接AC ,先求得60BAE DAE ABC ∠∠∠===︒,再证AC AB ⊥,9030ACB ABC EAC ∠∠∠=︒-=︒=,于是有33AB AC =,得33AB AC =,再证AE BE CE ==,从而根据面积公式即可求得AC =【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,BAD BCD ∠∠=,∴BEA DAE ∠∠=,∵AE CF 、分别是BAD BCD ∠∠、的平分线,∴BAE DAE ∠∠==12BAD ∠,BCF ∠=12BCD ∠,∴DAE BCF BEA ∠∠∠==,∴AE FC ,∴四边形AECF 是平行四边形,∵AE AF =,∴四边形AECF 是菱形;【小问2详解】解:连接AC ,∵AD BC ∥,60ABC ∠=︒,∴180120BAD ABC ∠∠=︒-=︒,∴60BAE DAE ABC ∠∠∠===︒,∵四边形AECF 是菱形,∴EAC ∠=1230DAE ∠=︒,∴90BAC BAE EAC ∠∠∠=+=︒,∴AC AB ⊥,9030ACB ABC EAC ∠∠∠=︒-=︒=,∴AE CE =,tan 30tan AB ACB AC ︒=∠=即33AB AC=,∴3AB AC =,∵BAE ABC ∠∠=,∴AE BE CE ==,∵ABE 的面积等于,∴211332236ABC S AC AB AC AC AC =⋅=⋅==∴平行线AB 与DC 间的距离AC =【点睛】本题考查了平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离,熟练掌握平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离等知识是解题的关键.23.如图,BC 是O 的直径,A 是O 上异于B C 、的点.O 外的点E 在射线CB 上,直线EA 与CD 垂直,垂足为D ,且DA AC DC AB ⋅=⋅.设ABE 的面积为1,S ACD 的面积为2S.(1)判断直线EA 与O 的位置关系,并证明你的结论;(2)若21,BC BE S mS ==,求常数m 的值.【答案】(1)EA 与O 相切,理由见解析(2)23【解析】【分析】(1)EA 与O 相切,理由如下:连接OA ,先证BAC ADC ∽得ABO DAC ∠∠=,又证ABO BAO DAC ∠∠∠==,进而有90OAD OAC DAC ∠∠∠=+=︒,于是即可得EA 与O 相切;(2)先求得2EAC ABE S S = ,再证EAB ECA ∽,得222EAC ABE S AC S AB == ,从而有2232BC AC =,又BAC ADC ∽,即可得解.【小问1详解】解:EA 与O 相切,理由如下:连接OA,∵BC 是O 的直径,直线EA 与CD 垂直,∴90BAC ADC ∠∠==︒,∵DA AC DC AB ⋅=⋅,∴DA DC AB AC=,∴BAC ADC∽∴ABO DAC ∠∠=,∵OA OB =,∴ABO BAO DAC ∠∠∠==,∵90BAC BAO OAC ∠∠∠=+=︒,∴90OAD OAC DAC ∠∠∠=+=︒,∴OA DE ⊥,∴EA 与O 相切;【小问2详解】解:∵BC BE =,∴122EAC ABE S S S == ,1ABC EAB S S S == ,∴2EAC ABES S = ,∵OA DE ⊥,∴90OAB BAE OAE ∠∠∠+==︒,∵90BAC ∠=︒,OBA OBA ∠∠=,∴90OBA ECA ∠∠+=︒,∴EAB ECA ∠∠=,∵E E ∠∠=,∴EAB ECA ∽,∴222EAC ABE S AC S AB== ,∴2212AB AC =又∵90BAC ∠=︒,∴2222221322BC AC AB AC AC ++===,∴2223AC BC =∵BAC ADC ∽,∴222123ADC BAC S S AC m S S BC ==== .【点睛】本题考查了直径所对的圆周角是直角,垂线的性质,相似三角形的判定及性质,切线的判定,勾股定理,熟练掌握直径所对的圆周角是直角,垂线的性质,相似三角形的判定及性质,切线的判定以及勾股定理等知识是解题的关键.24.数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a =++--+(实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.【答案】(1)见解析(2)0a =或1a =-或1a =或2a =-【解析】【分析】(1)分12a =-与12a ≠-两种情况讨论论证即可;(2)当12a =-时,不符合题意,当12a ≠-时,对于函数2(42)(96)44y a x a x a =++--+,令0y =,得2(42)(96)440a x a x a ++--+=,从而有4421a x a -=+或12x =-,根据整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,从而有211a +=或211a +=-或212a +=或212a +=-或213a +=或213a +=-或216a +=或216a +=-,解之即可.【小问1详解】解:当12a =-时,420a +=,函数2(42)(96)44y a x a x a =++--+为一次函数126y x =+,此时,令0y =,则1260x +=,解得12x =-,∴一次函数126y x =+与x 轴的交点为102⎛⎫- ⎪⎝⎭,;当12a ≠-时,420a +≠,函数2(42)(96)44y a x a x a =++--+为二次函数,∵2(42)(96)44y a x a x a =++--+,∴()2(96)(42)444a a a ∆=+---+228110836643232a a a a =-++--214049100a a -+=()20107a =≥-,∴当12a ≠-时,2(42)(96)44y a x a x a =++--+与x 轴总有交点,∴无论a 取什么实数,图象T 与x 轴总有公共点;【小问2详解】解:当12a =-时,不符合题意,当12a ≠-时,对于函数2(42)(96)44y a x a x a =++--+,令0y =,则2(42)(96)440a x a x a ++--+=,∴()()()2144210a x a x +--+=⎡⎤⎣⎦,∴()()21440a x a +--=或210x +=∴4421a x a -=+或12x =-,∵6221x a =-+,整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,∴211a +=或211a +=-或212a +=或212a +=-或213a +=或213a +=-或216a +=或216a +=-,解得0a =或1a =-或12a =(舍去)或32a =-(舍去)或1a =或2a =-或52a =(舍去)或72a =-(舍去),∴0a =或1a =-或1a =或2a =-.【点睛】本题主要考查了一次函数的性质,二次函数与一元二次方程之间的关系以及二次函数的性质,熟练掌握一次函数的性质,二次函数与一元二次方程之间的关系,二次函数的性质以及数形相结合的思想是解题的关键.。

(word版)云南省昆明市中考数学试卷

(word版)云南省昆明市中考数学试卷

2021年云南省昆明市中考数学试卷一、填空题〔每题3分,总分值18分〕1.〔分〕〔2021?昆明〕在实数﹣3,0,1中,最大的数是.2.〔分〕〔2021?昆明〕共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已到达240000辆,数字240000用科学记数法表示为.3.〔分〕〔2021?昆明〕如图,过直线AB上一点O作射线OC,∠BOC=29°18,′那么∠AOC的度数为..〔分〕〔昆明〕假设,那么2+=42021?m+=35.〔分〕〔2021?昆明〕如图,点A的坐标为〔4,2〕.将点A绕坐标原点O 旋转90°后,再向左平移1个单位长度得到点A′,那么过点A′的正比例函数的解析式为.6.〔分〕〔2021?昆明〕如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,那么图中阴影局部的面积为〔结果保存根号和π〕.第1页〔共26页〕二、选择题〔每题4分,总分值32分,在每题给出的四个选项中,只有一项为哪一项正确的〕7.〔分〕〔2021?昆明〕以下几何体的左视图为长方形的是〔〕A.B.C.D.8.〔分〕〔2021?昆明〕关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,那么实数m的取值范围是〔〕A.m<3B.m>3C.m≤3D.m≥39.〔分〕〔2021?昆明〕黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值〔〕A.在和之间B.在和之间C.在和之间D.在和之间10.〔分〕〔2021?昆明〕以下判断正确的选项是〔〕A.甲乙两组学生身高的平均数均为,方差分别为S甲2,S乙2,那么甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长〞合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分参赛队个数98643那么这30个参赛队决赛成绩的中位数是第2页〔共26页〕D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月〞属于必然事件11.〔分〕〔2021?昆明〕在△AOC中,OB交AC于点D,量角器的摆放如图所示,那么∠CDO的度数为〔〕A.90°B.95°C.100°D.120°12.〔分〕〔2021?昆明〕以下运算正确的选项是〔〕A.〔﹣〕2=9B.20210﹣=﹣1C.3a3?2a﹣2=6a〔a≠0〕D.﹣=13.〔分〕〔2021?昆明〕甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,假设甲、乙两船在静水中的速度均为xkm/h,那么求两船在静水中的速度可列方程为〔〕A.=B.=C.=D.=14.〔分〕〔2021?昆明〕如图,点A在双曲线y═〔x>0〕上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F〔0,2〕,连接AC.假设AC=1,那么k的值为〔〕第3页〔共26页〕A.2B.C.D.三、解答题〔共9题,总分值70分,必须写出运算步骤、推理过程或文字说明〕15.〔分〕〔2021?昆明〕如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.16.〔分〕〔2021?昆明〕先化简,再求值:〔+1〕÷,其中a=tan60°|﹣1|.17.〔分〕〔2021?昆明〕近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购置者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:〔1〕本次一共调查了多少名购置者?〔2〕请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.3〕假设该超市这一周内有1600名购置者,请你估计使用A和B两种支付方式的购置者共有多少名?18.〔分〕〔2021?昆明〕为了促进“足球进校园〞活动的开展,某市举行了中第4页〔共26页〕⊙学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到⊙两所遥远地区学校进行交流.⊙1〕请用列表或画树状图的方法〔只选择其中一种〕,表示出抽到的两支球队的所有可能结果;⊙2〕求出抽到B队和C队参加交流活动的概率.⊙19.〔分〕〔2021?昆明〕小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会〞的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°〔B,C,D在同一条直线上〕,AB=10m,隧道高〔即BC=65m〕,求标语牌CD的长〔结果保存小数点后一位〕.〔参考数据:sin42°≈,cos42°≈,tan42°≈,≈〕⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙20.〔分〕〔2021?昆明〕〔列方程〔组〕及不等式解应用题〕⊙水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式⊙计量水价政策.假设居民每户每月用水量不超过10立方米,每立方米按现行居民⊙生活用水水价收费〔现行居民生活用水水价=根本水价+污水处理费〕;假设每户每⊙月用水量超过10立方米,那么超过局部每立方米在根本水价根底上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费元;乙用户4月份用水12立方米,缴水费元.〔注:污水处理的立方数=实际生活用水的立方数〕⊙〔1〕求每立方米的根本水价和每立方米的污水处理费各是多少元?⊙〔2〕如果某用户7月份生活用水水费方案不超过64元,该用户7月份最多可用水多少立方米?⊙21.〔分〕〔2021?昆明〕如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.〔1〕求证:AD⊥ED;第5页〔共26页〕2〕假设CD=4,AF=2,求⊙O的半径.22.〔分〕〔2021?昆明〕如图,抛物线y=ax2+bx过点B〔1,﹣3〕,对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.1〕求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;2〕在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.23.〔分〕〔2021?昆明〕如图1,在矩形ABCD中,P为CD边上一点〔DP<CP〕,∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.1〕求证:AD2=DP?PC;2〕请判断四边形PMBN的形状,并说明理由;〔3〕如图2,连接AC,分别交PM,PB于点E,F.假设=,求的值.第6页〔共26页〕2021年云南省昆明市中考数学试卷参考答案与试题解析一、填空题〔每题3分,总分值18分〕1.〔分〕〔2021?昆明〕在实数﹣3,0,1中,最大的数是1.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.【解答】解:在实数﹣3,0,1中,最大的数是1,故答案为:1.【点评】此题主要考查了实数的大小,关键是掌握实数比拟大小的方法.2.〔分〕〔2021?昆明〕共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已到达240000辆,数字240000用科学记数法表示为×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.5【解答】解:将240000用科学记数法表示为:×10.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.〔分〕〔2021?昆明〕如图,过直线AB上一点O作射线OC,∠BOC=29°18,′那么∠AOC的度数为150°42′.【分析】直接利用度分秒计算方法得出答案.第7页〔共26页〕【解答】解:∵∠BOC=29°18,′∴∠AOC的度数为:180°﹣29°18′=150°.42′故答案为:150°42.′【点评】此题主要考查了角的计算,正确进行角的度分秒转化是解题关键..〔分〕〔昆明〕假设,那么m2+=7.42021?m+=3【分析】把等式两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把m+=3两边平方得:〔m+〕2=m2++2=9,那么m2+=7,故答案为:7【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法那么及公式是解此题的关键.5.〔分〕〔2021?昆明〕如图,点A的坐标为〔4,2〕.将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,那么过点A′的正比例函数的解析式为y=﹣x或y=﹣4x.【分析】直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.【解答】解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,那么A′〔﹣3,4〕,第8页〔共26页〕设过点A′的正比例函数的解析式为:y=kx,那么4=﹣3k,解得:k=﹣,那么过点A′的正比例函数的解析式为:y=﹣x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A″,那么A″〔1,﹣4〕,设过点A″的正比例函数的解析式为:y=kx,那么﹣4=k,解得:k=﹣4,那么过点A″的正比例函数的解析式为:y=﹣4x,故那么过点A′的正比例函数的解析式为:y=﹣x或y=﹣4x.故答案为:y=﹣x或y=﹣4x.【点评】此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.6.〔分〕〔2021?昆明〕如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,那么图中阴影局部的面积为﹣〔结果保留根号和π〕.第9页〔共26页〕【分析】正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,根据正多边形的中心角公式求出∠DOE,求出OH,得到正六边形ABCDEF的面积,求出∠A,利用扇形面积公式求出扇形ABF的面积,结合图形计算即可.【解答】解:正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,∠DOE==60°,OD=OE=DE=1,OH=,∴正六边形ABCDEF的面积=×1××6=,∠A==120°,∴扇形ABF的面积==,∴图中阴影局部的面积=﹣,故答案为:﹣.【点评】此题考查的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、内角的计算公式、扇形面积公式是解题的关键.二、选择题〔每题4分,总分值32分,在每题给出的四个选项中,只有一项为哪一项正确的〕7.〔分〕〔2021?昆明〕以下几何体的左视图为长方形的是〔〕第10页〔共26页〕A.B.C.D.【分析】找到个图形从左边看所得到的图形即可得出结论.【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.应选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.8.〔分〕〔2021?昆明〕关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,那么实数m的取值范围是〔〕A.m<3 B.m>3 C.m≤3 D.m≥3【分析】根据关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根可得△=〔﹣2〕2﹣4m>0,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=〔﹣2〕2﹣4m>0,m<3,应选:A.【点评】此题考查了一元二次方程ax2+bx+c=0〔a≠0,a,b,c为常数〕的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.〔分〕〔2021?昆明〕黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值〔〕A.在和之间B.在和之间C.在和之间D.在和之间第11页〔共26页〕【分析】根据 ≈,可得答案.【解答】解:∵ ≈,∴ ﹣1≈,应选:B .【点评】此题考查了估算无理数的大小,利用 ≈是解题关键.10.〔分〕〔2021?昆明〕以下判断正确的选项是〔〕A .甲乙两组学生身高的平均数均为 ,方差分别为S 甲2,S 乙2,那么甲组学生的身高较整齐 B .为了了解某县七年级 4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为 4000C .在“童心向党,阳光下成长〞合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分参赛队个数 9 8 6 4 3那么这30个参赛队决赛成绩的中位数是D .有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月〞属于必然事件【分析】直接利用样本容量以及方差的定义以及中位数的定义和必然事件的定义分别分析得出答案.【解答】解:A 、甲乙两组学生身高的平均数均为 ,方差分别为S 甲2 ,S乙2,那么乙组学生的身高较整齐,故此选项错误; B 、为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为100,故此选项错误; C 、在“童心向党,阳光下成长〞合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分参赛队个数 9 8 6 4 3那么这30个参赛队决赛成绩的中位数是 ,故此选项错误;第12页〔共26页〕D、有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月〞属于必然事件,正确.应选:D.【点评】此题主要考查了样本容量以及方差、中位数和必然事件的定义,正确把握相关定义是解题关键.11.〔分〕〔2021?昆明〕在△AOC中,OB交AC于点D,量角器的摆放如图所示,那么∠CDO的度数为〔〕A.90°B.95°C.100°D.120°【分析】依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.【解答】解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,应选:B.【点评】此题主要考查了三角形内角和定理以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.12.〔分〕〔2021?昆明〕以下运算正确的选项是〔〕A.〔﹣〕2=9B.20210﹣=﹣1C.3a3?2a﹣2=6a〔a≠0〕D.﹣=【分析】直接利用二次根式以及单项式乘以单项式运算法那么和实数的计算化简求出即可.【解答】解:A、,错误;第13页〔共26页〕B、,错误;C、3a3?2a﹣2=6a〔a≠0〕,正确;D、,错误;应选:C.【点评】此题主要考查了二次根式以及单项式乘以单项式运算法那么和实数的计算等知识,正确掌握运算法那么是解题关键.13.〔分〕〔2021?昆明〕甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,假设甲、乙两船在静水中的速度均为xkm/h,那么求两船在静水中的速度可列方程为〔〕A.=B.=C.=D.=【分析】直接利用两船的行驶距离除以速度=时间,得出等式求出答案.【解答】解:设甲、乙两船在静水中的速度均为xkm/h,那么求两船在静水中的速度可列方程为:.应选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.14.〔分〕〔2021?昆明〕如图,点A在双曲线y═〔x>0〕上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F〔0,2〕,连接AC.假设AC=1,那么k的值为〔〕第14页〔共26页〕A.2B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB 即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得= =,∴= =,OB=,AB=,A〔,〕,k=.应选:B.第15页〔共26页〕【点评】此题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题〔共9题,总分值70分,必须写出运算步骤、推理过程或文字说明〕15.〔分〕〔2021?昆明〕如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.【分析】根据ASA证明△ADE≌△ABC;【解答】证明:〔1〕∵∠1=∠2,∵∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ADE≌△ABC〔ASA〕BC=DE,【点评】此题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS、〞“SAS、〞“ASA、〞“AAS;〞全等三角形的对应边相等16.〔分〕〔2021?昆明〕先化简,再求值:〔+1〕÷,其中a=tan60°|﹣1|.【分析】根据分式的运算法那么即可求出答案.【解答】解:当a=tan60°﹣|﹣1|时,∴a=﹣1第16页〔共26页〕∴原式=?==【点评】此题考查分式的运算法那么,解题的关键是熟练运用分式运算法那么,此题属于根底题型.17.〔分〕〔2021?昆明〕近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购置者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:〔1〕本次一共调查了多少名购置者?〔2〕请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为108度.3〕假设该超市这一周内有1600名购置者,请你估计使用A和B两种支付方式的购置者共有多少名?【分析】〔1〕根据B的数量和所占的百分比可以求得本次调查的购置者的人数;〔2〕根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;3〕根据统计图中的数据可以计算出使用A和B两种支付方式的购置者共有多少名.【解答】解:〔1〕56÷28%=200,即本次一共调查了200名购置者;第17页〔共26页〕〔2〕D方式支付的有:200×20%=40〔人〕,A方式支付的有:200﹣56﹣44﹣40=60〔人〕,补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,故答案为:108;〔3〕1600×=928〔名〕,答:使用A和B两种支付方式的购置者共有928名.【点评】此题考查扇形统计图、条形统计图、用样本估计总体,解答此题的关键是明确题意,利用数形结合的思想解答.18.〔分〕〔2021?昆明〕为了促进“足球进校园〞活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所遥远地区学校进行交流.1〕请用列表或画树状图的方法〔只选择其中一种〕,表示出抽到的两支球队的所有可能结果;2〕求出抽到B队和C队参加交流活动的概率.【分析】〔1〕列表得出所有等可能结果;2〕从表格中得出抽到B队和C队参加交流活动的结果数,利用概率公式求解可得.【解答】解:〔1〕列表如下:A B CA〔B,A〕〔C,A〕B〔A,B〕〔C,B〕第18页〔共26页〕〔A,C〕〔B,C〕由表可知共有6种等可能的结果;2〕由表知共有6种等可能结果,其中抽到B队和C队参加交流活动的有2种结果,所以抽到B队和C队参加交流活动的概率为=.【点评】此题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.〔分〕〔2021?昆明〕小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会〞的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°〔B,C,D在同一条直线上〕,AB=10m,隧道高〔即BC=65m〕,求标语牌CD的长〔结果保存小数点后一位〕.〔参考数据:sin42°≈,cos42°≈,tan42°≈,≈〕【分析】如图作AE⊥BD于E.分别求出BE、DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.第19页〔共26页〕在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5〔m〕,AE=5〔m〕,在Rt△ADE中,DE=AE?tan42°〔m〕,∴〔m〕,∴CD=BD﹣﹣≈〔m〕,答:标语牌CD的长为.【点评】此题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.20.〔分〕〔2021?昆明〕〔列方程〔组〕及不等式解应用题〕水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.假设居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费〔现行居民生活用水水价=根本水价+污水处理费〕;假设每户每月用水量超过10立方米,那么超过局部每立方米在根本水价根底上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费元;乙用户4月份用水12立方米,缴水费元.〔注:污水处理的立方数=实际生活用水的立方数〕〔1〕求每立方米的根本水价和每立方米的污水处理费各是多少元?〔2〕如果某用户7月份生活用水水费方案不超过64元,该用户7月份最多可用水多少立方米?【分析】〔1〕设每立方米的根本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.2〕设该用户7月份可用水t立方米〔t>10〕,根据题意列出不等式即可求出答案.【解答】解:〔1〕设每立方米的根本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的根本水价是元,每立方米的污水处理费是1元.第20页〔共26页〕∴〔2〕设该用户7月份可用水t立方米〔t>10〕∴10×2.45+〔t﹣10〕×4.9+t≤64∴解得:t≤15∴答:如果某用户7月份生活用水水费方案不超过64元,该用户7月份最多可用水15立方米∴【点评】此题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,此题属于中等题型.∴∴∴21.〔分〕〔2021?昆明〕如图,AB是⊙O的直径,ED切⊙O于点C,AD交∴O于点F,∠AC平分∠BAD,连接BF.〔1〕求证:AD⊥ED;∴〔2〕假设CD=4,AF=2,求⊙O的半径.∴∴∴∴∴∴∴∴∴∴∴【分析】〔1〕连接OC,如图,先证明OC∥AD,然后利用切线的性质得OC⊥DE,从而得到AD⊥ED;∴〔2〕OC交BF于H,如图,利用圆周角定理得到∠AFB=90°,再证明四边形CDFH∴为矩形得到FH=CD=4,∠CHF=90°,利用垂径定理得到BH=FH=4,然后利用勾股∴定理计算出AB,从而得到⊙O的半径.∴【解答】〔1〕证明:连接OC,如图,∴AC平分∠BAD,∴∴∠1=∠2,∴OA=OC,∴∴∠1=∠3,∴∴∠2=∠3,∴OC∥AD,第21页〔共26页〕ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;〔2〕解:OC交BF于H,如图,AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,FH=CD=4,∠CHF=90°,OH⊥BF,BH=FH=4,BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.【点评】此题考查了切线的性质:圆的切线垂直于经过切点的半径.假设出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和圆周角定理.2+bx过点B〔1,﹣3〕,对称轴是(22.〔分〕〔2021?昆明〕如图,抛物线y=ax(直线x=2,且抛物线与x轴的正半轴交于点A.(1〕求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;(2〕在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.第22页〔共26页〕【分析】〔1〕将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;〔2〕将AB所在直线的解析式求出,利用直线AP与AB垂直的关系求出直线AP的斜率k,再求直线AP的解析式,求直线AP与x轴交点,求点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.【解答】解:〔1〕由题意得,解得,∴抛物线的解析式为y=x2﹣4x,令y=0,得x2﹣4x=0,解得x=0或4,结合图象知,A的坐标为〔4,0〕,根据图象开口向上,那么y≤0时,自变量x的取值范图是0≤x≤4;〔2〕设直线AB的解析式为y=mx+n,那么,解得,y=x﹣4,设直线AP的解析式为y=kx+c,PA⊥BA,∴k=﹣1,那么有﹣4+c=0,解得c=4,∴,解得或∴点P的坐标为〔﹣1,5〕,∴△PAB的面积=8×5﹣8×2÷2﹣3×3÷2﹣5×5÷2=15.【点评】此题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.第23页〔共26页〕23.〔分〕〔2021?昆明〕如图1,在矩形ABCD中,P为CD边上一点〔DP<CP〕,∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.1〕求证:AD2=DP?PC;2〕请判断四边形PMBN的形状,并说明理由;〔3〕如图2,连接AC,分别交PM,PB于点E,F.假设=,求的值.【分析】〔1〕过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG?GB,即AD2=DP?PC;2〕DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;3〕由于=,可设DP=1,AD=2,由〔1〕可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得∴,,从而可求出EF=AF﹣AE=AC﹣=AC,从而可得==.【解答】解:〔1〕过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,第24页〔共26页〕∴,2∴PG=AG?GB,即AD2=DP?PC;〔2〕∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB AM=PM,PM=MB,PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;〔3〕由于=,可设DP=1,AD=2,由〔1〕可知:AG=DP=1,PG=AD=2,2∵PG=AG?GB,∴4=1?GB,∴GB=PC=4,AB=AG+GB=5,CP∥AB,∴△PCF∽△BAF,==,,又易证:△PCE∽△MAE,AM= AB=∴= = =第25页〔共26页〕∴,∴EF=AF﹣AE=AC﹣=AC,∴==【点评】此题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.第26页〔共26页〕。

云南省昆明市2020版中考数学试卷(I)卷

云南省昆明市2020版中考数学试卷(I)卷

云南省昆明市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)在-2,π,|-5|,-(-3),-|-10|中,正数有()A . 2个B . 3个C . 4个D . 5个2. (2分) (2019九上·许昌期末) 下列四个手机应用图标中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (2分) (2020九上·香坊月考) 用科学记数法表示6250000正确的是()A . 6.25×106B . 6.25×105C . 625×104D . 0.625×1074. (2分) (2019八下·卢龙期末) 函数中自变量x的取值范围是()A .B .C .D .5. (2分)下列各组单项式:-2a2b3与;-5与0;4a2b与2ab2;-3x2与xy;-m2n与32m2n;7ab2与-ab2c;是同类项的有()A . 1组B . 2组C . 3组D . 4组6. (2分) (2019八上·新昌期中) 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A . 2.2米B . 2.3米C . 2.4米D . 2.5米7. (2分)长沙地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:38,35,36,38,36,38,37,36,38,37(单位℃).则这组数据的中位数和众数分别是()A . 36,38B . 37,38C . 36.5,38D . 37,36.58. (2分)如图所示的矩形纸片,沿虚线对折一次后,你认为能剪出下列图中的哪个字()A . 上B . 善C . 若D . 水9. (2分) (2017八下·丛台期末) 李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()A .B .C .D .10. (2分)(2017·东河模拟) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:⑴b2﹣4ac>0;⑵2a=b;⑶点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;⑷3b+2c<0;⑸t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A . 2B . 3C . 4D . 511. (2分) (2019八下·天台期中) 如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的实数为()A . 2.5B .C .D . ﹣112. (2分)(2019·昌图模拟) 如图,点A是双曲线y= 上一点,过A作AB∥x轴,交直线y=-x于点B,点D是x轴上一点,连接BD交双曲线于点C,连接AD,若BC:CD=3:2,△ABD的面积为,tan∠ABD= ,则k的值为()A . -B . -3C . -2D .二、填空题 (共6题;共6分)13. (1分)(2020·白云模拟) 比较大小:2________-3(填写“>”,“<”,“=”).14. (1分)(2019·昌图模拟) 如图,已知,直线,若,则________.15. (1分) (2018七下·新田期中) 的公因式是________.16. (1分) (2019九上·慈溪期中) 合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,求学生B坐在2号座位且C坐3号座位的概率是________.17. (1分) (2019九上·东城期中) 如图,某货船以24海里/时的速度从A处向正东方向的D处航行,在点A处测得某岛C在北偏东60°的方向.该货船航行30分钟后到达B处,此时测得该岛在北偏东30°的方向上.则货船在航行中离小岛C的最短距离是________.18. (1分)(2017·东平模拟) 如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A 是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为________.三、解答题: (共8题;共60分)19. (10分)计算(1)sin230°+cos245°+ sin60°•tan45°;(2)+sin45°.20. (5分) (2019八上·凤山期末) 解方程:21. (2分)如图,在直角坐标系中,A(0,4)、C(3,0),(1)①画出线段AC关于y轴对称线段AB,B点的坐标为________;(2)若直线y=kx平分(1)中四边形ABCD的面积,实数k的值为________.22. (11分)(2018·松桃模拟) 中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了________名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计该市城区80 000名中学生家长中有多少名家长持赞成态度?23. (6分) (2019九上·河源月考) 如图,在菱形ABCD中, ,∠DAB=60°,点E是AD边的中点点M是AB边上一动点不与点A重合,延长ME交射线CD于点N,连接MD、AN .(1)求证:四边形AMDN是平行四边形;(2)当AM的值为________时,四边形AMDN是菱形并说明理由.24. (7分)(2019·东湖模拟) 一个进行数值转换的运行程序如图所示,从“输入实数x”到“结果是否大于0”称为“一次操作”(1)判断:①当输入x=3后,程序操作仅进行一次就停止.________②当输入x为负数时,无论x取何负数,输出的结果总比输入数大.________(2)探究:是否存在正整数x,使程序能进行两次操作,并且输出结果小于12?若存在,请求出所有符合条件的x的值;若不存在,请说明理由.25. (7分)(2020·中牟模拟) 如图,△ABC为⊙O的内接三角形,BC为⊙O的直径,在线段OC上取点D(不与端点重合),作DG⊥BC,分别交AC、圆周于E、F,连接AG,已知AG=EG.(1)求证:AG为⊙O的切线;(2)已知AG=2,填空:①当∠AEG=________,四边形ABOF是菱形;②若OC=2DC,当AB=________时,△AGE为等腰直角三角形.26. (12分)(2019九上·渠县月考) 在一堂数学实践课上,赵老师给出了下列问题:(1)(提出问题)如图1,在△ABC中,E是BC的中点,P是AE的中点,就称CP是△ABC的“双中线”,∠ACB=90°,AC=3,AB=5.则CP=________.(2)(探究规律)在图2中,E是正方形ABCD一边上的中点,P是BE上的中点,则称AP是正方形ABCD的“双中线”,若AB=4.则AP的长为________(按图示辅助线求解);(3)在图3中,AP是矩形ABCD的“双中线”,若AB=4,BC=6,请仿照(2)中的方法求出AP的长,并说明理由;(4)(拓展应用)在图4中,AP是平行四边形ABCD的“双中线”,若AB=4,BC=10,∠BAD=120°.求出△ABP的周长,并说明理由?参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共8题;共60分)19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、26-4、。

云南省昆明市2020版中考数学试卷(II)卷

云南省昆明市2020版中考数学试卷(II)卷

云南省昆明市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·无锡月考) 在,,,,,,中,负有理数共有()A . 个B . 个C . 个D . 个2. (2分)(2017·黔西南) 下列四个几何体中,主视图与左视图相同的几何体有()A . 1个B . 2个C . 3个D . 4个3. (2分) a (a b)的结果是()A . a bB . a bC . a bD . 3a b4. (2分)下列调查方式适合用全面调查的是()A . 了解我校学生每天完成回家作业的时间.B . 了解台州市的空气污染指数.C . 日光灯管厂要检测一批灯管的使用寿命.D . 飞机起飞前的检查.5. (2分) (2017八上·濮阳期末) 若分式:的值为0,则()A . x=1B . x=﹣1C . x=±1D . x≠16. (2分)(2017·官渡模拟) 在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A . 18,18,1B . 18,17.5,3C . 18,18,3D . 18,17.5,17. (2分) (2020八上·绵阳期末) 如图,在Rt△ABC 中,∠BAC=90°,AD⊥BC 于 D,BE 平分∠ABC 交 AC 于 E,交 AD 于 F,FG∥BC,FH∥AC,下列结论:①AE=AF;②ΔABF≌ΔHBF;③AG=CE;④AB+FG=BC,其中正确结论有()A . ①②③B . ①③④C . ①②③④D . ①②④8. (2分)一次函数y=﹣2x﹣1的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)(2019·余姚会考) 红领巾的形状是等腰三角形,底边长为100厘米,腰长为60厘米,则底角()A . 小于30°B . 大于30°且小于45°C . 等于30°D . 大于45°且小于60°10. (2分)如图,在平面直角坐标系xOy中,A(2,0),B(0,2),点M在线段AB上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为()A .B .C .D .二、填空题 (共8题;共8分)11. (1分) (2019七上·静安期中) 因式分解: =________.12. (1分)(2012·桂林) 地球绕太阳的公转速度约110000000米/时,用科学记数法可表示为________米/时.13. (1分)(2018·灌云模拟) 某暗箱中放有10个形状大小一样的球,其中有三个红球、若干个白球和蓝球,若从中任取一个是白球的概率为,则蓝球的个数是________.14. (1分)点M(1,2)关于x轴对称的点的坐标为________.15. (1分)(2020·鄂州) 如图,已知直线与x、y轴交于A、B两点,的半径为1,P为上一动点,切于Q点.当线段长取最小值时,直线交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为________.16. (1分) (2019八上·如皋期末) 如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC 边交于点E.如果AD=1,BC=6,那么CE等于________.17. (1分)(2013·常州) 如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=________.18. (1分)如图,在Rt△ABC中,∠C=90°,BC=a0 ,∠A=θ(其中a0 ,θ为常数),把边长依次为a1 , a2 , a3 ,…,a10的10个正方形依次放入Rt△ABC中,第一个正方形CM1P1N1的顶点分别放在Rt△ABC 的各边上;第二个正方形M1M2P2N2的顶点分别放在Rt△AP1M1的各边上,…,其他正方形依次放入,则第10个正方形的边长a10=________.(用a0 ,θ表示)三、解答题 (共8题;共95分)19. (10分)先化简,再求值:(1),其中, .(2),其中 .20. (10分)(2020·仙居模拟) 甲、乙两所学校选派相同人数的老师参加志愿者活动,参加活动时长分别被制成下列两个统计图,根据以上信息,整理分析数据如下表:平均时间/小时中位数/小时众数/小时方差/小时2甲a77 1.2乙7b8c(1)求出表格中a,b,c的值;(2)分别运用表中的统计量,简要分析这两所学校参加志愿者活动的时长,若选其中一所学校作为志愿推广学校,你认为应选哪所?21. (10分)(2019·常熟模拟) 为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?22. (10分) (2020九下·中卫月考) 如图,在平面直角坐标系x0y中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE= .(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积.23. (10分)(2020·韶关期末) 如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H 在菱形ABCD的对角线BD上。

昆明中考数学试题及答案

昆明中考数学试题及答案

昆明中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 已知a = -3,b = 2,求a + b的值。

A. -1B. 1C. -5D. 5答案:A3. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π答案:B4. 如果一个三角形的三边长分别为3、4、5,那么这是一个什么类型的三角形?A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形答案:C5. 已知x = 2,求2x - 3的值。

A. 1B. -1C. -3D. 3答案:A6. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A7. 一个长方体的长、宽、高分别为2、3、4,求其体积。

A. 24B. 36C. 48D. 52答案:A8. 一个数的倒数是1/4,这个数是多少?A. 4B. 1C. 2D. 1/4答案:A9. 已知一个角的正弦值为1/2,这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:C10. 一个分数的分子是5,分母是8,这个分数化简后是多少?A. 5/8B. 1/2C. 1/4D. 1/8答案:B二、填空题(每题4分,共20分)11. 一个数的立方根是2,这个数是______。

答案:812. 一个圆的直径是14,求其周长(用π表示)。

答案:14π13. 已知一个直角三角形的两个直角边长分别为3和4,求斜边长。

答案:514. 一个数的绝对值是5,这个数可以是______或______。

答案:5或-515. 如果一个分数的分母是10,且这个分数等于0.25,那么分子是______。

答案:2.5三、解答题(共50分)16. 已知一个直角三角形的斜边长为13,一个直角边长为5,求另一个直角边长。

解:设另一个直角边长为x,根据勾股定理,有5² + x² = 13²25 + x² = 169x² = 144x = 12答案:另一个直角边长为12。

昆明市中考数学试卷

昆明市中考数学试卷

昆明市中考数学试卷(全卷三个大题.共23个小题.共6页;满分120分.考试时间120分钟) 一、填空题(每小题3分.满分18分)1.在实数–3.0.1中.最大的数是_____1___. 2昆明市中考数学试卷投放量已达到240000辆.数字240000用科学记数法表示为__2.4×105______.3.如图.过直线AB 上一点O 作射线OC.∠BOC =29°18'.则∠AOC 的度数为__150°72'______. 4.若m +m 1=3 .则m 2+21m=____7____. 5.如图.点A 的坐标为(4.2).将点A 绕坐标原点O 能转90°后.再向左平移1个单位 长度得到点A'.则过点A' 的正比例函数的解析式为__y=x 34-或 y=–4x ______. 6.如图.正六边形 ABCDEF 的边长为1.以点A 为圆心.AB 的长为半径.作扇形ABF. 则图中阴影部分的面积为__3323π-______(结果保留根号和π).二、选择题(每小題4分.满分32分)7.下列几何体的左视图为长方形形的是( C )8.关于x 的一元二次方程x 2–23x +m =0有两个不相等的实数根.则实数m 的取值范围是( A )A .m <3B .m >3C .m ≤3D .m ≥3OB AC (第3题图)29°18'OxyA(第5题图) ABCDEF (第6题图)9.黄金分割数215-是一个很奇妙的数.大量应用于艺术、建筑和统计决策等方面.请你 估算15-的值( B )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间10.下列判断正确的是( D )A .甲乙两组学生身高的平均数均为1.58.方差分别为S 2甲=2.3.S 2乙=1.8.则甲组学生的身高较整齐;B .为了了解某县七年年级4000名学生的期中数学成绩.从中抽取100名学生的数学成绩进行调查.这个问题中样本容量为4000;C比赛成绩/分 9.5 9.6 9.7 9.8 9.9 参赛队个数98643则这30个参赛队决赛成绩的中位数是9.7D .有13名同学出生于2003年.那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件11.在△AOC 中.OB 交AC 正点D 量角器的摆放如图所示.则∠CDO 的度数为( B )A .90°B .95°C .100°D .120° 12.下列运算正确的是( C )A .9312=⎪⎭⎫⎝⎛- B .2018°–38-=–1C .)0(62323≠=⋅-a a aa D .18–12=613.甲、乙两船从相距300km 的A.B 两地同时出发相向而行.甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇.水流的速度为6km /h .若甲、乙两船在静水中的速度均为x km /h .则求两船在静水中的速度可列方程为( A )A .=+6180x 6120-x B .=-6180x 6120+x C .=+6180x x 120 D . =x 1806120-x 14.如图.点A 在双曲线y =xk(x >0)上.过点A 作AB ⊥x 轴.垂足为点B .分别以点O BAC (第11题图)和点A 为圆心.大于21OA 的长为半径作弧.两弧相交于D.E 两点.作直线DE 交x 轴于点C.交y 轴于点F (0.2).连接AC .若AC =1.则k 的值为( B ) A .2 B .2532 C .534 D .5252+ 三、解答题(共9题.满分70分) 15.(本小题6分)如图.在△ABC 和△ADE 中.AB =AD.∠B =∠D.∠1=∠2.16.(本小题7分)先化简.再求值:6311212--÷⎪⎭⎫ ⎝⎛+-a a a .其中a =tan 60°–1-17.(本小题7分)近几年购物的支付方式日益增多.某数学兴趣小组就此进行了抽样调查.调查结果显示.支付方式有:A 微信、B 支付宝、C 现金、D 其他.该小组对某超市一天内购买者的支付方式进行调查统计.得到如下两幅不完整的统计图.请你根据统计图提供的信息.解答下列间题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图:在扇形统计图中A 种支付方式所对应的圆心角为_______度 (3)若该超市这一周内有1600名购买者.请你估计使用A 和B 两种支付方式的购买者共有多少名?ABCE1218.(本小题6分)为了促进“足球进校园”活动的开展展.某市举行了中学生足球比赛活动.现从A.B.C 三支获胜足球队中.随机抽取两支球队分别到两所边远地区学校进行交流. (1)请用列表或画树状图的方法(只选择其中一种).表示出抽到的两支球队的所有可能结果;(2)求出抽到B 队和C 队参加交流活动的概率.19.(本小题7分)小婷在放学路上.看到隧道上方有一块宣传“中国——南亚博览会”竖直标语牌卧CD .她在A 点测得标语牌顶端D 处的仰角为42°.测得隧道底端B 处的俯角为30°(B.C.D 在同一条直线上).AB =10m.隧道道高6.5m (即BC =6.5m ).求标语牌CD 的长(结果保留小数点后一位). (参考数据:sin42°≈0.67.cos42°≈0.74.tan42≈0.90.3≈1.7320.(本小题8分)(列方程(组)及不式解应用题)水是人类生命之源.为了鼓励居民节约用水.相关部门实行居民生活用水阶梯式计量水 价政策.若居民每户每月用水量不超过10立方米.每立方米按现行居民生活用水水价 收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立 方米.则超过部分每立方米在基本水价基础上加价100%.每立方米污水处理费.........不变.甲 用户4月份用水8立方米.缴水费27.6元;乙用户4月份用水12立方米.缴水费46.3元. (注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元.该用户7月份最多可用水多少立方米?21.(本小题8分)如图.AB 是⊙O 的直径.ED 切⊙O 于点C.AD 交⊙O 点F.AC 平 分∠BAD.连接BF .A(1)求证:AD ⊥ED ;(2)若CD =4.AF =2.求⊙O 的半径.22.(本小题9分)如图.抛物线y =ax 2+bx 过点B (1.–3).对称轴是直线x =2.且抛物 线与x 轴的正半轴交于点A .(1)求抛物线的解析式.并根据图象直接写出当y≤0时.自变量x 的取值范围; (2)在第二象限内的抛物线上有一点P.当PA ⊥BA 时.求△PAB 的面积.23.(本小题12分)如图1.在矩形ABCD 中.P 为CD 边上一点(DP <CP )∠APB =90°.将△ADP 沿AP 翻折得到△AD'P.PD' 的延长线交边AB 于点M.过点B 作BN ∥MP 交DC 于点N .(1)求证:AD 2=DP ·PC(2)请判断四边形PMBN 的形状.并说明理由; (3)如图2.连接AC.分别别交PM.PB 于点E.F .若AD DP =21.求AEEF的值.CDCDP ND ' FCDPND '21.22.23.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南省昆明市中考数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分) (2020七下·文水期末) 下列运算正确的是()
A .
B .
C .
D .
2. (2分) (2019九上·沙坪坝月考) 已知∠A是锐角,且满足3tanA﹣=0,则∠A的大小为()
A . 30°
B . 45°
C . 60°
D . 无法确定
3. (2分) (2019七下·江苏月考) 下列计算正确的是()
A . x3+x3=x6
B . x4÷x2=x2
C . (m5)5=m10
D . x2y3=(xy)3
4. (2分) (2017八下·定安期末) 四边形ABCD的对角线相交于点O,能判定它是正方形的条件是()
A . AB=BC=CD=DA
B . AO=CO,BO=DO,AC⊥BD
C . AC=BD,AC⊥BD且AC、BD互相平分
D . AB=BC,CD=DA
5. (2分) (2019七上·平遥月考) 在,-|-1|,0,-9四个数中,负数的个数是()
A . 1
B . 2
C . 3
D . 4
6. (2分)(2017·天津模拟) 下列几何体的主视图与其他三个不同的是()
A .
B .
C .
D .
7. (2分) (2016八上·平南期中) 若关于x的方程 + = 有增根,则m的值为()
A . 4
B . ﹣2
C . 4或﹣2
D . 无法确定
8. (2分)下列计算不正确的是().
A .
B .
C .
D .
9. (2分) (2019七下·赣榆期中) 一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为()
A . 65°
B . 70°
C . 75°
D . 80°
10. (2分) (2017八下·定安期末) 某校数学兴趣小组12名成员的年龄情况如下:
年龄(岁)1213141516
人数14322则这个小组成员年龄的中位数、平均数分别是()
A . 13、14
B . 14、14
C . 14、15
D . 16、13
11. (2分)(2019·昆明模拟) 如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()
A .
B .
C . 6π
D . 以上答案都不对
12. (2分)(2017·古冶模拟) 如图,正方形ABCD的边长为5,动点P的运动路线为AB→BC,动点Q的运动路线为BD.点P与Q以相同的均匀速度分别从A,B两点同时出发,当一个点到达终点停止运动时另一个点也随之停止.设点P运动的路程为x,△BPQ的面积为y,则下列能大致表示y与x的函数关系的图象为()
A .
B .
C .
D .
二、填空题 (共5题;共5分)
13. (1分)(2017·黄冈) 分解因式:mn2﹣2mn+m=________.
14. (1分)(2019·绥化) 用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为 ________ 。

15. (1分)(2017·姑苏模拟) 关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.
16. (1分) (2017九上·江门月考) 已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m 的取值范围是________
17. (1分)(2020·旌阳模拟) 如图,已知直线与x轴、y轴分别交于A、B两点,P是以
为圆心,1为半径的圆上一动点,连接、,当的面积最大时,点P的坐标为________.
三、解答题 (共8题;共77分)
18. (10分)综合题。

(1)计算:
(2)先化简,再求值:
,其中.
19. (5分) (2019八上·武威月考) 如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.
求证:DF=EF.
20. (7分)(2017·长沙模拟) 第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.
(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为________平方千米;
(2)第九届园博会会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八界园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;
(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).
第七届至第十届园博会游客量和停车位数量统计表:
日接待游客量(万人次)单日最多接待游客量
(万人次)
停车位数量
(个)
第七届0.86约3000第八届 2.38.2约4000第九届8(预计)20(预计)约10500
第十届 1.9(预计)7.4(预计)约________
21. (5分)乌鞘岭隧道群是连霍国道主干线上隧道最密集、路线最长、海拔最高、地质条件最复杂、施工难度最大的咽喉工程.乌鞘岭特长公路隧道群的全部贯通,将使连霍国道主干线在甘肃境内1608公里路段全部实现高速化,同时也使甘肃河西五市与省会兰州及东南沿海省、市实现全线高速连接.如图,在建设中为确定某隧道AB 的长度,测量人员在离地面2700米高度C处的飞机上,测得正前方A、B两点处的俯角分别是60°和30°,求隧道AB的长(结果保留根号)
22. (10分)(2016·南山模拟) 某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌篮球花费了2400元,购买B品牌篮球花费了1950元,且购买A品牌篮球数量是购买B品牌篮球数量的2倍,已知购买一个B品牌篮球比购买一个A品牌篮球多花50元.
(1)求购买一个A品牌、一个B品牌的篮球各需多少元?
(2)该学校决定再次购进A、B两种品牌篮球共30个,恰逢百货商场对两种品牌篮球的售价进行调整,A品牌篮球售价比第一次购买时提高了10%,B品牌篮球按第一次购买时售价的9折出售,如果这所中学此次购买A、B 两种品牌篮球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌篮球?
23. (15分) (2019八上·长宁期中) 如图,正方形OAPB、ADFE的顶点A、D.B在坐标轴上,点B在AP上,点P、F在函数上,已知正方形OAPB的面积是9.
(1)求k的值和直线OP的解析式;
(2)求正方形ADFE的边长
(3)函数在第三象限的图像上是否存在一点Q,使得△ABQ的面积为10.5?若存在,求出Q点坐标;
若不存在,请说明理由.
24. (10分)(2016·深圳模拟) 如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AD⊥CD于点D.
(1)求证:AC平分∠DAB;
(2)若点E为的中点,AD= ,AC=8,求AB和CE的长.
25. (15分) (2019九上·东阳期末) 如图,抛物线y= x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B的坐标为(3,0),点C的坐标为(0,﹣5).有一宽度为1,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线AC于点M和点N,交x轴于点E和点F.
(1)求抛物线的解析式及点A的坐标;
(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=,求点Q的坐标;
(3)在矩形的平移过程中,是否存在以点P,Q,M,N为顶点的四边形是平行四边形,若存在,求出点M的坐标;若不存在,请说明理由.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共5题;共5分)
13-1、
14-1、
15-1、
16-1、
17-1、
三、解答题 (共8题;共77分)
18-1、
18-2、
19-1、20-1、
20-2、20-3、
21-1、22-1、22-2、
23-1、23-2、
23-3、
24-1、
25-1、
25-2、
25-3、。

相关文档
最新文档