小数的意义和读写

合集下载

小数的意义与读法和写法

小数的意义与读法和写法

小数的意义与读法和写法小数的意义与读法和写法小数作为数学中的一种数值表示形式,在我们的日常生活和工作中经常使用。

小数以小数点(英文句点)作为分隔符号,将整数部分和小数部分分开。

在小数的写法中,小数点的位置决定了小数的大小和取值范围,而小数的读法则是我们将小数转换为可理解的语言形式。

小数的意义小数的意义是将一个数值划分为更小的单位。

以整数为基础,小数表示了整数之间的无穷多个数值。

例如,整数1和2之间存在无穷多个数,而小数可以用来表示介于1和2之间的数,例如1.5。

小数在科学、工程、商业等领域中得到广泛应用,可以准确表示测量的精确度、比率、比例等概念。

小数的读法在中文中,我们通常使用“点”来表示小数点。

小数的读法按照整数部分和小数部分依次读出,但整数部分为零时可以省略读出。

例如,小数0.5的读法为“零点五”,1.25的读法为“一点二五”。

小数的读法还可以根据小数位数的不同进行加读。

例如,小数0.05可以加读为“零点零五”,0.007可以加读为“零点零零七”。

加读小数的好处是可以更加清楚地表达小数的精确度,避免误读。

在英文中,小数通常以“点”(point)作为小数点的标识符。

小数的读法则与中文类似,按照整数部分和小数部分依次读出。

例如,0.5的读法为“zero point five”,1.25的读法为“one point two five”。

小数的写法小数的写法需要特别注意小数点的位置。

小数点决定了小数的大小和取值范围。

小数点左边的位数表示整数部分的位数,小数点右边的位数表示小数部分的位数。

在写小数时,整数部分可以有一个或多个数字,小数部分可以有零个或多个数字。

整数部分为零时可以省略写出。

例如,0.5可以写为.5,1.25可以写为1.25。

小数部分的位数可以根据需要进行补零或截断。

补零是为了明确小数的位数,截断是为了将小数变为有限位数的数值。

补零时将额外的零添加到小数部分的末尾,截断时删除多余的小数位数。

小数的意义和读写教材分析

小数的意义和读写教材分析

小数的意义和读写教材分析小数的意义和读写教材分析引言:小数是数学中一种重要的数值表示方法,它具有一定的意义和应用价值。

对于学生来说,掌握小数的读写方法是数学学习的一个重要环节。

因此,本文将对小数的意义以及小数的读写教材进行分析和探讨。

一、小数的意义小数是表示整数和分数之间关系的一种特殊表示方法,它是数轴上数值的另一种形式。

小数可以表示无穷小到无穷大的数,是一种无限十进制数。

首先,小数可以表示精确的测量结果。

在实际生活中,我们经常会遇到一些无法精确表示的测量结果,例如体重、身高、温度等,这时候就需要使用小数来进行精确表示。

通过小数的表示,我们可以更加准确地记录和描述这些测量结果。

其次,小数在金融领域具有重要意义。

在货币运算中,小数被广泛应用。

例如在货币计算、利率计算、股票价格等方面,小数的应用非常普遍。

掌握小数的概念和运算方法对理解金融运作有着重要的意义。

此外,小数在科学计算中也发挥了重要作用。

在物理、化学、天文等领域的实验中,经常需要用小数来表示测量结果和数据分析。

二、小数的读写教材分析小数的读写教材是学生学习小数的重要教学工具。

它们在学生理解小数概念、掌握读写规则方面起着重要的作用。

下面对常见的小学数学教材进行分析和评价。

1. 小学数学教材中的小数读写教学在小学数学教材中,小数的读写教学通常从十分位开始,逐渐引入百分位、千分位等。

教材通常会以直观的图形和实际例子帮助学生理解小数的含义。

通过理论分析和实践操作,学生可以逐步掌握小数的读写方法。

在教学过程中,教师可以利用教学辅助工具,如数轴、分数格等,帮助学生理解小数。

同时,对于读写小数时的常见问题,教师也可以进行针对性的讲解和练习,帮助学生巩固知识。

2. 小学数学教材中小数读写教学的问题分析在实际的教学过程中,我们也发现小学数学教材中的小数读写教学存在一些问题。

首先,教材中的例题和练习题可能过于简单,难以适应不同学生的学习需要。

这会导致学生对小数的理解程度不够深入,掌握小数的读写方法不够熟练。

小数的意义和读写方法

小数的意义和读写方法

小数的意义和读写方法小数是数学中的一种数表示方法,用来表示介于整数之间的数值,是一种连续的分数表达方式。

小数由整数和小数点组成,小数点后的数称为小数部分,小数部分的位数可以是有限的,也可以是无限的。

一般情况下,小数是在分数中的分母取1的情况下转化而来的。

1.小数可以表示更精确的数值。

整数通常用于计算整数的数量或计数,而小数则用于表示更为精确的度量值,例如测量长度、体积、时间等物理量。

2.小数可以表示介于整数之间的值。

对于介于两个整数之间的数值,小数提供了更精确的表示方法。

3.小数可以表示无限循环小数。

无限循环小数是一类特殊的小数,它的小数部分永远不会结束,例如1/3=0.3333...。

无限循环小数在数学研究和实际计算中都具有重要的应用。

小数的读写方法:1.读整数部分。

首先读取小数点之前的数值,这部分数值表示整数部分。

例如,小数0.25中的整数部分为0。

2.读小数部分。

从小数点之后的数字开始读取,每个数字依次表示小数的位数。

例如,小数0.25中的小数部分为25,读作二十五3.读小数点。

当读取到小数点时,在读取整数部分之后,通常使用特殊的读法来表示小数部分的开始。

例如,小数0.25中的小数点读作点。

4.读整数和小数结合。

在读取整数和小数部分之后,结合二者的读法,可以得到完整的小数读法。

例如,小数0.25读作零点二五小数的写法:1.把小数点前的整数部分写出来。

2.用小数点"."将整数部分和小数部分分开。

3.将小数部分的数值写在小数点后面。

例如,小数0.25的写法为0.25小数的读写方法一般用于日常生活计算、科学研究和金融交易等领域。

小数的应用极为广泛,涉及到数学、物理、化学、工程等多个学科。

在现代社会中,小数的使用已经非常普遍,人们不仅需要掌握小数的意义和读写方法,还需要深入了解小数的性质和运算规则,以应用于实际问题的解决。

小数的意义读法和写法笔记

小数的意义读法和写法笔记

小数的意义读法和写法笔记小数的意义读法和写法笔记小数是数学中非常重要的一个概念,它是介于整数之间的数。

在日常生活中,我们经常遇到小数,比如表示金钱、温度、百分比、比例等等。

正确地读写小数对于数学运算和生活中的计算非常重要。

下面是关于小数的意义读法和写法的一些笔记。

一、小数的读法:小数的读法可以根据小数点的位置和数值大小来确定。

一般情况下,从小数点开始,先读小数点后面的数字,再读小数点前面的数字,最后加上“点”。

例如:1.5 读作“一点五”0.25 读作“零点二五”当小数点前是0时,通常认为0可以省略,直接读小数点后面的数字。

例如:0.01 读作“一百分之一”0.007 读作“七千分之一”当小数点前是整数时,可以将小数点看作“又”。

例如:3.14 读作“三又一四”13.5 读作“十三又五”当小数点前不是整数时,可以将小数点看作“有”。

例如:0.5 读作“有五”0.125 读作“有一百二十五”二、小数的写法:小数的写法要遵循一定的规则,下面是一些常见的小数写法规则:1. 小数点后只有一个位数时,可以在最后补零。

例如,0.5可以写作0.50。

2. 小数大于等于1时,不需要在整数部分前面加上零。

例如,1.5可以写作1.5,而不是01.5。

3. 如果有多个连续的零出现在小数点后面,可以简化写法。

例如,0.0001可以写作0.1×10^-4。

4. 如果小数有循环节,可以将循环部分用括号括起来。

例如,1/3可以写作0.3333...,或者用括号表示为0.(3)。

5. 如果小数是一个无限不循环小数,可以使用省略号表示。

例如,根号2可以近似表示为1.4142135...,或者简化写作1.41。

三、小数的意义:小数在日常生活和数学运算中具有重要的意义:1. 表示精度:小数可以表示相比于整数更精确的数值。

例如,温度的小数表示可以更准确地描述实际的温度变化。

2. 比较大小:小数可以用来比较大小,帮助我们理解数值大小的差异。

小数的意义和读写法

小数的意义和读写法

小数的意义和读写法小数,是数学中一个十分重要的概念,也是我们日常生活中经常会接触到的一种数,小数可以表示一些无法用整数来表达的量,例如1/2、1/3、1/4等等。

对于小数的定义、意义及如何读写,我们需要进行深入的学习和了解。

一、小数的定义和含义小数是指在数字后面加上一个小数点,然后在小数点后面依次表示出以下三部分的数,分别是:分数部分、小数点和小数部分。

例如,5.68就是一个小数,其中5是分数部分,小数点是小数点,0.68是小数部分。

小数的含义可以解释为一个整数和一个分数的和,这个和可以表示成分数的形式,这个分数的分母是10的幂次方,因此我们可以把小数的含义理解为:将一个数以10、100、1000等倍数的因素作为分母,表达成分数形式。

例如,小数0.12可以理解为12/100,0.05可以理解为5/100,以此类推。

二、小数的读写法小数的读写法就是指如何快速准确地读出和写下一个小数的数值。

我们可以按照以下方法来读写小数:1.先读出整数部分:例如,数值为5.68,就先读5。

2.接着读出小数点:“点”。

3.将小数部分的每个数字分别读出来,小数部分的读法与整数部分的读法相同,例如0.68读作“六十八”。

4.最后,将整数部分和小数部分的读法拼接起来,读出整个小数的数值。

以上是小数的读写方法,需要多加练习和了解,才能熟练掌握。

三、小数的四则运算小数可以进行加、减、乘、除等运算,其计算规则与整数运算类似,需要注意小数点的位置和位数的对齐。

1.加法:先把小数点对齐,然后直接将对应位数上的数字相加即可。

例如,计算0.25+0.63,可以将小数点对齐,然后得到0.88。

2.减法:先把小数点对齐,然后直接将对应位数上的数字相减即可。

例如,计算0.75-0.23,可以将小数点对齐,然后得到0.52。

3.乘法:先将两个小数的小数位数相加,然后对齐小数点,最后将对应位数上的数字相乘即可。

例如,计算0.25×0.63,先将小数位数相加得到2位,然后小数点对齐后得到0.1575。

小数的意义和读写方法

小数的意义和读写方法

小数的意义和读写方法小数是数学中的一个概念,用来表示在整数之间的数值。

1.表示精确的测量:小数可以提供更加精确的测量结果。

例如,当我们需要测量一个长度为1.5米的物体时,使用小数可以给出比整数更为准确的结果。

这在科学、工程和经济等领域非常重要。

2.表示分数:小数可以作为分数的替代形式。

例如,0.5可以表示1/2,0.25可以表示1/4、这使得小数在处理分数运算时非常方便。

3.表示比率和百分比:小数可以用于表示比率和百分比。

例如,0.75表示75%,0.1表示10%。

这在统计学和商业领域中非常常见。

小数的读写方法:1.读小数:小数的读法可以根据十进制的位置原则来进行。

例如,0.2可以读作“零点二”或者“二分之一”,0.125可以读作“零点一二五”或者“一百二十五分之一”。

小数的四则运算:小数的四则运算与整数的四则运算类似,主要包括加法、减法、乘法和除法。

1.加法:将两个小数的小数部分对齐,然后按位相加。

若有进位,则将进位加到相邻的较高位上。

2.减法:将两个小数的小数部分对齐,然后按位相减。

若需要借位,则向相邻的较高位借位。

3.乘法:将两个小数的小数部分忽略,将两个小数的整数部分进行乘法运算,然后根据原小数的位数规律,确定结果的小数位数。

4.除法:将两个小数的小数部分忽略,将两个小数的整数部分进行除法运算,然后根据原小数的位数规律,确定结果的小数位数。

需要注意的是,小数的精度可能会因为计算机的存储限制而产生误差。

如果需要更高的精度,可以使用特殊的数值类型或进行特殊的运算处理。

总结:小数在数学中扮演着重要的角色,它可以用来表示精确的测量、分数、比率和百分比。

我们可以通过读写小数和进行四则运算来处理小数。

为了获得更高的精度,可以采用特殊的数值类型或进行特殊的运算处理。

小数的意义和读写评课优缺点

小数的意义和读写评课优缺点小数在数学中是一个很重要的概念,它代表了一个数在整数和分数之间的位置。

小数不仅在数学领域有意义,在日常生活中也有广泛的应用。

在本文中,我将探讨小数的意义,以及学生通过读写评课来学习小数的优缺点。

首先,小数的意义在于它能够表示介于整数之间的值。

当我们遇到不能精确表示为整数的数量时,小数提供了一种更准确的方式来表示它们。

例如,当我们测量一段距离时,如果得到的长度不完全是整数,我们可以使用小数来表示它。

小数可以提供更精确的测量结果,使我们能够更好地理解和比较不同长度之间的差异。

其次,小数在比较和排序中有着重要的作用。

考虑一组数字,如果我们只使用整数进行比较,我们可能无法准确地判断它们之间的大小关系。

但是通过使用小数,我们可以更准确地确定数字的相对大小。

这对于解决实际问题,如比较价格、比较温度等非常有帮助。

小数使我们能够进行更精确的计算,并在实际生活中做出更准确的决策。

小数的读写评课是一种常用的教学方法,用于帮助学生理解和掌握小数的概念和运算。

读写评课要求学生在口头和书面上使用小数,并结合实际问题进行解决。

通过这种方法,学生可以直接与小数进行互动,从而更好地理解小数的意义和应用。

读写评课有一些明显的优点。

首先,它使学生能够将抽象的数学概念与实际生活中的情境相联系。

例如,通过在购物中使用小数,学生可以学习如何计算价格、找零等实用技能。

这种实际应用的好处是学生更容易将所学内容与实际情境相联系,从而更深入地理解小数。

其次,读写评课能够促进学生的沟通和表达能力。

通过口头和书面上的交流,学生不仅可以更好地理解小数的概念,还可以提高他们的口头和书面表达能力。

这对于学生发展全面的语言能力非常重要。

此外,读写评课还可以培养学生的解决问题的能力。

当学生以读写评课的形式解决小数相关的问题时,他们需要运用各种数学技巧和策略。

这可以帮助他们培养出一种思维方式,即面对问题时能够分析、推理和解决。

虽然读写评课有很多优点,但也存在一些缺点。

小数的意义和读写法笔记

小数的意义和读写法笔记小数的意义和读写方法笔记一、小数的意义小数是数学中的重要概念之一,它是介于整数之间的数。

小数在现实生活中应用广泛,具有重要的意义。

1. 表示精确的测量结果:许多测量结果无法被表示为整数,比如长度、体积和质量等。

通过使用小数,可以更精确地表示这些测量结果,提高测量的准确性。

2. 表示分数:小数是分数的一种表示形式,可以将一个分数转化为小数,使之更易于理解和计算。

比如,将分数2/3转化为小数形式为0.6666...,更直观地表示了其数量大小。

3. 表示比率和百分比:比率和百分比也可以表示为小数形式,比如将比率1:2表示为0.5,将百分比75%表示为0.75。

小数形式更直观地显示了比率和百分比的大小。

4. 进行基本的数学运算:小数可以进行加、减、乘、除等基本的数学运算。

比如,可以用小数表示的三个数相加,得到他们的总和。

5. 应用于金融和经济领域:小数在金融和经济领域中广泛应用,比如股票市场的价格变动、利率的计算以及货币兑换等,都需要使用小数进行计算和表示。

二、小数的读写法小数的读写法是在学习和应用小数时必须掌握的重要知识。

下面是关于小数的读写法的笔记:1. 整数部分和小数部分:小数由整数部分和小数部分组成。

整数部分表示数的整数部分,小数部分表示数的小数部分。

2. 读整数部分:将整数部分的每一位数按照普通的读法读出来,比如读整数部分215为"两百一十五"。

3. 读小数部分整数位:小数部分的整数位和整数的读法一致,比如读0.25为"零点二五"。

4. 读小数部分小数位:小数部分的小数位按照数值读出来,并在末尾加上相应的单位,常用的单位有分、厘、毫等。

比如读0.125为"零点一二五厘"。

5. 写小数:小数的写法是将整数部分和小数部分用小数点连接起来。

比如写出将整数2和小数部分0.375连接起来的小数为2.375。

6. 小数的进位和退位:小数也可以进行进位和退位的运算。

小数的意义和读写的评课

小数的意义和读写的评课小数是数学中一个重要的概念,它在日常生活和工作中也有着广泛的应用。

小数的意义和读写是数学学习中的关键知识点,对于学生的数学能力和应用能力的提高有着重要的影响。

本文将从小数的意义和读写的重要性、教学策略和评价方法三个方面对小数的意义和读写进行评课。

一、小数的意义和读写的重要性小数是指大小在1和0之间的数字,它可以用于表示不是整数的数目或数字的一部分。

小数可以帮助我们更准确地描述和测量事物的大小,提高数学的精确性和工作的效率。

小数的读写能力是学生数学学习的基础,它对于数学思维和解决实际问题具有重要意义。

学生在学习中掌握小数的读写技能后,能够更好地理解和应用数学知识,提高数学推理和问题解决能力。

此外,小数的读写还对学生的计算能力和应用能力的提高有着重要的影响。

二、教学策略在教学中,教师应采取多种策略帮助学生理解和掌握小数的意义和读写。

首先,教师可以通过直观的实物或图形帮助学生理解小数的意义。

例如,可以用一块巧克力来表示整数1,然后将巧克力分成十个小块,每个小块的大小即为0.1,用这样的例子来说明小数是大于0但小于1的数。

其次,教师可以引导学生进行实际操作和探索,通过测量、比较和计算等活动来让学生亲身体验小数的意义和读写。

例如,教师可以让学生测量一段线段的长度,然后将其转化为小数进行表示,让学生体会小数的精确性和应用价值。

第三,教师可以采用分组合作学习的方式,让学生在合作中互相学习和借鉴,共同解决小数的读写问题。

通过让每个小组的学生分别扮演“教师”和“学生”的角色,互相授课和评价,促进学生之间的互动和思维碰撞。

三、评价方法在评价学生的小数意义和读写能力时,教师可以采用多元化的评价方法。

首先,教师可以通过课堂观察和口头提问来评价学生的理解和掌握程度。

例如,教师可以提问学生在某个小数中哪一位是百分位、或将某个小数写成百分数等问题,以此来检查学生对小数的理解和记忆。

其次,教师可以设计一些小数运算和问题解决题目来评价学生的应用能力。

小数的意义与读写评课稿

小数的意义与读写评课稿小数的意义与读写评课稿一、小数的意义小数是数学中的基本概念之一,它是介于两个整数之间的数。

小数的意义体现了一种精确度的概念,能够表示非整数的数值,能够帮助我们更精确地理解和描述事物的属性和关系。

1. 表示精确的量小数的意义在于能够精确地表示连续变化的量。

比如时间、温度、长度等,这些都是无法用整数来精确表示的,只有借助小数,我们才能更准确地表达出来。

例如,用整数表示温度只能是离散的数值,而使用小数,则可以将其细化为更加精确的数值,如10.5℃、23.7℃等。

2. 表示比率和百分比小数的意义还体现在表示比率和百分比上。

比如,我们常用小数表示各种比率,如利率、增长率、损失率等,它们能够直观地反映出数量之间的关系。

同时,小数还可以转化为百分比形式,便于对比和理解。

例如,0.75可以表示为百分数为75%,这样更能够让人快速理解和处理数据。

二、小数的读写技巧小数的读写是数学学习中的重要内容,正确的读写小数能够帮助我们更好地理解和应用它们。

1. 读写小数的整数部分在读写小数时,首先要读写整数部分。

例如,0.75可以读为零点七五、零又七十五百分之一、零又百分之七十五等。

写小数时,整数部分直接写数字即可,不需要特殊标记。

2. 读写小数点小数点是小数的标志符号,读写时需要注重标点的正确使用。

例如,0.75可以读为零点七五。

写小数时,小数点使用一个点号“.”来表示,不使用逗号“,”或其他符号。

3. 读写小数的小数部分小数的小数部分读的时候可以将小数点读作“点”,然后直接读数字即可。

例如,0.75可以读为零点七五。

在写小数时,需要将小数部分的数字依次写入,没有规定小数部分有多少位数。

需要注意的是,整数部分为0时,可以在小数点前写个零,如0.75可以写成0.75。

三、读写评课稿的要点1. 读课稿的注意事项首先,要保持流畅、准确的语音和语速,读稿时要注意语调的抑扬顿挫,避免过于平淡和单调。

其次,要注重停顿和节奏感,避免长句不分段、短句不停顿的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.应用感受,巩固意义
幼儿身高8分米
分数:( 小数:(
)米 )米
桌子高85厘米
( )米 ( )米
小蚂蚁身长4毫米
( )米 ( )米
三、巩固意义,体会计数单位和进率
(一)应用感受,巩固意义
幼儿身高8分米 分数:( 8 )米
10 小数:( 0.8 )米
桌子高85厘米 ( 85)米 100
( 0.85 )米
三、小结
小数类别 意义表示
分数表示 小数位数 计数单位
把1m平均分成 一位小数 10份,表示其中
可以用分母是 10的分数表示 有一位小数
的一份或几份
两位小数 把1m平均分成100可以用分母是 份,表示其中的一100的分数表示 有两位小数 份或几份
把1m平均分成 三位小数1000份,表示其
可以用分母是 1000的分数表 有三位小数
一、揭示课题
问题:1. 对于小精灵提出的问题,你有什么想法吗? 2. 生活中,你见过哪些地方用到小数?
小结:在生活中。人们进行测量和计算时,往往不能正好得到整数的 结果,为了适应生产和生活的需要,经过长期实践,人们就发现和运 用了小数。
二、探究新知
3份有就3是个3分米米 把1m平均分成10份。
==
小蚂蚁身长4毫米
( 4 )米 1000
( 0.004 )米
五、布置作业
作业:第36页练习九,第1题、第2题。
中的一份或几份 示
十分之一 百分之一 千分之一
返回
四、拓展延伸
四、拓展延伸
3.哪两只袜子是一双?用线连一连。
四、拓展延伸
4.涂色表示下面各小数。
0.6
1.7
四、拓展延伸 5
四、拓展延伸
6.对口令游戏
要求:一方说分母是10、100、 1000……的分数,另一方要求说出对 应的小数。
四、拓展延伸
m 0.01m
( )m (0.04)m
分母是100的分 数可以用两位小 数来表示。 ( )m
(0.08)m
返回
二、探究新知
(二)辨析理解两位小数的改写
巩固练习:
32 分数: 100 小数: 0.32
二、探究新知
把1m平均分成1000份。
分母是1000的分 数可以用三位小数
6mm有6个 米 来表示。
==(0.3)m
分母是10的分数可 以用一位小数来表 ( 7 示)。dm
( )m ( 0.7)m
返回
二、探究新知
(一)初步探究一位小数的改写
巩固练习:
6
7
分数:
10
10
小数:
0.6
0.7
二、探究新知
把1m平均分成100份。 4cm有4个 米
= = =
二、探究新知
(二)认识小数的计数单位和进率

亿
千 万
百 万
十 万




一 ( 个 )
.
十百千
分 之
分 之
分 之

一一一
问题:1. 我们在学习整数的过程中,认识了哪些计数单位? 它们之间有什么关系?
2. 1个一是10个( );1个十分之一是10个( ); 1个百分之一是10个( );……
小结:小数的计数单位是十分之一、百分之一、千分之一…… 分别写作0.1、0.01、0.001…… 每相邻两个计数单位之间的进率是10。
28.00元
0.9元
0.35元
谁能来说一说每 个商品的标价表 示的是几元几角 几分?
1m=( )dm 1dm=( )cm 1cm=( )mm 1m=( )cm 1m=( )mm
1m=(10)dm 1dm=(10)cm 1cm=(10)mm 1m=(100)cm 1m=(1000)mm
一、揭示课题
m(
)m ( )m
= =
0.001m (0.006)m (0.013 )m
返回
二、探究新知
想一想
1.我们可以用一位小数表示十分之几;用两位小 数表示百分之几;用三位小数表示千分之一,那 大家想一想,四位小数表示什么?五位小数呢?
2.分数中,十分之几的计数单位是十分之一,百 分之几的计数单位是百分之一,那小数的计数单 位分别是什么呢?
相关文档
最新文档