等离子体增强化学气相沉积(PECVD)综述知识交流
等离子体增强化学气相沉积(一)2024

等离子体增强化学气相沉积(一)引言概述:等离子体增强化学气相沉积(PECVD)技术是一种用于制备薄膜材料的重要方法。
通过在化学气相沉积过程中引入等离子体以增强反应活性,PECVD具有优异的控制性能和广泛的应用领域。
本文将介绍PECVD的原理、工艺条件、材料特性以及其在半导体、光电子、光伏等领域的应用。
一、PECVD技术原理1.等离子体的定义和性质2.化学气相沉积与PECVD的区别3.PECVD工艺的基本原理4.PECVD反应过程中的等离子体产生机制5.PECVD原理的研究进展二、PECVD的工艺条件1.反应器设计与选择2.沉积气体选择与流量控制3.沉积压力与温度的控制4.等离子体功率与频率的控制5.衬底表面准备与预处理三、PECVD材料特性1.薄膜厚度与均匀性2.表面质量与界面特性3.薄膜成分与化学组成4.电学性能与光学性能5.薄膜的结构与晶化性能四、PECVD在半导体领域的应用1.薄膜晶体硅的制备2.硅氮化薄膜的制备与应用3.高介电常数薄膜的制备与应用4.电子学器件的制备与优化5.半导体封装材料的制备与应用五、PECVD在其他领域的应用1.光电子材料的制备与应用2.光伏电池的制备与优化3.薄膜传感器的制备与应用4.生物材料的制备与表征5.其他领域中的PECVD应用总结:等离子体增强化学气相沉积(PECVD)技术具有广泛的应用领域和优异的控制性能。
通过引入等离子体,PECVD可以实现高质量薄膜材料的制备与优化,并在半导体、光电子、光伏和生物材料等领域发挥重要作用。
但是,该技术仍然面临一些挑战和问题,如等离子体的稳定性、控制性和薄膜的可伸缩性等。
未来的发展中,我们需要进一步研究PECVD的机理,探索新的工艺条件和材料特性,以实现更广泛的应用和性能优化。
等离子体增强化学气相沉积

等离子体增强化学气相沉积1、等离子体增强化学气相沉积的主要过程等离子体增强化学气相沉积(pecvd)技术是借助于辉光放电等离子体使含有薄膜组成的气态物质发生化学反应,从而实现薄膜材料生长的一种新的制备技术。
由于pecvd技术是通过应气体放电来制备薄膜的,有效地利用了非平衡等离子体的反应特征,从根本上改变了反应体系的能量供给方式。
一般说来,采用pecvd技术制备薄膜材料时,薄膜的生长主要包含以下三个基本过程:首先,在非平衡等离子体中,电子与反应气体发生初级反应,使得反应气体发生分解,形成离子和活性基团的混合物;其二,各种活性基团向薄膜生长表面和管壁扩散输运,同时发生各反应物之间的次级反应;最后,到达生长表面的各种初级和次级反应产物被吸附并与表面反应,伴随着气体分子的重新释放。
具体说来,基于辉光放电方法的pecvd技术,能够使得反应气体在外界电磁场的激励下实现电离形成等离子体。
在辉光放电的等离子体中,电子经外电场加速后,其动能通常可达10ev 左右,甚至更高,足以破坏反应气体分子的化学键,因此,通过高能电子和反应气体分子的非弹性碰撞,就会使气体分子电离(离化)或者使其分解,产生中性原子和分子生成物。
正离子受到离子层加速电场的加速与上电极碰撞,放置衬底的下电极附近也存在有一较小的离子层电场,所以衬底也受到某种程度的离子轰击。
因而分解产生的中性物依扩散到达管壁和衬底。
这些粒子和基团(这里把化学上是活性的中性原子和分子物都称之为基团)在漂移和扩散的过程中,由于平均自由程很短,所以都会发生离子-分子反应和基团-分子反应等过程。
到达衬底并被吸附的化学活性物(主要是基团)的化学性质都很活泼,由它们之间的相互反应从而形成薄膜。
2、等离子体内的化学反应由于辉光放电过程中对反应气体的激励主要是电子碰撞,因此等离子体内的基元反应多种多样的,而且等离子体与固体表面的相互作用也非常复杂,这些都给pecvd技术制膜过程的机理研究增加了难度。
PECVD的工作原理

PECVD的工作原理一、背景介绍PECVD(Plasma Enhanced Chemical Vapor Deposition)是一种利用等离子体增强的化学气相沉积技术,用于在基底表面沉积薄膜的方法。
该技术广泛应用于半导体、光电子、光学涂层、薄膜太阳能电池等领域。
本文将详细介绍PECVD的工作原理。
二、PECVD的基本原理PECVD利用等离子体在气相中激发的活性粒子,使其与气体中的化学物质发生反应,从而在基底表面沉积薄膜。
其基本原理可以概括为以下几个步骤:1. 气体供给:将所需的沉积气体通过进气系统供给到反应室中。
常用的沉积气体包括硅源气体(如SiH4)、碳源气体(如CH4)、氨气(NH3)等。
2. 等离子体激发:在反应室中建立等离子体。
通常通过施加高频电压或者射频电场,在两个电极之间产生电弧放电或者辉光放电,从而激发气体中的电子,形成等离子体。
3. 活性物种生成:在等离子体中,电子与气体份子碰撞,使份子解离或者电离,生成活性物种。
这些活性物种包括自由基、离子、激发态份子等。
4. 反应沉积:活性物种在基底表面进行反应,并沉积形成薄膜。
活性物种与沉积气体中的化学物质反应,形成沉积物质,并在基底表面附着。
5. 薄膜生长:通过控制沉积时间和沉积条件,可以控制薄膜的生长速率和性质。
沉积时间越长,薄膜厚度越大。
三、PECVD的关键参数在PECVD过程中,有几个关键参数需要控制,以获得所需的薄膜性质。
这些参数包括:1. 气体流量:控制沉积气体的流量,可以调节沉积速率和沉积物质的组成。
2. 反应室压力:通过控制反应室的压力,可以调节活性物种的浓度和能量,从而影响薄膜的质量和性能。
3. 射频功率:射频功率的大小直接影响等离子体的产生和活性物种的浓度。
较高的射频功率可以提高沉积速率,但也可能导致薄膜中的缺陷增加。
4. 反应温度:反应温度对薄膜的结晶度、致密性和应力等性质有重要影响。
较高的反应温度可以提高薄膜的致密性和结晶度,但也可能导致薄膜中的缺陷增加。
PECVD的工作原理

PECVD的工作原理PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学气相沉积)是一种常用于制备薄膜的表面处理技术。
它通过在低压下使用等离子体来激活气体分子,使其在基底表面上沉积形成薄膜。
以下是PECVD的工作原理的详细解释。
1. 原理概述:PECVD是一种化学气相沉积技术,它利用等离子体的激发作用,将气体分子激活并沉积在基底表面上。
该技术可以在低温下进行,适用于对基底材料敏感的应用,如光电子器件和集成电路制造等。
PECVD广泛应用于薄膜沉积领域,例如氮化硅、二氧化硅、氮化硼等。
2. 工作原理:PECVD的工作原理可以分为以下几个步骤:步骤1:气体供应首先,需要准备所需的沉积气体。
常用的沉积气体包括硅源气体(如二甲基硅烷、三甲基硅烷等)和氧化源气体(如二氧化氮、氧气等)。
这些气体通过气体供应系统被引入到PECVD反应室中。
步骤2:等离子体激发在PECVD反应室中,气体被加热并暴露在高频电场中,形成等离子体。
这个等离子体激发了气体分子,使其变得更加反应活性。
步骤3:气体分解和反应等离子体中的高能电子和离子与气体分子碰撞,使其发生解离和反应。
例如,二甲基硅烷(Si(CH3)2H2)可以在等离子体激发下分解为硅(Si)和甲基(CH3)基团。
这些分解产物可以与其他气体分子反应,形成沉积薄膜的前驱物。
步骤4:沉积薄膜沉积薄膜的前驱物通过扩散到基底表面,并在表面发生化学反应,形成沉积薄膜。
反应条件(如温度、气体流量、反应时间等)可以调节以控制薄膜的厚度和性质。
步骤5:沉积后处理完成沉积后,可以对薄膜进行后处理,如退火、氧化等,以改善薄膜的性能和结构。
3. 应用领域:PECVD广泛应用于各种领域,包括集成电路制造、光电子器件、太阳能电池、显示器件等。
它可以用于沉积各种材料的薄膜,如氮化硅、二氧化硅、氮化硼等。
这些薄膜在微电子器件中起到绝缘、保护、光学、电学等功能。
等离子体增强化学气相沉积技术

等离子体增强化学气相沉积技术
等离子体增强化学气相沉积技术(PECVD)是一种利用等离子体反应来制备薄膜的技术。
该技术可以在低温下制备高质量的薄膜,具有广泛的应用前景。
PECVD技术的基本原理是将气体通过电场加热,使其形成等离子体,然后将等离子体沉积在基底上形成薄膜。
等离子体反应可以使气体分子发生化学反应,从而形成所需的化合物。
PECVD技术可以制备多种材料的薄膜,如氮化硅、氧化硅、碳化硅等。
PECVD技术具有许多优点。
首先,它可以在低温下制备高质量的薄膜,这对于一些温度敏感的基底非常重要。
其次,PECVD技术可以制备大面积的薄膜,这对于工业生产非常有利。
此外,PECVD技术可以制备多种材料的薄膜,这使得它在许多领域都有广泛的应用。
PECVD技术在半导体、光电子、涂层等领域都有广泛的应用。
在半导体领域,PECVD技术可以制备氮化硅、氧化硅等材料的薄膜,用于制备晶体管、电容器等器件。
在光电子领域,PECVD技术可以制备氮化硅、氧化硅等材料的薄膜,用于制备LED、太阳能电池等器件。
在涂层领域,PECVD技术可以制备碳化硅、氮化硅等材料的薄膜,用于制备防护涂层、耐磨涂层等。
等离子体增强化学气相沉积技术是一种非常重要的制备薄膜的技术。
它具有许多优点,可以制备多种材料的薄膜,应用领域广泛。
随着
科技的不断发展,PECVD技术将会在更多的领域得到应用。
pecvd原理

pecvd原理PECVD原理。
PECVD (Plasma Enhanced Chemical Vapor Deposition)是一种利用等离子体增强化学气相沉积技术的薄膜制备方法。
它是一种常见的薄膜沉积技术,广泛应用于半导体、光电子、显示器件等领域。
本文将介绍PECVD的原理及其在薄膜制备中的应用。
1. 等离子体激发。
在PECVD过程中,首先需要产生等离子体。
通常采用射频或微波等高频电场作用于气体中,使得气体分子发生电离,产生电子和正离子。
这些电子和正离子受到电场的作用而加速,与气体分子发生碰撞,从而产生高能量的等离子体。
这种等离子体具有高活性,可以促进化学反应的进行。
2. 化学气相沉积。
在产生等离子体的同时,需要将沉积薄膜的前体气体引入等离子体区域。
这些前体气体分子在等离子体的作用下发生解离、激发或离子化,生成活性物种,如自由基、离子等。
这些活性物种在表面发生化学反应,从而沉积出所需的薄膜。
通过控制前体气体的种类、流量和等离子体条件,可以实现对薄膜成分、结构和性能的调控。
3. 应用。
PECVD技术在各种薄膜材料的制备中得到了广泛应用。
例如,氮化硅薄膜可用于光学涂层、光学薄膜、光学波导、光学薄膜滤波器等领域;氮化碳薄膜可用于硬质涂层、防刮涂层、导热膜等领域;氧化硅薄膜可用于光学玻璃涂层、光学薄膜、光学波导等领域。
此外,PECVD技术还可用于制备氮化硅薄膜、氧化硅薄膜、氮化碳薄膜等功能薄膜,以满足不同领域对薄膜材料的需求。
总结。
通过等离子体激发和化学气相沉积两个关键步骤,PECVD技术实现了对薄膜材料的精密控制和定向沉积。
它具有工艺简单、成本低、沉积速率快、薄膜均匀性好等优点,因此在半导体、光电子、显示器件等领域得到了广泛应用。
随着科学技术的不断发展,PECVD技术将进一步完善和拓展,为各种薄膜材料的制备提供更多可能性。
等离子增强型化学气相淀积系统

等离子增强型化学气相淀积系统等离子增强型化学气相淀积系统(PECVD)是一种常用于制备薄膜材料的技术。
它通过将气体化合物引入等离子体中,利用化学反应在衬底表面上沉积出所需的薄膜。
PECVD系统在微电子、光电子、能源和材料科学等领域具有广泛的应用。
一、PECVD系统的工作原理PECVD系统主要由等离子源、气体供给系统、电源系统和反应室等组成。
其工作原理是通过施加高频交变电场或射频电场,使气体分子在等离子体中发生电离,生成活性离子和自由基。
这些活性离子和自由基在表面上发生化学反应,生成所需的薄膜材料。
二、PECVD系统的优势1. 高沉积速率:PECVD系统能够实现高速的薄膜沉积,提高生产效率。
2. 低沉积温度:与其他沉积技术相比,PECVD系统可在较低的温度下进行沉积,有利于对温度敏感的衬底材料进行加工。
3. 沉积均匀性好:PECVD系统能够实现较高的沉积均匀性,保证薄膜在整个衬底表面上的均匀沉积。
4. 多功能性:PECVD系统可以通过调节气体组分和工艺参数,实现多种不同材料的沉积,满足不同应用的需求。
三、PECVD系统的应用1. 微电子领域:PECVD系统可以用于制备硅氮化物薄膜、二氧化硅薄膜等,用于制备晶体管、电容器等微电子器件。
2. 光电子领域:PECVD系统可以用于制备氮化硅薄膜、氧化锌薄膜等,用于制备太阳能电池、光电传感器等光电子器件。
3. 能源领域:PECVD系统可以用于制备氮化硅薄膜、碳化硅薄膜等,用于制备锂离子电池、燃料电池等能源器件。
4. 材料科学领域:PECVD系统可以用于制备金刚石薄膜、氮化硼薄膜等,用于提高材料的硬度、耐磨性等性能。
四、PECVD系统的发展趋势1. 高效节能:未来的PECVD系统将进一步提高能源利用率,实现更高效的薄膜沉积,减少能源消耗。
2. 柔性加工:未来的PECVD系统将实现对柔性衬底的加工,满足可弯曲、可折叠等新型器件的制备需求。
3. 多功能一体化:未来的PECVD系统将实现多种功能的一体化,提高设备的多样性和灵活性。
PECVD的工作原理

PECVD的工作原理PECVD即等离子体增强化学气相沉积(Plasma-Enhanced Chemical Vapor Deposition),是一种用于薄膜制备的技术。
它通过在反应室中生成和控制等离子体来沉积材料薄膜。
下面将详细介绍PECVD的工作原理。
1.等离子体的产生:等离子体是PECVD的关键部分,可以通过几种方式产生。
最常见的方法是通过将反应室内的气体电离来产生等离子体。
通过加入电压或放电电流来产生等离子体,电离的气体分子和碗粒在电场中被加速,形成激发态和离子。
这些活性粒子与反应室中的气体和基片相互作用,从而实现薄膜的沉积。
2.推动气体的选择:在PECVD中,推动气体通常选择稀释的惰性气体(如氩气)。
这些气体的主要作用是传递能量,使反应室内的气体电离,形成等离子体。
此外,推动气体还可帮助维持反应室内的稳定等离子体状态。
3.反应气体的选择:反应气体是PECVD中另一个重要的组成部分。
反应气体通过在等离子体中发生化学反应,形成沉积用的薄膜。
反应气体可以是有机气体、无机气体或二者的混合物,具体的选择取决于需要沉积的材料。
例如,硅氢化物(SiH4)和氨气(NH3)可用于沉积硅氮化薄膜。
4.基片的放置和加热:基片是PECVD中薄膜沉积的目标。
在工作过程中,基片通常被放置在等离子体发生装置的下方。
为了实现均匀的薄膜沉积,基片通常被加热。
加热可以提高反应的速率和质量,并使沉积的薄膜具有更好的附着力和致密性。
5.薄膜沉积:当等离子体和反应气体碰撞在基片上时,化学反应发生,形成沉积用的薄膜。
等离子体的存在可以降低活化能,从而使反应能够在较低的温度下发生。
此外,等离子体还可以提供足够的活性粒子来控制沉积的过程,如沉积速率、化学组成和薄膜性质。
6.控制和监测:PECVD过程中的控制和监测是确保薄膜具有所需性质的重要步骤。
通过调节反应气体的流量和压力,可以控制薄膜的厚度和化学组成。
同时,通过监测等离子体发生器的功率和频率,可以提供关于等离子体活性的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等离子体增强化学气相沉积(P E C V D)综述
等离子体增强化学气相沉积(PECVD)综述
摘要:本文综述了现今利用等离子体技术增强化学气相沉积(CVD)制备薄膜的原理、工艺设备现状和发展。
关键词:等离子体;化学气相沉积;薄膜;
一、等离子体概论——基本概念、性质和产生
物质存在的状态都是与一定数值的结合能相对应。
通常把固态称为第一态,当分子的平均动能超过分子在晶体中的结合能时,晶体结构就被破坏而转化成液体(第二态)或直接转化为气体(第三态);当液体中分子平均动能超过范德华力键结合能时,第二态就转化为第三态;气体在一定条件下受到高能激发,发生电离,部分外层电子脱离原子核,形成电子、正离子和中性粒子混合组成的一种集合体形态,从而形成了物质第四态——等离子体。
只要绝对温度不为零,任何气体中总存在有少量的分子和原子电离,并非任何的电离气体都是等离子体。
严格地说,只有当带电粒子密度足够大,能够达到其建立的空间电荷足以限制其自身运动时,带电粒子才会对体系性质产生显著的影响,换言之,这样密度的电离气体才能够转变成等离子体。
此外,等离子体的存在还有空间和时间限度,如果电离气体的空间尺度L下限不满足等离子体存在的L>>l D(德拜长度l D)的条件,或者电离气体的存在的时间下限不满足t>>t p(等离子体的振荡周期t p)条件,这样的电离气体都不能算作等离子体。
在组成上等离子体是带电粒子和中性粒子(原子、分子、微粒等)的集合
体,是一种导电流体,等离子体的运动会受到电磁场的影响和支配。
其性质宏观上呈现准中性(quasineutrality ),即其正负粒子数目基本相当,系统宏观呈中性,但是在小尺度上则体现电磁性;其次,具有集体效应,即等离子体中的带电粒子之间存在库仑力。
体内运动的粒子产生磁场,会对系统内的其他粒子产生影响。
描述等离子体的参量有粒子数密度n 和温度T 。
通常用n e 、n i 和n g 来表示等离子体内的电子密度、粒子密度和中性粒子密度。
当n e =n i 时,可用n 来表示二者中任一带电粒子的密度,简称等离子体密度。
但等离子体中一般含有不同价态的离子,也可能含有不同种类的中性粒子,因此电子密度与粒子密度不一定总是相等。
对于主要是一阶电离和含有同一类中性粒子的等离子体,可以认为n e ≈ n i ,对此,定义:a =n e /( n e + n g )为电离度。
在热力学平衡条件下,电离度仅取决于粒子种类、粒子密度及温度。
用T e 、T i 和T g 来表示等离子体的电子温度、离子温度和中性粒子温度,考虑到“热容”,等离子体的宏观温度取决于重粒子的温度。
在热力学平衡态下,粒子能量服从麦克斯韦分布,单个粒子平均平动能KE 与热平衡温度T 关系为:
21322
kT KE mv ==
等离子体的分类按照存在分为天然和人工等离子体。
按照电离度a 分为:
a<<0.1称为弱电离等离子体,当a > 0.1时,称为为强电离等离子体;a =1 时,则叫完全等离子体。
按照粒子密度划分为致密等离子体n >1518310cm -,若n<1214310cm -为稀薄等离子体。
按照热力学平衡划分为完全热力学平衡等离子体,即
高温等离子体;局部热力学等离子体,也叫热等离子体;非热力学平衡等离子体,也叫低温等离子体。
低温等离子体中的电子具有足够高的能量,能够使得反应物分子实现激发、离解和电离;再者,由于反应能量是由电场通过电子提供的,能够在较低的温度下进行反应,使得反应体系可以保持低温。
正因此,非平衡性对于等离子体化学与工艺具有十分重要的意义,通常基于低温等离子体技术的设备投资少、节省能源,因此获得了非常广泛的应用。
等离子体特别是热等离子体一般伴随着强光发射,除可见光外,还会有大量的紫外线和X射线。
辐射会释放能量,造成等离子体能量的损失,热等离子体的辐射能量损失约占等离子体有效输出功率的30%;辐射所释放的能量可有效地激活反应体系或者对反应过程产生重要影响;等离子体辐射是诊断等离子体状态的重要途径,等离子体密度、温度及化学物质在等离子体中的反应过程都可以因辐射而进行实时监测。
等离子体产生方法有天然和人工。
人工有燃烧和气体放电,放电包括:①电弧;②高频;③激波; ④激光;⑤聚变等放电法。
二、等离子体增强化学气相沉积技术
1、等离子体增强化学气相沉积的原理
化学气相沉积(Chemical vapor deposition,CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术,常用于制造薄膜(如多晶硅、非晶硅、氧化硅等)。
原理见下图:
与之相对的是物理气相沉积(Physical vapor deposition,PVD)。
CVD主要有常压CVD (APCVD)、低压CVD(LPCVD)、超高真空CVD (UHCVD),和等离子体增强CVD(PECVD,plasma enhanced chemical vapor deposition)法等。
化学反应的本质是原子或原子团的重新组合,为使重新组合得以进行,必须提供反应所需的活化能,一些需要较大活化能的反应在技术上很难实现。
但是,在等离子体中,物质由气态变为等离子态,富集了电子、离子、激发态原子、分子及自由基,它们是极活泼的反应性物种,许多难以进行的反应体系在等离子体条件下变得易于进行。
人们在化学合成、薄膜制备、表面处理和精细化学加工等领域,在原有工艺技术基础上,有效地引入等离子体,促进一系列革新和巨大的技术进步。
PECVD是借助于辉光放电等方法产生等离子体,使含有薄膜组成的气态物质发生化学反应,从而实现薄膜材料生长的一种新的制备技术。
通过反应气体放电,有效地利用了非平衡等离子体的反应特征,从根本上改变了反应体系的能量供给方式。
一般说来,采用PECVD技术制备薄膜材料时,薄膜的生长主要包含以下三个基本过程:首先,在非平衡等离子体中,电子与反应气体发生初级反应,使得反应气体发生分解,形成离子和活性基团的混合物;其中在等离子气相沉积中,潘宁效应起着非常重要的作用。
粒子沉积中通常通入保护性气体或反应气体,如氢、氮等。
多数沉积元素是金属或其它化合物。
受激亚稳态粒子m A与金属B粒子为不同类型的粒子,A的激发电位大于B的电离电位,碰撞后B由基态变为离子,这种过程叫潘宁效应,表示为:
m A + B ~ A+ B+ + e(3.22)
其二,各种活性基团向薄膜生长表面和管壁扩散输运,同时发生各反应物之间的次级反应;最后,到达生长表面的各种初级反应和次级反应产物被吸附并与表面发生反应,同时伴随有气相分子物的再放出。
PECVD能够使得反应气体在外界电磁场的激励下实现电离形成等离子体。
等离子体中电子经外电场加速后,其动能通常可达 10eV左右,甚至更高,足以破坏反应气体分子的化学键,因此,通过高能电子和反应气体分子的非弹性碰撞,就会使气体分子电离(离化)或者使其分解,产生中性原子和分子生成物。
正离子受到离子层加速电场的加速与上电极碰撞,放置衬底的下电极附近也存在有一较小的离子层电场,所以衬底也受到某种程度的离子轰击。
因而分解产生的中性物质依靠扩散到达管壁和衬底。
这些
粒子和基团在漂移和扩散的过程中,由于平均自由程很短,所以都会发生离子—分子反应和基团—分子反应等过程。
到达衬底并被吸附的化学活性物(主要是基团)的化学性质都很活泼,由它们之间的相互反应从而形成薄膜。
2、等离子体增强化学气相沉积的制备工艺
其工艺设备组成原理图为:
常用的平板电容式辉光放电试验装置示意见下图:
下图为辉光放电外观图:
低温热等离子体化学气相沉积法具有气相法的所有优点,工艺流程简单。
与普通气相法的区别在于,热等离子体作为加热源,温度远高于普通电阻加热或化学燃
烧火焰加热,可以合成一些低温下难以合成的材料,而且由于温度可能高于许多材料的气化点,反应原料除了采用普通气相法所采用的气态化合物或挥发性金属化合物外,还可以采用固体大颗粒料及液体料,大大扩展了气相法的适应范围,产物也更加丰富。
三、等离子体化学气相沉积技术的发展
尽管有许多优点,但仍存在不足,一是经济成本二是技术成熟度。
在技术上,等离子体增强化学气相沉积无论是反应装置还是工艺都有待改进和完善。
例如,常见的直流等离子体由于电极烧蚀会导致连续工作时间不长,而高频等离子体则热转化效刻氏,工作状态不十分稳定,还有高温反应炉的封接以及反应壁的结疤问题,都是未能良好解决的老问题。
再如,对于高频等离子体,反应原料的注入方式也是一个十分棘手的难题,轴向方式容易导致等离子体熄弧,而径向方式因受热不均或温度铡氏,使反应无法完全进行,等离子体的高温优点无法体现出来。
高熔点块状材料,特别是一些新型材料,在等离子体中的形成微观过程,也有待深入研究。
不过随着研究的深入,等离子体增强化学气相沉积技术必将不断发展和成熟。