第三章 运输问题、第四章目标规划练习题

合集下载

目标规划整数规划第三、四、五章

目标规划整数规划第三、四、五章

销地 产地 A1 A2 4
B1
B2
B3 2
B4
B5
产量
3
11 3 6 4 3
12 7 5
5
3 2 5 1 4
6
4 2 9 2 5
4
0 8 0 5 0 9
A3
销量
当产大于销时,即
a b
i 1 i j 1 m
m
n
j
加入假想销地(假想仓库),销量为
a b
i 1 i j 1
n
(二)对偶变量法(位势法) 1.基本原理
检验数的计算: 一般问题:σj = C j- CBB-1 Pj = Cj - Y Pj 运输问题: σij = C ij- CBB-1 Pij = Cij - Y Pij = Cij - (u1,u2, …,um, v1, v2, …,vn) Pij = Cij - ( ui+ vj ) 当xij 为基变量时, σij = Cij - ( ui+ vj )=0 由此,任选一个对偶变量为0,可求出其余所有 的ui, vj 。 再根据σij = Cij - ( ui+ vj )求出所有非基变量的检验 数。
A 1 A2 A3
销量
B1 B2 B3 B4
4 12
产量
16 10 2 3 9 10 8 2 8 14 5 11 8 6 22 8 14 12 14 48
10
4
6
11
z 0 8 2 14 5 10 4 2 3 6 11 8 6 246 优点:就近供应,即优先供应运价小的业务。
4. 计划利润不少于48元。
- , P d + , P d -} Min{ P1 d16 maxZ= x1 +8 2 2x2 3 3 5x1 + 10x2 60 • 原材料使用不得超过限额 x1 - 2x2 +d1- -d1+ =0 • 产品II产量要求必须考虑 - -d + =36 4x + 4 x +d 1 2 2 2 • 设备工时问题其次考虑

运筹学思考练习题答案

运筹学思考练习题答案

运筹学思考练习题答案第⼀章 L.P 及单纯形法练习题答案⼀、判断下列说法是否正确1. 线性规划模型中增加⼀个约束条件,可⾏域的范围⼀般将缩⼩,减少⼀个约束条件,可⾏域的范围⼀般将扩⼤。

(?)2. 线性规划问题的每⼀个基解对应可⾏域的⼀个顶点。

(?)3. 如线性规划问题存在某个最优解,则该最优解⼀定对应可⾏域边界上的⼀个点。

(?)4. 单纯形法计算中,如不按最⼩⽐值原则选取换出变量,则在下⼀个基可⾏解中⾄少有⼀个基变量的值为负。

(?)5. ⼀旦⼀个⼈⼯变量在迭代中变为⾮基变量后,该变量及相应列的数字可以从单纯形表中删除,⽽不影响计算结果。

(?)6. 若1X 、2X 分别是某⼀线性规划问题的最优解,则1212X X X λλ=+也是该线性规划问题的最优解,其中1λ、2λ为正的实数。

(?)7. 线性规划⽤两阶段法求解时,第⼀阶段的⽬标函数通常写为ai iMinZ x =∑(x ai 为⼈⼯变量),但也可写为i ai iMinZ k x =∑,只要所有k i 均为⼤于零的常数。

(?)8. 对⼀个有n 个变量、m 个约束的标准型的线性规划问题,其可⾏域的顶点恰好为m n C 个。

(?)9. 线性规划问题的可⾏解如为最优解,则该可⾏解⼀定是基可⾏解。

(?)10. 若线性规划问题具有可⾏解,且其可⾏域有界,则该线性规划问题最多具有有限个数的最优解。

(?)⼆、求得L.P 问题121231425j MaxZ 2x 3x x 2x x 84x x 164x x 12x 0;j 1,2,,5=+++=??+=??+=?≥=的解如下: X ⑴=(0,3,2,16,0)T ;X ⑵=(4,3,-2,0,0)T ;X ⑶=(3.5,2,0.5,2,4)T ;X ⑷=(8,0,0,-16,12)T ; =(4.5,2,-0.5,-2,4)T ; X ⑹=(3,2,1,4,4)T ;X ⑺=(4,2,0,0,4)T 。

要求:分别指出其中的基解、可⾏解、基可⾏解、⾮基可⾏解。

运筹学 04 运输问题

运筹学 04 运输问题

x23
2,12 2 a2’’=0 b3’=10 第2行
x13
16,10 10 a1’=6 b3’’=0 第3列
产量 16 10 22
新产量 新销量 划去
14
销量
8
14
12
14
西北角法步骤 运价表中找出西北角(左上角)运价cij 在该处确定运量xij=min(ai,bj) 计算剩余产量ai’=ai-xij和剩余销量bj’=bj-xij,则出现 (1)ai’=0,bj’≠0——划去第i行运价; (2)ai’≠0,bj’=0——划去第j列运价; (3)ai’=0,bj’=0——划去第i行或第j列运价 重复上述,直到获得(m+n-1)个运输数量
例2:某部门三个工厂生产同一产品的产量、四个销售点的 销量及单位运价如下表。求最低运输费的运输方案。
产地 A1 A2 A3 销量
B1 4 2 8 4
B2 12 10 5 3
B3 4 3 11 5
B4 11 9 6 6
产量 8 5 9
解答
由于总产量=8+5+9=22,总销量=4+3+5+6=18,总产量>总销 量,属于产大于销的产销不平衡运输问题。增加一个销地, 销量b5=22-18=4;运价为0。得到产销平衡表如左表。表上作 业法结果见右表。 产地 B1 B2 B3 A1 4 12 4 A2 2 10 3 A3 8 5 11 销量 4 3 5 B4 11 9 6 6 B5 产量 0 8 0 5 0 9 4 产地 B1 A1 1 A2 4 A3 10 销量 4 B2 3 3 B3 4 1 9 5 B4 0 6 6 B5 产量 4 8 1 5 5 9 4
设xij为从Ai运输到Bj的产品数量,若Σai=Σbj,则称为产销平衡 的运输规划问题,数学模型为 min f=c11x11+…+c1nx1n+c21x21+…+cmnxmn xi1+xi2+…+xin=ai (i=1,2,…,m) x1j+x2j+…+xmj=bj (j=1,2,…,n) xij≥0 (i=1,2,…,m;j=1,2,…,n)

运筹学(第四版):第3章 运输问题

运筹学(第四版):第3章 运输问题

x11 x12 x1n x21 x22 x2n xm1 xm2 xmn
u1 1 1 1
u2
um
1
1
1
1
1
1
m行
v1 1
1
1
v2 1
vn
1
1
1
1
1
n行
5
第1节 运输问题的数学模型
该系数矩阵中对应于变量xij的系数向量Pij,其分量中除第i个和 第m+j个为1以外,其余的都为零。即
21
2.2 最优解的判别
判别的方法是计算空格(非基变量)的检验数cij−CBB-1Pij, i,j∈N。因运输问题的目标函数是要求实现最小化,故当 所有的cij−CBB-1Pij≥0时,为最优解。下面介绍两种求空格 检验数的方法。 1.闭回路法; 2.位势法
22
2.2 最优解的判别
1.闭回路法
2.1 确定初始基可行解
第二步:从行或列差额中选出最大者,选择它所在行或列 中的最小元素。在表3-10中B2列是最大差额所在列。B2列 中最小元素为4,可确定A3的产品先供应B2的需要。得表311
销 地 B1 B2 B3 B4 产
加工厂

A1
7
A2
4
A3
6
9
销量 3 6 5 6
18
2.1 确定初始基可行解
销 地 B1 B2 B3 B4 产
加工厂

A1
A2
3
43 7
1
4
A3
6
39
销量
36 56
12
2.1 确定初始基可行解
用最小元素法给出的初始解是运输问题的基可行解,其理由为: (1) 用最小元素法给出的初始解,是从单位运价表中逐次地

管理运筹学 易错判断题整理

管理运筹学 易错判断题整理
6.2 1 网络图的构成要素:作业,紧前作业,紧后作业,虚工作,事件, 起点事件,终点事件。
2 网络图的线路与关键路线。 3 最早时间,最迟时间,作业的最早开始,最早结束,最迟开始, 最迟结束时间,作业的总时差,自由时差的概念及计算方法。
判断题: 1 在任一图G中,当点集V确定后,树图是G中边数最少的连通图。 √ 2 一个具有多个发点和多个收点的求网络最大流问题一定可以转化为 求具有单个发点和单个收点的求网络最大流问题。
√ 6. 任何线性规划总可用大M单纯形法求解。
√ 7. 凡能用大M法求解也一定可用两阶段法求解。
√ 8. 两阶段法中第一阶段问题必有最优解。
√ 9. 两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优 解。
× 10. 人工变量一旦出基就不会再进基。
√ 11. 当最优解中存在为零的基变量时,则线性规划具有多重最优解。 ×
× 5 如果运输问题或者转运问题模型中,Cij 都是产地i到销地j的最小 运输费用,则运输问题同转运问题将得到相同的最优解。

第三章:目标规划
主要内容: 1 描述目标规划建模的思路以及他的数学模型同一般线性 数学模型的相同和不同点。 2 解释下列变量:1正负偏差变量 2绝对约束和目标约束 3 优先因子与权系数。 3 目标规划图解法的步骤。 4 目标规划 目标函数特点。 判断题: 1 目标规划模型中,可以不含有绝对约束但是必须含有目 标约束。
1 最优对策中,如果最优解要求一个人呢采取纯策略,则另一个人也必须采取纯策 ×
2 在两人零和对策支付矩阵的某一行或某一列上加上常数k 将不影响双方各自的最优 ×
3 博弈的纳什均衡是博弈双方达到均势平衡的解,也是使博弈双方得到最好结果的 ×

运筹学第3章:运输问题-数学模型及其解法

运筹学第3章:运输问题-数学模型及其解法

整数规划模型
01
整数规划模型是线性规划模型 的扩展,它要求所有变量都是 整数。
02
整数规划模型适用于解决离散 变量问题,例如车辆路径问题 、排班问题等。
03
在运输问题中,整数规划模型 可以用于解决车辆调度、装载 等问题,以确保运输过程中的 成本和时间效益达到最优。
混合整数规划模型
混合整数规划模型是整数规划和线性规划的结合,它同时包含整数变量和 连续变量。
运筹学第3章:运输问题-数学模 型及其解法
目录
• 引言 • 运输问题的数学模型 • 运输问题的解法 • 运输问题的应用案例 • 结论
01 引言
运输问题的定义与重要性
定义
运输问题是一种线性规划问题,主要 解决如何将一定数量的资源(如货物 、人员等)从起始地点运送到目标地 点,以最小化总运输成本。
总结词
资源分配优化是运输问题在资源管理 领域的应用,主要解决如何将有限的 资源合理地分配到各个部门或项目, 以最大化整体效益。
详细描述
资源分配优化需要考虑资源的数量、 质量、成本等多个因素,通过建立运 输问题的数学模型,可以找到最优的 资源分配方案,提高资源利用效率, 最大化整体效益。
05 结论
运输问题的发展趋势与挑战
生产计划优化
总结词
生产计划优化是运输问题在生产领域的应用,主要解决如何合理安排生产计划, 满足市场需求的同时降低生产成本。
详细描述
生产计划优化需要考虑原材料的采购、产品的生产、成品的销售等多个环节,通 过建立运输问题的数学模型,可以找到最优的生产计划和调度方案,提高生产效 率,降低生产成本。
资源分配优化
发展趋势
随着物流行业的快速发展,运输问题变得越来越复杂,需要更高级的数学模型和算法来 解决。同时,随着大数据和人工智能技术的应用,运输问题的解决方案将更加智能化和

运筹学第四章

运筹学第四章

运筹学第四章习题答案4.1若用以下表达式作为目标规划的目标函数,其逻辑是否正确?为什么? (1)max {-d -+d } (2)max {-d ++d } (3)min {-d ++d } (4)min {-d -+d }(1)合理,令f (x )+-d -+d =b,当f (x )取最小值时,-d -+d 取最大值合理。

(2)不合理,+d 取最大值时,f (x )取最大值,-d 取最大值时,f (x )应取最小值 (3)合理,恰好达到目标值时,-d 和+d 都要尽可能的小。

(4)合理,令f (x )+-d -+d =b,当f (x )取最大值时,-d -+d 取最小值合理。

4.2用图解法和单纯形法解下列目标规划问题(1)min {P 13+d ,P 2-2d ,P 3(-1d ++1d )}24261121=-+++-d d x x 52221=-+++-d d x x155331=-++-d d x3,2,1,0,,,21=≥+-i d d x x i i(2)min{P 1(+++43d d ),P 2+1d ,P 3-2d ,P 4(--+435.1d d )} 401121=-+++-d d x x1002221=-++--d d x x30331=-++-d d x 15442=-++-d d x4,3,2,1,0,,,21=≥+-i d d x x i i(1)图解法0 A B C X 1由图可知,满足域为线段EG,这就是目标规划方程的解,可求得:E,G 的坐标分别为(0,12),(3,3) 故该问题的解为)312,3()3,3()12,0(21221a a a a a +=+ )1,0,(2121=+≥a a a a(2)图解法 21由图可知,满足域为线段AB A(25,15),B(30,10)故该问题的解可表示为)1015,3025()10,30()15,25(212121a a a a a a ++=+ )1,0(212,1=+≥a a a a(1)单纯形法0 0 P1 0 0 P2 P3 P3CB XB x1 x2 bP3 P2 06 2 0 0 0 0 -1 1 245152 1 0 0 -1 1 0 05 0 -1 1 0 0 0 0P1P2P30 0 1 0 0 0 0 0-1 -1 0 0 1 0 0 0-6 -2 0 0 0 0 2 0P3P20 x1 0 2 1.2 -1.2 0 0 -1 1 6230 1 0.2 0.2 -1 1 0 01 0 -0.2 0.2 0 0 0 0P1 P2 P3 0 0 1 0 0 0 0 0 0 -1 -0.2 0.2 1 0 0 0 0 -2 -1.2 1.2 0 0 2 0P30 0x2x10 0 0.8 -0.8 2 -2 -1 1 2230 1 0.2 -0.2 -1 1 0 01 0 -0.2 0.2 0 0 0 0P1P2P30 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 -0.8 0.8 -2 2 2 00 0x2x10 0 0.4 -0.4 1 -1 -0.5 -0.5 1330 1 0.6 -0.6 0 0 0.5 0.51 0 -0.2 0.2 0 0 0 0P1P2P30 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 10 0 x22 0 0 0 1 -1 -0.5 -0.5 71253 1 0 0 0 0 0.5 0.55 0 -1 1 0 0 0 0P1P2P30 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 1故该问题的解为)312,3()3,3()12,0(21221a a a a a +=+ )1,0,(2121=+≥a a a a(2)P2P3P1P4P11.5P4CB XB x1 x2b 0 1 1 -1 1 00 0 0 0 0 401 1 0 0 -1 1 0 0 0 0 100 1 0 0 0 0 0 -1 1 00 301-1115P1 0 0 0 0 0 0 1 0 1 0P21P3 -1 -11 00 0 P4-11.5 0 0 1 0 -1 1 0 0 0 0 1 -1 251 0 0 0 -1 1 0 0 1 -1 85 1 0 0 0 0 0 -1 1 0 0 30 0x2 0 115P1 0 0 00 0 0 1 0 1 0P20 0-1 0P3 -1 01-1 1 P4 -1 00 51 0 x110 -1 1 0 0 0 0 1 -11-1-110 0 1 -1 0 0 -1 1 -1 1 30 0 x2 0 1 0 0 0 0 0 0 0 0 P1 0 0 0 0 0 0 1 0 1 0 P2 0 0 1 0 0 0 0 0 0 0 P3 0 0 -1 1 1 0 0 0 0 0P4-1111.54.3某商标的酒是用三种等级的酒兑制而成。

广工管理运筹学第三章运输问题

广工管理运筹学第三章运输问题

闭合回路法的优点是能够找到全局最 优解,适用于大型复杂运输问题。但 该方法的计算复杂度较高,需要较长 的计算时间。
商位法
01
商位法是一种基于商位划分的优化算法,用于解决运输问题。该方法通过将供 应点和需求点划分为不同的商位,并最小化总运输成本。
02
商位法的计算步骤包括:根据地理位置和货物需求量,将供应点和需求点划分 为不同的商位;根据商位的地理位置和货物需求量,计算总运输成本;通过比 较不同商位的总运输成本,确定最优的配送路线。
80%
线性规划法
通过建立线性规划模型,利用数 学软件求解最优解,得到最小化 总成本的运输方案。
100%
启发式算法
采用启发式规则逐步逼近最优解 ,常用的算法包括节约算法、扫 描算法等。
80%
遗传算法
基于生物进化原理的优化算法, 通过模拟自然选择和遗传机制来 寻找最优解。
02
运输问题的数学模型
变量与参数
约束条件
供需平衡
每个供应点的供应量等于对应 需求点的需求量,这是运输问 题的基本约束条件。
非负约束
运输量不能为负数,即每个供 应点对每个需求点的运输量都 应大于等于零。
其他约束条件
根据实际情况,可能还有其他 约束条件,如运输能力的限制 、运输路线的限制等。
03
运输问题的求解算法
表上作业法
总结词
直到达到最优解。这两种方法都可以通过构建线性规划模型来求解最优解。
04
运输问题的优化策略
节约法
节约法是一种基于节约里程的优化算法,用于解决 运输问题。该方法通过比较不同配送路线的距离和 货物需求量,以最小化总运输距离为目标,确定最 优的配送路线。
节约法的计算步骤包括:计算各供应点到需求点的 距离,找出最短路径;根据最短路径和货物需求量 ,计算节约里程;按照节约里程排序,确定最优配 送路线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 运输问题、第四章目标规划练习题
一、判断下列说法是否正确
1.表上作业法实质上就是求运输问题的单纯形法。

( )
2.在运输问题中,只要任意给出一组含(m+n-1)个非零的{x ij },且满足∑==n
1
j i ij a x ,∑==m
1
i j ij b x ,
就可以作为一个初始可行解。

( )
3.建立目标规划模型时,正偏差变量应取正值,负偏差变量应取负值。

( ) 4.线性规划问题是目标规划问题的一种特殊形式。

( ) 二、用表上作业法求解下表最小运费方案
三、针对目标规划模型:
1123321211122212331
212i i M inZ P d P d P d x 2x d d 4x 2x d d 4x 2x d d 83x 2x 12x ,x 0;d ,d 0,i 1,2,3
+
+
+
-+-+
-+
-+
=++⎧-++-=⎪-+-=⎪⎪++-=⎨⎪+≥⎪⎪≥≥=
⎩ ①②③④
(1)用图解法求出问题的满意解。

(2)若将目标函数改为:
()1122333
M inZ P d P d P d d +
+
-
+
=+++
满意解会如何变化。

相关文档
最新文档