南京航空航天大学 空气动力学课件第一章
直升机空气动力学 课件

《直升机空气动力学》南京航空航天大学“直升机空气动力学”课程组学时数:43几点要求:❑上课认真做笔记❑课后认真看书❑作业认真完成教材:❑王适存主编,《直升机空气动力学》,航空专业教材编审组出版,1985参考文献:❑[美]R.普劳蒂著,高正等译,《直升机性能及稳定性和操纵性》,航空工业出版社,1990年❑W.Z. Stepniewski and C. N. Keys, Rotary-Wing Aerodynamics, Dover Publications,Inc.,1981绪论南京航空航天大学《直升机空气动力学》课程组©本课程性质描述直升机(主要是它的旋翼)与周围空气相互作用的空气动力现象、阐明空气动力分析的理论、研究直升机不同飞行状态下的流场和气动载荷、估算直升机飞行性能、进行直升机尤其是旋翼气动设计的一门科学。
本章内容1.本课程基本内容;2.旋翼的功用和直升机的飞行特点;3.旋翼的基本参数;4.旋翼参数无因次化。
一. 本课程基本内容1.直升机研制的主要环节2.空气动力学在直升机技术中的地位❑气动在直升机研制中占重要地位❑总体设计、部件设计、气动载荷计算、性能计算、飞行品质分析、流场分析、噪声分析、气动试验等许多工作均与气动相关。
3.本课程的基本内容❑旋翼气动理论❑气动性能分析❑流场和气动载荷分析❑试验技术二. 旋翼的功用和直升机的飞行特点旋翼是直升机的关键部件构造:数片桨叶+桨毂桨毂:连接旋翼轴和桨叶,可铰接的或固接的桨叶:2-7片1. 旋翼的功用✓产生拉力——克服重量✓产生向前的水平分力——使直升机前进✓产生其他分力和力矩——使直升机保持平衡或进行机动飞行2. 直升机分类按构造型式分类❑单旋翼式❑共轴双旋翼式❑纵列双旋翼式❑横列双旋翼式倾转双旋翼式单旋翼式——尾桨平衡旋翼反扭矩S-92共轴双旋翼式Coaxial纵列双旋翼式Tandam倾转双旋翼式Tiltrotor3. 直升机的飞行特点旋翼的运动(以垂直飞行为例):旋翼一面绕自身的旋翼轴旋转,一面随直升机一起向上运动。
《空气动力学》大气物理学 ppt课件

ppt课件
31
水平风
零度
水平风
同温层
20km 11km
ppt课件
32
中间层、电离层的特点
中间层的特点
中间层从离地面50公里到80公里为止。
空气十分稀薄,温度随高度增加而下降。
空气在垂直方向有强烈的运动。
电离层(热层)的特点
中间层以上到离地面800公里左右就是电离层。
空气处于高度的电离状态,带有很强的导电性, 能吸收、反射和折射无线电波。
同温层之上随着高度的增加,温度逐步升高,直到顶 部温度升高到00C左右。
在平流层中,空气只有水平方向的流动。空气稀薄, 几乎没有水蒸汽,故没有雷雨等现象,故得名为平流 层。空气质量占整个大气的四分之一不到。
大气能见度好,气流平稳,空气阻力小,对飞行有利。 现代喷气式客机多在11-12km的平流层底层(巡航)飞 行。
ppt课件
22
1.1 大气的重要物理参数
温度升高, 气体粘度系 数增大。
温度升高, 液体粘度 系数减小。
气体
液体
粘度系数ppt随课件温度变化情况
23
1.1 大气的重要物理参数
可压缩性
流体在压强或温度改变时,能改变其原来体积及密度的特 性。
流体的可压缩性用单位压强所引起的体积变化率表示。即 在相同压力变化量的作用下,密度(或体积)的变化量越 大的物质,可压缩性就越大。
105 (千克/ 米秒)
1.780 1.749 1.717 1.684 1.652 1.619 1.586 1.552 1.517 1.482 1.447 1.418 1.418 1.418 1.418 1.418 1.418 1.418 1.418 1.418 1.418 1.418 1.912 2.047 1.667
气体动力学基础PPT课件

气体动力学基础_1
23
第二章 一维定常流的基本方程
§2.1 应知的流体力学基本概念
• 无限多个连续分布的流体微团 组成的连续介质的假设(
Euler明确,1752)。而非分子论。适用于l/L<1/100,例
如100公里以下的大气与飞行器
• 一维定常流 1-D Steady flow,流线 Streamline,
3
第一章 绪论
§1.1 气体动力学的涵义
气体动力学是
➢ 流体力学的一个分支,在连续介质假设下,研
究与热力学现象有关的气体的运动规律及其与
相对运动物体之间的相互作用。
➢ 气体在低速流动时属不可压缩流动,其热力状
态的变化可以不考虑;但在高速流动时,气体
的压缩效应不能忽略,其热力状态也发生明显
的变化,气体运动既要满足流体力学的定律,
学科名 Discipline 流体力学 Fluid Dynamics 空气动力学 Aerodynamics 气体动力学 Gas Dynamics
主要研究范围 Primary Scope
不可压缩流体动力学 Incompressible Fluid Flow
不可压缩+可压缩流体动力学 Incom-+Com-pressibleLeabharlann 解析解,螺旋桨理论,飞机设计
1904-20年代,普朗特Prandtl(德)的普朗特-迈耶流动理论,(超音
速膨胀波和弱压缩波),风洞技术,边界层理论,机翼举力线、举
力面理论,湍流理论,接合理论流体与实验流体,奠定了现代流体
力学气体动力学研究的基础
1910年瑞利和泰勒研究得出了激波的不可逆性
1933年泰勒和马科尔提出了圆锥激波的数值解
气体动力学基础_1
空气动力学PPT

第二节 飞行器的运动参数与操纵机构
一、坐标系:
描述飞机的姿态、位置;飞机在大气中飞行,运动复杂,有多 个坐标系描述;美制与苏制,国标——美制 1.地面坐标系(地轴系) Sg og xg yg zg 原点og —地面某一点(起飞点) ogxg —地平面内,指向某方向(飞行航线) ogyg —地平面内,垂直于ogxg,指向右方 y ogzg —垂直地面,指向地心, x o 右手定则 z H 描述飞机的轨迹运动 “不动”的坐标系, ogxg x 惯性坐标系
二、飞机的运动参数(续)
速度向量与机体轴系的关系
1、迎角 速度向量V在飞机对称面上的投影与机体轴ox的夹 角,以V的投影在ox轴之下为正 2、侧滑角 速度向量V与飞机对称面的夹角。V处于对称面之 右时为正
产生空气动力的主要因素 对于飞控是重要的变量
三、飞行器运动的自由度
刚体飞机,空间运动,有6个自由度: 质心x、y、z线运动(速度增减,升降,左右移动) 绕质心的转动角运动 飞机有一个对称面:纵向剖面,几何对称、质量对称 1.纵向运动 速度V,高度H,俯仰角 2.横航向运动 质心的侧向移动,偏航角,滚转角 纵向、横航向内部各变量之间的气动交联较强 纵向与横航向之间的气动交联较弱,可以简化分析 飞机—面对称,导弹—轴对称
1 p V 2 p0 总压 2
V大,p小;V小,p大
四、马赫数M
马赫数:为气流速度(v)和当地音速(a)之比: 音速:微弱扰动在介质中的传播速度。
M
V a
音速:
a 20 T
T:空气的绝对温度
音速a与温度有关,表示空气受压缩的程度,是高度的函数 临界马赫数Mcr 迎面气流的M数超过某数值时,翼面上出现局部的超音速区, 将产生局部激波 ,此时远前方的迎面气流速度V与远前方 空气的音速a之比 Mcr-每种机翼的特征参数
直升机空气动力学-叶素理论

Cm0 • MMD 0.02
Helicopter Aerodynamics
直升机技术研究所
Institute of Helicopter Technology
Cm
M
直升机空气动力学
南京航空航天大学
Nanjing University of Aeronautics & Astronautics
2-2 升力、阻力特性曲线
升力特性曲线(失速前)
C y a
a* a¥
气动迎角 升力线斜率
Cy
a Cy 0.(1 1/ 度) 5.731(1/弧度)
阻力特性曲线 主要取自实验数据
Helicopter Aerodynamics
直升机技术研究所
Institute of Helicopter Technology
Helicopter Aerodynamics
直升机空气动力学
南京航空航天大学
Nanjing University of Aeronautics & Astronautics
2-4 雷诺数的影响
翼型雷诺数 Re b r /
Re 体现气流粘性对空气动力的影 响,雷诺数越大,粘性的影响越小。
直升机技术研究所
Institute of Helicopter Technology
3-2 旋翼拉力系数的简化式
1 ) 矩形桨叶 b 为常数,定义旋翼实度 kbR / R2 kb / R
CT
1 0
C
y
r
2dr
1 0
a
(
*
)r
Nanjing University of Aeronautics & Astronautics
空气动力学01第1章绪论及基础知识-航院

教材:1.2.3.4.参考书:空气与气体动力学的任务、研究方法及发展流体静力学水力学理论流体动力学润滑理论基本任务:航空、航天、天气预报、船舶、体育运动、22v p constρ+=理想不可压流体伯努利方程空气流过飞行器外部时运动规律y L V ρ∞∞=Γ库塔儒可夫-儒科夫斯基定理假设实际黏性附面层旋涡/涡量Stokes 定理ndA Ω⋅=Γ∫y 翼梢小翼下洗速度诱导阻力有效迎角↓下洗角翼尖尾涡升力↓当地升力等效来流来流实际升力尾涡后掠机翼平直机翼n V 是产生升力/激波的有效速度后掠翼可提高产生激波的Ma cr边条涡边条翼:下表面压力>上表面压力气流旋转涡旋转涡心p 低而V 高流经部位压力低注入机翼表面气流能量推迟分离激波1V a >21V V <()120sh D mV V =−> 激波阻力7发动机气体动力学y 压气机/风扇:气体增压涡轮:气体膨胀8y 音障/音爆/音爆云正激波及阻力弱压缩波斜激波y 音障楔型体超音速运动激波及激波阻力阻力系数↑消耗3/4功率y 活塞发动机高速时螺旋桨效率低、桨尖易产生激波⇒喷气发动机y 降低波阻的超音速气动布局如后掠翼、面积率→蜂腰机身等y 音爆激波面上声学能量高度集中,这些能量让人感受到短暂而极其强烈的爆炸声。
超音速低压气流局部正激波斜激波局部亚音气流超音/亚音气流超音速气流膨胀加速压缩减速尾激波压缩减速y 音爆云激波后气体急剧膨胀降压降温潮湿天气气温低于露点水汽凝结水珠云雾y 亚燃冲压发动机进气道及扩压段斜激波及正激波拉伐尔喷管气流增压至亚音速燃烧室燃烧气流超音速喷出推力超燃冲压发动机进气道/斜激波气流增压且超音速气流超音速喷出航天空气动力学y 可压缩性黏性摩擦生热气流带走加热飞行器表面Ma=2⇒温度≈120侦察机Ma=3⇒温度y 热障结构强度↓刚度↓热能热辐射热传导气动热力学常温常压2000K<T<4000K 9000K<T 分子密度低11空气y 扑动速度均匀来流合速度合力升力推力机动性强举升/推进/悬停/快速变向等动作集于一个扑翼系统大升力利用非定常机制,其升力远高于常规飞行器,能够在低雷诺数条件下飞行。
空气动力学课件

2
N-S方程的解算
理论解法
–非线性问题 –精确解的限制 –初边值条件的适定性 –物理模型 (粘性、热力学模型、 …) –优缺点的比较
N-S方程的解算
计算流体力学 (CFD)
–网格化的流场就是一个离散的世界
J.D. Anderson, “Computational Fluid Dynamics: The Basics with Applications”, McGraw-Hill, 1995
积分形式的连续方程
dV V dS 0 S t V V [ t ( V )]dV 0
微分形式的连续方程 ( V ) 0
t
连续方程
定常流动
( V ) 0
S
V dS 0
u sin / r v cos / r
Vr u cos v sin 0 1 V u sin v cos r 1 Irrotational flow? z V r 0 r V rV r 2 V dl V rd 2
旋度
V
z
v u x y
无旋流
有旋流
From M. van Dyke’s “An album of fluid motion” Video?
角变形率
角变形
2 (1 )
角变形率
xy
d v u dt x y
流线之间的质量流量
c2 c1
d V lim n 0 n dn
空气动力学绪论PPT课件

0.3 空气动力学的发展进程
现代航空和喷气技术的迅速发展使飞行速度迅猛提高在 高速运动的情况下,必须把流体力学和热力学这两门学科 结合起来,才能正确认识和解决高速空气动力学中的问题。 1887-1896年间,奥地利科学家马赫在研究弹丸运动扰动 的传播时指出:在小于或大于声速的不同流动中,弹丸引 起的扰动传播特征是根本不同的。
高等数学计算方法大学物理理论力学绪论2学时第一章流体的基本属性和流体静力学6学时第二章流体运动学和动力学基础12学时第三章不可压缩无粘流体平面位流6学时第四章粘性流体动力学基础6学时第五章边界层理论及其近似6学时第六章可压缩高速流动基础14学时第七章高超音速流动基础4学时6学时总复习2学时陈再新刘福长鲍国华空气动力学航空工业出版社1993杨岞生俞守勤飞行器部件空气动力学航空工业出版社1987andersonjr
按速度范围分类:
低速空气动力学 (Low Aerodynamics) 亚音速空气动力学 (Subsonic Aerodynamics) 超音速空气动力学 (supersonic Aerodynamics) 高超音速空气动力学 (hypersonic Aerodynamics)
其它
36
37
38
39
21
0.3 空气动力学的发展进程
18世纪是流体力学的创建阶段。伯努利(Bernoulli) 在1738年发表“流体动力学”一书中,建立了不可压流体 的压强、高度和速度之间的关系,即伯努利公式;欧拉 (Euler)在1755年建立了理想不可压流体运动的基本方程 组,奠定了连续介质力学的基础。达朗贝尔 D'Alembert 提出著名的达朗贝尔原理:“达朗贝尔疑题”就是他在 1744年提出的。拉格朗日(Lagrange)改善了欧拉、达朗 贝尔方法,并发展了流体动力学的解析方法。关于研究气 流对物体的作用力,最早是牛顿(Newton)于1726年提出 关于流体对斜板的作用力公式,他实际上是在撞击理论的 基础上提出来的,没有考虑到流体的流动性.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体力学发展概述(-1800)
I. Newton,船舶的阻力, 1726 D. Bernoulli, Hydrodynamica, 1738 L. Euler, 不可压无粘流动方程组,1755 D’Alembert 疑题, 1744 Lagrange, 流体动力学解析方法的提出
Daniel I. Bernoulli (1700-1782)
λ和d在同一量级 λ <<d
连续流动 continnum flow
低密度流动 连续介质假设
流体介质的物理特性
连续介质假设 流体流动的相关物理量 完全气体状态方程 压缩性、粘性和传热性 流体的模型化
流动相关的物理量
密度 Density 压强 Pressure 温度 Temperature 速度 Velocity
研究流体运动的科学 地球物理、大气动力学、气象学
应用领域
Thermal fluid; Chemistry; MHD, and etc.
第一章 流体力学的基础知识
基本任务和应用领域 流体力学的研究方法 流体力学发展概述 流体介质的物理特性 气动力、力矩及气动力系数 矢量和积分 控制体、流体微团以及物质导数
流体极易发生剪切变形,静止时不能承受剪切力
力学范畴内的几个划分
力 学
流体力学
其 它 力 学
流 体 静 力 学
流体动力学 液体动力学 气体动力学
空气动力学
空气动力学基础部分 (课微分方程、矢量分析 场论、在矢量场内的微积分 守恒律、热力学定律
流体力学基本原理和分析方法 无粘不可压流动
流体的密度
流体微团 在连续介质的前提下流场中任取一点B
dv dm 微团体积 微团质量
其密度为
dm lim dv0 dv
流体的压强
气体分子在碰撞或穿过取定的表面时, 单位面积上所产生的法向力
dA 微团面积元的大小
该点压强为 dF p lim dA0 dA
dF
dA一侧的法向力
流体的模型化
流体具有多方面的物理属性 考虑所有物理属性,问题非常复杂 关注主导物理属性,忽略次要物理属性
根据实际流动问题,简化出各种流体模型
流体流动的不同范畴
流动速度(Mach数)
对常规问题耗费相对较小 可用于解算复杂流场的流动 计算者必须对精度、稳定性、模型的合 理性有清楚的认识 某些流动难以精确模拟
第一章 流体力学的基础知识
基本任务和应用领域 流体力学的研究方法 流体力学发展概述 流体介质的物理特性 气动力、力矩及气动力系数 矢量和积分 控制体、流体微团以及物质导数
主要研究方法
实验研究 理论分析 数值计算
实验设备
风洞 wind tunnel 80x120ft, NASA's Ames Res. Center, 1999
水洞 water tank
激波管 shock tube
实验测试技术
机械 光、电、声、热
流动显示技术
实验研究方法
实验准备工作要求较高 尽可能排除不必要的影响因素 可能涉及机械、力学、光学、电子 实验结果较为真实、直接、可靠 模型尺寸限制 实验边界的影响 准备周期长 影响因素多,测量过程易受干扰 大量的人力和物力消耗
理论分析方法
流动的模型化——问题的抽象表达
找出主要因素,忽略次要因素
控制方程的建立与解算 后处理和分析 有助于揭示问题的内在规律 未计及因素的修正 仅适用于简单问题
数值计算方法
求解方法多样化
有限差分(FDM)、有限元(FEM)、有限体积 方法(FVM)、谱方法
完全气体状态方程:
p RT
流体介质的物理特性
连续介质假设 流体流动的相关物理量 完全气体状态方程 压缩性、粘性和传热性 流体的模型化
流体的压缩性
压缩性 dp E 体积弹性模量 dV / V 一定质量的气体,体积与密度成反比
d dV V
dp E d
n
思考: 物体受绕流哪 些作用力?
流体的粘性
μ为动力粘性系数,表征流体粘度大小
气体μ随温度升高而增大 液体μ随温度升高而减小
1 .5
与压强基本无关
适用于空气的萨瑟兰公式
T 0 288 .15
288 .15 C T C
运动粘性系数 kinematic viscosity
流体的温度
气体温度T 的热力学意义
3 EK kT 2 EK 气体分子平均动能 Boltzmann常数 k
高温气体的分子和原子高速随机碰撞, 而在低温气体中,分子随机运动相对缓 慢些
流体的速度
不同于刚体力学的概念 流体在空间中某点B 的速度就是流体微 元通过点B 时的速度
Fluid element A Streamline B
Ludwig Prandtl (1875 –1953)
Walter Tollmien (1900-1968)
Hermann Schlichting (1907-1982)
Theodore von Kármán (1881 –1963)
钱学森 (1911-2009)
第一章 流体力学的基础知识
流体的热传导特性
Fourier公式
单位时间内通过单位面积所传递的热量与沿 热流方向的温度梯度成正比
T q n
λ—导热系数
T —温度为问题温度方向梯度(导数) n
流体介质的物理特性
连续介质假设 流体流动的相关物理量 完全气体状态方程 压缩性、粘性和传热性 流体的模型化
Siméon-Denis Poisson (1781 –1840)
Pierre-Simon, marquis de Laplace (1749 - 1827)
William John Macquorn Rankine (1820–1872)
Hermann Ludwig Ferdinand von Helmholtz (1821 –1894)
流体力学的基本任务
流体力学是研究流体与周围物体存在相 对运动时的运动规律和力的作用的科学 研究对象:与物体相对运动流体 探寻流体运动的基本规律 研究流体与固体之间的相互作用 应用流体力学规律解决工程技术问题 预测流体力学新的发展方向
第一章 流体力学的基础知识
亚音速空气动力学
超音速空气动力学
计算流体力学(CFD)
薄翼型线化理论、跨音速流动、高超音速流动
网格生成、控制方程解算
参考文献
徐华舫,《空气动力学基础》,北航版
H. Schlichting, Boundary layer theory, 7Ed J.D. Anderson, Introduction to Flight E.L. Houghton & P.W. Carpenter, Aerodynamics for
Leonhard Paul Euler (1707-1783)
Jean le Rond d'Alembert (1717 –1783)
流体力学发展概述(1800- )
Poisson,解决了绕球的无旋流动, 1826 Laplace, Laplace方程, 1827 Rankine, 奇点法解Laplace方程,位流理论,1868 Helmholtz,漩涡运动理论,流动稳定性
流体力学发展概述(1800- )
Navier-Stokes, 粘性流体的一般方程, 1826,1845 O.Reynolds, 湍流,1876-1883, Reynolds平均方程, 1895 Rankine(1870)-Hugoniot(1887)激波关系式 Wright, Flyer-1, 1903 Kutta-Joukowski(1906)升力公式
基本任务和应用领域 流体力学的研究方法 流体力学发展概述 流体介质的物理特性 气动力、力矩及气动力系数 矢量和积分 控制体、流体微团以及物质导数
流体介质的物理特性
连续介质假设 流体流动的相关物理量 完全气体状态方程 压缩性、粘性和传热性 流体的模型化
连续介质假设
分子平均自由程λ和物体特征尺寸d 自由分子流/非连续流动
流体力学发展概述(1800- )
Prantdl,
边界层理论, 1904; 升力线理论,1918-1919 湍流边界层的混合长模型,1925;
Tollmien(1929)-Schlichting(1933),T-S不稳定性 Von Karman积分关系式 Von Karman-Tsien公式,1944
Bernoulli 方程、位流理论与基本解、K-J定理 热力学定律、等熵流动、激波理论、高速管流
无粘可压流动
粘性流动-边界层理论初步
部件空气动力学 (后续课程结构)
低速翼型理论
几何特点、K-J后缘条件、薄翼型理论 B-S定律、升力线(面)理论 小扰动线化理论、薄翼型(机翼)气动特性