运筹学第三章线性规划的对偶原理
合集下载
《运筹学》线性规划的对偶问题

3、资源影子价格的性质
z y b1w1 b2w2 bi wi bmwm z z b1w1 b2w2 (bi bi )wi bmwm z bi wi
w
o i
z o bi
最大利润的增量 第i种资源的增量
第i种资源的边际利润
■影子价格越大,说明这种资源越是相对紧缺 ■影子价格越小,说明这种资源相对不紧缺 ■如果最优生产计划下某种资源有剩余,这种资源的影子 价格一定等于0
总利润(元)
单位产品的利润(元/件)
产品产量(件)
max z c1x1 c2 x 2 c2 x 2
s.t.
a11x1 a12x 2 a1n x n x n1
a 21x1 a 22x 2 a 2n x n
x n2
b1
b2
a m1x1 a m2 x 2 a mn x n
差额成本=机会成本 ——利润
5、互补松弛关系的经济解释
wix ni
0xwni
0 x ni i 0 wi
0 0
x jwmj
0xwjm j
0 0
w m x
j j
0 0
在利润最大化的生产计划中 (1)边际利润大于0的资源没有剩余 (2)有剩余的资源边际利润等于0 (3)安排生产的产品机会成本等于利润 (4)机会成本大于利润的产品不安排生产
4、产品的机会成本
增加单位资源可以增加的利润
max z c1x1 c2x2 c jx j cn xn
s.t.
a11x1 a12x 2 a1jx j a1nx n b1 w1
a 21x1 a 22x 2 a 2jx j a 2nx n b2 w2
a m1 x1 a m2 x 2 a mj x j a mn x n bm wm
《管理运筹学》第3章--线性规划的对偶问题

x1 x2 x3 2
s.t.
x12x1x2
x3 x2
1 x3
2
x1 0; x2 , x3 ?
•
这样所有的约束条件均为“≤”和“=”类型,按前述对
应关系原则,可写出其对偶问题为:
minW ( y) 2 y1 y2 2 y3
y1 y2 2 y3 1
s.t.
y1 y1
y2 y2
min W ( y) 2 y1 6 y2 0 y3/ 0 y3//
y1
s.t.
0
y1
y1
2 y2 y3/ y3// 0
y2
y/ 3
y3/ /
2
6 y2 3 y3/ 3 y3//
5
y1
,
y2
,
y/ 3
,
y3/ /
0
13
OR:SM
• 再设y/3-y//3=y3,代入上述模型得:
始问题,则(3-2)称为对偶问题。
8
OR:SM
• 3.1.2 对称型线性规划问题——对称型对偶问题
•
• 每一个线性规划问题都必然有与之相伴随的对偶问题 存在。先讨论对称型对偶问题;对于非对称型对偶问题, 可以先转化为对称型,然后再进行分析,也可以直接从 非对称型进行分析。
• 对称型线性规划问题数学模型的一般形式为
变量 m个
约束 ≤ ≥
= (方程) 系数矩阵
b c
变量 ≥0 ≤0
无非负约束 转置
c b
19
OR:SM
•
这样对于任意给定的一个线性规划问题,均可依据上述
对应关系直接写出其对偶问题模型,而无须先化成对称型。
• 例3 写出下列线性规划的对偶问题
运筹学 对偶原理

解:原问题的对偶问题为
mi nW 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2
y1 3 y1
2 y2
3 y3 4 y3
3 5
2 y1 7 y2 y3 1
y1
0,
y2
0,
y
无
3
约
束
(3)复杂模型的对偶:可分步骤求对偶;或 依据表2.2求对偶
max Z 2x1 3x2 5x3 x4
( y3 , y4 , y5 )(x1 , x2 , x3 )T 0
( y1 , y2 )(x4 , x5 )T 0 将Y*带入由方程可知,y3=y5=0,y4=1。
∵y2=-2≠0 ∴x5=0
又∵y4=1≠0 ∴x2=0
将x2,x5分别带入原问题约束方程中,得:
x1 x1
x3 x3
4 6
解方程组得:x1=-5,x3=-1, 所以原问题的最优解为
推论2: 在一对对偶问题(P)和(D)中,若原问题可行但目标函 数无界,则对偶问题无可行解;反之不成立。这也是对偶问题的 无界性。
对偶性质
性质3 最优性定理:如果 X 0是原问题的可行 解,Y 0是其对偶问题的可行解,则
CX 0 Y 0b
充分不要条件是,X 0 与 Y 0是原问题和对偶
的最优解。
数列于下表 :
设备 产品
产品数据表
ABC
产品利润
D
(元/件)
甲
2140 2
乙
2204 3
设备可利用机 时数(时)
12
8
16 12
线性规划的对偶模型
•解:设甲、乙型产品各生产x1及x2件,则数 学模型为: max z 2x1 3x2
运筹学04-线性规划的对偶问题

生产计划问题
总结词
生产计划问题是线性规划对偶问题的另一个重要应用,主要研究如何安排生产 计划,以满足市场需求并实现利润最大化。
详细描述
在生产过程中,企业需要合理安排生产计划,以最小化生产成本并最大化利润。 通过线性规划对偶问题,可以确定最优的生产计划,使得生产过程中的资源得 到充分利用,同时满足市场需求。
对偶理论的发展趋势与未来研究方向
1 2 3
混合整数对偶
随着混合整数规划问题的日益增多,对偶理论在 处理这类问题中的研究将更加深入。
大数据优化
随着大数据技术的不断发展,如何利用对偶理论 进行大规模优化问题的求解将成为一个重要研究 方向。
人工智能与优化
人工智能和机器学习方法为优化问题提供了新的 思路,与对偶理论的结合将有助于开发更高效的 算法。
THANKS
感谢观看
线性规划问题的数学模型
目标函数
通常是一个线性函数,表示要优化的目标。
约束条件
通常是一组线性等式或不等式,表示决策变 量所受到的限制。
可行解集合
满足所有约束条件的解的集合,称为可行解 集合。
02
对偶问题概念
对偶问题的定义
线性规划的对偶问题是通过将原问题 的约束条件和目标函数进行转换,形 成与原问题等价的新问题。
对偶理论与实际问题的结合
01
02
03
供应链管理
在供应链优化问题中,对 偶理论可以用于协调供应 商和零售商之间的利益, 实现整体最优。
金融风险管理
在金融领域,对偶理论可 以用于评估和管理投资组 合的风险,提高投资效益。
交通调度
在交通调度问题中,对偶 理论可以用于优化车辆路 径和调度计划,提高运输 效率。
运筹学第3章 对偶问题

y1 + 2 y2 + 4 y3 = 3 2 y1 + y2 + 3 y3 = 2
x1 > 0, x2 > 0
联立求解得: y1 = 0, y2 = 0.5, y3 = 0.5
三、影子价格
设 x* ( j = 1,L, n) 和 yi* (i = 1,L, n) 分别是原问题和 j 对偶问题的最优解,则由对偶性质,有
=b
BX B + NX N + IX S = b X ≥ 0, X ≥ 0 N B
S S
max z = C B X B + C N X N + 0 X s
将XB的系数 矩阵化为单 位矩阵
原来 BX B + NX N + IX IX B + B − 1 NX N + B − 1 X
= b = B
注 上表中我们将松弛变量与剩余变量统称为松弛变量
二、对偶问题的基本性质
1、对偶问题的对偶问题是原问题
max z=CX s.t. AX≤b X ≥0 对偶的定义 min w=b’Y s.t. A’Y≥C Y ≥0
min z’ = - CX s.t. -AX ≥-b X ≥0
对偶的定义
max w = -b’Y s.t. -A’Y≤-C Y ≥0
−1
b
项目
原问题变量
原问题松弛变量
原问 题最 终单 纯形 表
x1
x3 15/2 x1 7/2 x2 3/2 -σj 0 1 0 0
x2
0 0 1 0
x3
1 0 0 0
x4
5/4 1/4 -1/4 1/4
x5
15/2 -1/2 3/2 1/2
x1 > 0, x2 > 0
联立求解得: y1 = 0, y2 = 0.5, y3 = 0.5
三、影子价格
设 x* ( j = 1,L, n) 和 yi* (i = 1,L, n) 分别是原问题和 j 对偶问题的最优解,则由对偶性质,有
=b
BX B + NX N + IX S = b X ≥ 0, X ≥ 0 N B
S S
max z = C B X B + C N X N + 0 X s
将XB的系数 矩阵化为单 位矩阵
原来 BX B + NX N + IX IX B + B − 1 NX N + B − 1 X
= b = B
注 上表中我们将松弛变量与剩余变量统称为松弛变量
二、对偶问题的基本性质
1、对偶问题的对偶问题是原问题
max z=CX s.t. AX≤b X ≥0 对偶的定义 min w=b’Y s.t. A’Y≥C Y ≥0
min z’ = - CX s.t. -AX ≥-b X ≥0
对偶的定义
max w = -b’Y s.t. -A’Y≤-C Y ≥0
−1
b
项目
原问题变量
原问题松弛变量
原问 题最 终单 纯形 表
x1
x3 15/2 x1 7/2 x2 3/2 -σj 0 1 0 0
x2
0 0 1 0
x3
1 0 0 0
x4
5/4 1/4 -1/4 1/4
x5
15/2 -1/2 3/2 1/2
《管理运筹学》03-对偶原理ppt课件

yi
=
cj,
j = 1,
2,…,n
i=1
因此,性质7(1) 的经济解释是: 当一个单位的任一运营活动 j在严厉 正程度( xj > 0 )上运营时,它所耗费的各种资源的边沿价值总和必定等 于 该项活动所产生的单位价值 cj 。
3.3 对偶关系的经济解释
譬如范例,知 X*= (4, 6, 4, 0, 0)T, Y*= (0, ½ , 1, 0, 0)T x1 = 4 > 0 → y4 = 0, 那么使 y1 +3y3 -y4 = 3 → y1 +3y3 = 3
8 F (8,6,0,0 ,- 12) 否 54 是 (3,5/2, 0, 0,0)
3.2 线性规划的对偶性质
6. 互补松弛性Ⅰ 设 = ( x1 , x2 , … , xn , xn+1, … , xn+m )T = ( y1 , y2 , … , ym , ym+1, … , ym+n )T 是(P⑴1)x(j Dym1)+的j =一0对,互补j根=本1解, ,2 ,那…么, n
cj
3
基 解 0 x1
5 00
x2
x3
0 x3 4 x40 x5 0 1 1/3 -
5 x2 16/3 0
1 0 1/2
3 x1 40 1
0 0 -2/3 1/3
比值
42 0
0 0 1/2 1
y4 y5 y1 y2 y3
σ1 σ2 σ3 σ4 σ5
X*= (4, 6, 4, 0, 0)T, z* = 42
s.t. 0y1+2y2+4y3 ≥ 5
②
①
y1, y2, y3 ≥ 0 ③
第三章线性规划的对偶定理

特点:
1. max min 2.限定向量b 价值向量C
其它形式 的对偶
?
(资源向量)
3.一个约束 一个变量。
4. max z的LP约束“ ” min z 的
LP是“ ”的约束。
5.变量都是非负限制。
二、原问题与对偶问题的数学模型
❖ 1.对称形式的对偶
当原问题对偶问题只含有不等式约束
时,称为对称形式的对偶。
根据对称形式的对偶模型,可直接 写出上述问题的对偶问题:
b max w (Y 1,Y 2 ) -b
(Y
1,Y
2
)
A A
C
Y1 0 ,Y2 0
max w (Y 1 Y 2 ) b
(Y
1
Y
2
)
A
C
Y 1 0, Y 2 0
令 Y Y,1 Y得2对偶问题为:
max w Yb
❖ (3)若原问题可行,但其目标函数值无 界,则对偶问题无可行解。
❖ (4)若对偶问题可行,但其目标函数值 无界,则原问题无可行解。
❖ (5)若原问题有可行解而其对偶问题无 可行解,则原问题目标函数值无界。
❖ (6)对偶问题有可行解而其原问题无可 行解,则对偶问题的目标函数值无界。
CX Yb
原问题
设备A 设备B 调试工序
产品Ⅰ 产品Ⅱ
0
5
6
2
1
1
利润(元) 2
1
D
15时 24时 5时
x 设 Ⅰ产量––––– 1
x Ⅱ产量––––– 2
如何安排生产, 使获利最多?
max z 2 x1 x2
s.t.
5x2 15
6 x1 2 x2 24
运筹学线性规划的对偶问题

例5 已知线性规划问题 minω = 2x1 + 3x2 + 5x3 + 2x4 + 3x5 x1 + x2 + 2x3 + x4 + 3x5 ≥ 4 2x1 - x2 + 3x3 + x4 + x5 ≥ 3 xj ≥ 0,j = 1,2,3,4,5
已知其对偶问题的最优解为y1* = 4/5, y2* = 3/5;z = 5。试用对偶理论找 出原问题的最优解.
试用对偶理论证明上述线性规划问题无最优解。
证: 首先看到该问题存在可行解,例如X = (0,0,0) 而上述问题的对偶问题为
minω = 2y1 + y2 -y1 - 2y2 ≥ 1 y1 + y2 ≥ 1 y1 - y2 ≥ 0 y1 ,y2 ≥ 0
由第一约束条件可知对偶问题无可行解,因而无最优解。由此 原问题也无最优解。
0 0
无约束
m个
约束条件
=
约束条件右端项 目标函数变量的系数
对偶问题(或原问题) 目标函数 min
n个
约束条件
=
m个
0 0
变量
无约束
目标函数变量的系数
约束条件右端项
原问题中的价值向量与对偶问题中的资源向量对换(上下对换) 原问题: X在C和A的右边;
xj yi
y1 y2 ┇ ym
对偶关系 maxZ
x1 x2 ┅ xn
a11 a12 ┅ a1n a21 a22 ┅ a2n ┇┇ ┇ am1 am2 ┅ amn ≥≥┅≥ c1 c2 ┅ cm
原关 minω 系
≤
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-2x1 - x2 - 3x3 ≤-3
对偶:min w = -3y1’ + 4y2
-2y1’ + y2 ≥ 1 -y1’ + 2y2 ≥ 2
-3y1’ + 5y2 ≥ 4 y1’,y2 ≥ 0
令y1 = -y1’,则: min w = 3y1 + 4y2 2y1 + y2 ≥ 1 y1 + 2y2 ≥ 2
19
• 求对偶问题的最优解: • 1.单纯形乘子Y的定理 • 2.松弛性 • 3.检验数与解的关系
20
[例6]已知:min w = 20y1 + 20y2
y1*=1.2,y2*=0.2
-ys1
y1 + 2y2 ≥ 1
偶
的最优解为 ① 试用松弛性求对
-ys2 -ys3 -ys4解:对偶问题
2y1 + y2 ≥ 2 ② 问题的最优解。
条件3未满足,再增加b,不会带来z的增加,
故该资源价值为0. 23
§3 对偶单纯形法
单纯形法:由 XB = B-1b ≥ 0,使σj ≥ 0,j = 1,···,m 对偶单纯形法:由σj ≥ 0(j= 1,···,n),使XB = B-1b
材料A
4
材料B
0
利润
2
Ⅱ 限制 2 8台时 0 16kg 4 12kg 3
3
现在不再生产,将设备材料出租出让,确定租费及转让费?
设y1为设备单位台时的租金,y2,y3为材料A、B转让附加费(kg-1)
目标函数,约束条件?
M2: min w = 8y1 + 16y2 + 12y3
y1 + 4y2
≥2
2x2 + x3 ≤ 8
x1,x2,x3 ≥ 0
对偶:min w = 6y1 + 8y2
2y1
≥1
y1 + 2y2 ≥ 2
y2 ≥ 1
y1,y2 ≥ 0
6
2、含等式的情况
[例3]max z = x1 + 2x2 + 4x3 2x1 + x2 + 3x3 = 3 x1 + 2x2 + 5x3 ≤ 4 x1,x2,x3 ≥ 0
∴x3*
有由④2x3*3+y13*x4+* =2y220* = 4 =右边∴ ∴x3*y=s4*4 = 0
3x3* + 2x4* = 20
x4* = 4
∴x4*待定
∴最优解:x1* = 0 x2* = 0 x3* = 4 xs1* = 0 xs2* = 0
最大值:z* = 28 = w*
x4* = 4
X ,Y 为可行解,当YS X
0,
Y
X
S
0时,w
z
由最优性可知,X ,Y 为最优解
另一方面,若X ,Y 分别为最优解,
由对偶定理可知,w z
YS X
0,Y
X
S
0
18
7、检验数与解的关系 原问题附加变量最优检验数的值为对偶问题的最优解。
分析:min z = CX + 0Xs = (C 0)(X Xs)T AX - Xs = b X,Xs ≥ 0
比较: max z 决策变量为n个 约束条件为m个
“≤” 约束条件的限定向量 目标函数的价值向量
min w 约束条件为n个 决策变量为m个
“≥” 目标函数的价值向量 约束条件的限定向量
5
二、 对偶问题的化法
1、典型情况(对称形式)
[例2]max z = x1 + 2x2 + x3
2x1 + x2
≤6
-3y1 + 2y2 + y3 ≤ -5
y1 - y2 + y3 = 1
y1 ≥ 0,y2 ≤ 0,y3自由变量
10
§2 对偶问题的基本性质和基本定理
1、对称性定理 对偶问题的对偶为原问题.
证: 原问题:max z = CX AX ≤ b X ≥ 0
对偶(1问) 题:min w = Yb YA ≥ C Y ≥ 0
原 max z CX 0X S AX X S b X, XS 0
当且仅当X*,Y*分别为最优解。
min w Yb YS 0
证: 将b,C代入目标函数,
YA YS C Y ,YS 0
z CX (YA YS )X YAX YS X
w Yb Y ( AX X S ) YAX YX S
Q2”
x1,x2 ≥ 0
x1
b1: 8 b2:16 b3:12
9 Q2’(4,2.5)
z*’ = 15.5
Δz* = z*’- z* = 3/2 = y1*
17 Q2”(4.25,1.875) z*” = 14.125
Δz* = z*”- z* = 1/8 = y2*
13 Δz* = 0 = y3*
,
则l行 对 应 的xl出 基.
4.得 到 新 的B,求 出 此B的B1.
重 复2 ~ 4步 直 到 求出 结 果.
2
§1 线性规划的对偶问题
一、问题提出 [例1]制定生产计划 M1: max z = 2x1 + 3x2
1x1 + 2x2 ≤ 8
4x1
≤ 16
4x2 ≤ 12
x1,x2 ≥ 0
Ⅰ
设备台时 1
12
原 max z CX min w Yb
AX b
YA C
X 0
Y 0
3、无界性(性质2的推论) 若原问题(对偶问题)为无界解,则对偶问题(原问题)为
无可行解。
注:该性质的逆不存在。若原(对偶)问题为无可行解, 对偶(原问题)问题或为无界解,或为无可行解。
13
原 max z CX
AX b
第三章 线性规划的对偶原理
单纯形法的矩阵描述
A为m×n阶矩阵 RankA=m,取B为可行基,N为非基,
X
X X
B N
,
A
B
N , C CB
CN
min z CB X B CN X N
BX B NX N b
X
B
,
XN
0
X B B1b, z CB B1b,
N CN CB B1N
22
8、对偶问题的经济含义——影子价格
最优情况:z* = w* = b1y1* + ··· + biyi* + ··· +
bmym*
z* bi
yi*
[例7]max z = 2x1 + 3x2
称y*i 为bi的影子价格
x2
x1 + 2x2 ≤ 8
4x1
≤ 16
4x2 ≤ 12
Q2’
Q2
Q2(4,2) z =14
1
• 求解步骤:
1.取 可 行 基B,求B1
2.若 N CN CB B1N 0,则 得 最 优 解,否 则 转 下 一 步.
3.基 变 换
若 m in{ ( j
N
)j
0}
(
N
)k ,则xk入基
若
min
i
( B 1b)i (B1Pk )i
(B1Pk )i
0
( B 1b)l (B1Pk )l
原问题最优解为X =B1b,
目标值为z CX CB B1b Y b w 由最优性可知,Y 为对偶问题的最优解, 且原问题和对偶问题的最优值相等。
15
5、对偶定理 若原问题有最优解,那么对偶问题也有最优解,且目标 值相等。
推论(单纯形乘子Y的定理): 原问题有一个对应于基B的最优解,则此时
YA C
X 0
Y 0
设X 为原问题的可行解, Y 为对偶问题的可行解,
则存在
CHale Waihona Puke Yb证: AX bAX b
YAX Yb
YA C
YA C
YAX CX
推论: (1)max问题任一可行解的目标值为min问题目标值的一个下界; (2)min问题任一可行解的目标值为max问题目标值的一个上界。
9
例5 min z = 2x1 + 3x2 - 5x3 + x4
x1 + x2 - 3x3 + x4 ≥ 5
2x1
+ 2x3 - x4 ≤ 4
x2 + x3 + x4 = 6
x1 ≤ 0,x2,x3 ≥ 0,x4自由变量
对偶:max w = 5y1 + 4y2 + 6y3
y1 + 2y2
≥2
y1
+ y3 ≤ 3
(2)
(2)作变换: max(w) min w Yb
YA C YA C
(2)等价于:max w Yb YA C
对偶
min w CX AX b
Y 0
X 0
令z=w',即为(1)
∴ (2)的对偶问题为(1)。
11
2.弱对偶性
原 max z CX min w Yb
AX b
ys3*x3* = 0
ys4*x4* = 0
21
y1*=1.2, y2*=0.2 ys1*x1* =0 ys2*x2* =0 ys3*x3* =0 ys4*x4* =0 y1*xs1* =0 y2*xs2* =0
y1 + 2y2 - ys1* = 1 ① 2y1 + y2 - ys2* = 2 ② 2y1 + 3y2 - ys3* =3 ③ 3y1 + 2y2 - ys4* = 4 ④ x1 + 2x2 + 2x3 + 3x4 +xs1 = 20 2x1 + x2 + 3x3 + 2x4 +xs2 = 20