实验25铁磁材料的磁滞回线和基本磁化曲线

合集下载

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线

-1- 铁磁材料的磁滞回线和基本磁化曲线在各类磁介质中应用最广泛的是铁磁物质。

在20世纪初期铁磁材料主要用在电机制造业和通讯器件中如发电机、变压器和电表磁头而自20世纪50年代以来随着电子计算机和信息科学的发展应用铁磁材料进行信息的存储和纪录例如现以成为家喻户晓的磁带、磁盘不仅可存储数字信息也可以存储随时间变化的信息不仅可用作计算机的存储器而且可用于录音和录像已发展成为引人注目的系列新技术预计新的应用还将不断得到发展。

因此对铁磁材料性能的研究无论在理论上或实用上都有很重要的意义。

磁滞回线和基本磁化曲线反映了铁磁材料磁特性的主要特征。

本实验仪用交流电对铁磁材料样品进行磁化测绘的B-H曲线称为动态磁滞回线。

测量铁磁材料动态磁滞回线的方法很多用示波器测绘动态磁滞回线具有直观、方便、迅速及能在不同磁化状态下交变磁化及脉冲磁化等进行观察和测绘的独特优点。

一、实验目的1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。

2掌握铁磁材料磁滞回线的概念。

3掌握测绘动态磁滞回线的原理和方法。

4测定样品的基本磁化曲线作μH曲线。

5测定样品的HC、Br、Hm和Bm等参数。

6测绘样品的磁滞回线估算其磁滞损耗。

二、实验原理1铁磁材料的磁滞特性铁磁物质是一种性能特异用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。

其特性之一是在外磁场作用下能被强烈磁化故磁导率μB/H很高。

另一特征是磁滞铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B之间关系的特性。

即磁场作用停止后铁磁物质仍保留磁化状态图1为铁磁物质的磁感应强度B与磁场强度H之间的关系曲线。

将一块未被磁化的铁磁材料放在磁场中进行磁化图中的原点O表示磁化之前铁磁物质处于磁中性状态即BHO当磁场强度H从零开始增加时磁感应强度B随之从零缓慢上升如曲线oa 所示继之B随H迅速增长如曲线ab所示其后B的增长又趋缓慢并当H增至HS时B达到饱和值BS这个过程的oabS曲线称为起始磁化曲线。

铁磁材料的滞回线和基本磁化曲线实验报告

铁磁材料的滞回线和基本磁化曲线实验报告

南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:铁磁材料的磁滞回线和基本磁化曲线学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、掌握用磁滞回线测试仪测绘磁滞回线的方法。

2、了解铁磁材料的磁化规律,用示波器法观察磁滞回线比较两种典型铁磁物质的动态磁化特性。

3、测定样品的磁化特性曲线(B-H曲线),并作μ-H曲线。

4、测绘样品在给定条件下的磁滞回线,估算其磁滞损耗以及相关、、、、的等参量。

二、实验仪器:TH—MHC型智能磁滞回线测试仪、示波器。

三、实验原理:1.铁磁材料的磁滞特性铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特性是在外磁场作用下能被强烈磁化,即磁导率μ很高。

另一特征是磁滞,铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B之间关系的特性。

即磁场作用停止后,铁磁物质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁场强度H之间的关系曲线。

图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场强度H从零开始增加时,磁感应强度B随之从零缓慢上升,如曲线Oa,继之B随H迅速增长,如曲线ab所示,其后B的增长又趋缓慢,并当H增至H S时,B达到饱和值B S这个过程的OabS曲线称为起始磁化曲线。

如果在达到饱和状态之后使磁场强度H减小,这时磁感应强度B的值也要减小。

图1表明,当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,对应的B值比原先的值大,说明铁磁材料的磁化过程是不可逆的过程。

比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这种现象称为磁滞。

磁滞的明显特征是当H=O时,磁感应强度B 值并不等于0,而是保留一定大小的剩磁Br。

当磁场反向从0逐渐变至-H D,磁感应强度B消失,说明要消除剩磁,可以施加反向磁场。

铁磁材料的滞回线和基本磁化曲线实验报告

铁磁材料的滞回线和基本磁化曲线实验报告

南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:铁磁材料的磁滞回线和基本磁化曲线学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、掌握用磁滞回线测试仪测绘磁滞回线的方法。

2、了解铁磁材料的磁化规律,用示波器法观察磁滞回线比较两种典型铁磁物质的动态磁化特性。

3、测定样品的磁化特性曲线(B-H曲线),并作μ-H曲线。

4、测绘样品在给定条件下的磁滞回线,估算其磁滞损耗以及相关H C、B R、B M、H、B的等参量。

二、实验仪器:TH—MHC型智能磁滞回线测试仪、示波器。

三、实验原理:1.铁磁材料的磁滞特性铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特性是在外磁场作用下能被强烈磁化,即磁导率μ很高。

另一特征是磁滞,铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B之间关系的特性。

即磁场作用停止后,铁磁物质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁场强度H之间的关系曲线。

图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场强度H从零开始增加时,磁感应强度B随之从零缓慢上升,如曲线Oa,继之B随H迅速增长,如曲线ab所示,其后B的增长又趋缓慢,并当H增至H S时,B达到饱和值B S这个过程的OabS曲线称为起始磁化曲线。

如果在达到饱和状态之后使磁场强度H减小,这时磁感应强度B的值也要减小。

图1表明,当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,对应的B值比原先的值大,说明铁磁材料的磁化过程是不可逆的过程。

比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这种现象称为磁滞。

磁滞的明显特征是当H=O时,磁感应强度B值并不等于0,而是保留一定大小的剩磁Br。

当磁场反向从0逐渐变至-H D,磁感应强度B消失,说明要消除剩磁,可以施加反向磁场。

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线
样品退磁。 观察磁滞回线。令U2.2V,调节示波器,出
现磁滞回线。
操作指南(续1)
观察基本磁化曲线。对样品进行退磁,从 U=0开始提高励磁电压,将在显示屏上得到 面积由小到大的一族磁滞回线。这些磁滞回 线的顶点就是样品的基本磁化曲线,长余辉 示波器,便可观察到该曲线的轨迹 。
观察比较样品1和2的磁化性能。 测绘曲线。接通实验仪和测试仪之间的连线。
基本磁化曲线。磁滞回线顶点的连线为铁
磁材料的基本磁化曲线,磁导率。
B
H
3,实验仪器
数码照片 磁滞回线实验组合分为实验仪和测试仪两大部
分。
4,操作指南
电路连接。选样品1按实验仪上所给的电路图 连接线路,令 R1 2.5,“U选择” 置于0 位。U 1 和 U 2 分别接示波器的“X输入”和 “Y输入”。
铁磁材料的磁滞回线 和基本磁化曲线
1,简介
铁磁材料(镍、钴、铁及其合金)在电力、通 讯等领域有着十分广泛的应用。磁滞回线磁滞 回线反映磁性材料在外磁场中的磁化特性。
2,实验原理
铁磁物质。在外磁场作用下,能被强烈磁化,磁导率很 高。磁场作用停止后,仍保持磁化状态,即磁滞。
磁化曲线。O点为磁中性状态,即BH0,当磁场H
结语谢谢大家!来自从0开始增加时,B随之缓慢上升,并当H到 H s 时,B达
到饱和值 B s ,到此为磁化曲线。当H减小到0时,B不
为0,而保留剩磁 B r 。 当磁场反向从0逐渐变为时,B消失,即要消除剩磁,必 须加反向磁场。H c 为矫顽力,反映保持剩磁状态的能力。
磁化曲线和磁滞回线
实验原理(续)
磁滞回线。当铁磁材料处于交变磁场中, 将沿磁滞回线反复运动,在此过程中要消 耗额外的能量,并以热的形式释放,为磁 滞损耗。可以证明,磁滞损耗与磁滞回线 所围面积成正比。

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线【实验目的】1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2. 测定样品的基本磁化曲线,作μ-H 曲线。

3. 测定样品的H D、B r、B S 和(H m·B m)等参数。

4. 测绘样品的磁滞回线,估算其磁滞损耗。

【实验仪器】DH4516 型磁滞回线实验仪,数字万用表,示波器。

【实验原理】铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段o a 所示,继之B随H迅速增长,如a b 所示,其后B的增长又趋缓慢,并当H增至H S 时,B 到达饱和值B S,oabs 称为起始磁化曲线。

图1表明,当磁场从H S 逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线S R 下降,比较线段O S 和S R 可知,H 减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=O 时,B不为零,而保留剩磁B r。

当磁场反向从O逐渐变至-H D 时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段R D 称为退磁曲线。

图1还表明,当磁场按H S→O→H D→-H S→O→H D´→H S 次序变化,相应的磁感应强度B则沿闭合曲线SRDS' R'D'S 变化,这闭合曲线称为磁滞回线。

所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。

实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。

以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。

如右上图中a ,称为起始磁化曲线。

当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。

当H=0时,B=B r 称为保留剩磁。

当B=0时,H=-H c ,H c 称为矫顽力。

当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。

若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。

磁滞回线的顶点的连线称为基本磁化曲线(右下图)。

实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3.0V ,测量铁磁质的磁滞回线;3、将电压从0.5V 逐渐调至3.0V ,依次得到B m 、H m ,从而得到铁磁质的基本磁化曲线。

实验数据: B表一:磁滞回线数据表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=0.604T;H m=194.0A/m;B r=0.183T;H c=37.3A/m。

基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。

物理实验报告 铁磁材料的磁滞回线和基本磁化曲线

物理实验报告 铁磁材料的磁滞回线和基本磁化曲线

物理实验报告铁磁材料的磁滞回线和基本磁化曲线一、实验原理铁磁材料在磁场的作用下会发生磁化现象,而磁化程度随着磁场强度的变化而发生变化。

在一定的磁场范围内,铁磁材料的磁化程度与磁场的强度之间存在着一种函数关系,成为基本磁化曲线。

而铁磁材料在外磁场作用下,它的磁化状态会发生变化,在磁场强度逐渐增大时,磁矩也逐渐变大,这种变化的过程称为磁滞回线。

本实验旨在通过使用霍尔效应仪器和实验方法,实现对铁磁材料磁滞回线和基本磁化曲线的测定,探讨磁滞回线和基本磁化曲线之间的关系,并对实验结果进行分析和讨论。

二、实验装置实验仪器主要包括霍尔效应电路、锁相放大器、磁力计、线圈等实验器材。

三、实验步骤1、首先将磁力计放置在霍尔效应电路的输出端,然后将电路连接好。

2、在运行实验之前,需要先将霍尔效应电路进行调零操作,以保证实验的精度。

3、在调零之后,需要将待测物品即铁磁材料放置在磁力计的测量端。

4、接下来,可以利用锁相放大器对磁力计的输出信号进行检测,并进行相应的数据采集和处理。

5、在不同磁场强度下,可以对待测物品的磁化状态进行测量和记录,并记录相应的数据。

6、最终,可以将所得数据绘制成磁滞回线和基本磁化曲线图形,并对实验结果进行分析和讨论。

四、实验结果通过对铁磁材料的实验测量和数据处理,可以得到所得到的磁滞回线和基本磁化曲线图形如下:[图1] 铁磁材料的磁滞回线根据实验结果可知,铁磁材料的磁滞回线和基本磁化曲线之间存在着一定的关系,当外磁场逐渐增大时,铁磁材料的磁矩也逐渐增大,并随着磁场的逐渐增大而逐渐达到饱和状态。

当外磁场逐渐减小时,铁磁材料的磁矩也逐渐减小,并在磁场降低到一定程度时达到磁剩余状态。

五、实验分析此外,铁磁材料的基本磁化曲线也具有一定的特点,即其呈现S形曲线,表明在一定的磁场强度范围内,铁磁材料的磁化程度与磁场强度之间呈现一定的正比关系,但随着磁场强度的逐渐增大,铁磁材料的磁化程度将达到饱和状态,磁化度不再增大。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告实验的第一部分,我们得先明确铁磁材料的基本概念。

铁磁材料能在外磁场作用下,形成稳定的磁性。

你知道吗?这就是为什么铁钉能吸引铁屑的原因。

实验中,我们使用的是一种常见的铁磁材料,像铁氧体或硅钢片。

通过施加不同强度的外磁场,材料的磁性会发生变化,最终形成一条独特的曲线。

这个过程就像一场舞蹈,材料在外部刺激下,展现出它的“个性”。

接着,进入到实验的具体步骤。

首先,我们把样品放入测试装置。

然后,逐步增加外部磁场的强度。

随着外场强度的增强,材料的磁性逐渐增强,形成了磁化过程。

到了某个临界点,磁性不再增强,似乎是遇到了瓶颈。

这时,咱们要测量一下,记录下这个“转折点”的磁场强度,心里别提多兴奋了!而在反向施加外磁场时,情况就变得有趣了。

磁性逐渐减弱,然后出现了滞后现象。

这种滞后特性,就是所谓的磁滞回线。

我们会发现,这条回线与之前的磁化曲线形成了一个闭合的环。

这种现象不仅让我们看到了材料的记忆效应,更让我们感受到材料的复杂性和奇妙之处。

然后,再深入一些,咱们得讨论一些专业术语。

磁滞损耗,这个名词听起来有点复杂,其实它指的就是在磁场变化过程中,材料吸收的能量损失。

很直观地说,就是材料在不断变化的磁场中,有些能量会“跑掉”。

这就像我们在熬夜时,虽说努力学习,但总有点效率低下,没能全部吸收知识。

接下来的部分,咱们需要把数据整理出来。

将不同强度下的磁感应强度和外磁场强度绘制成图,最终得出一个清晰的磁滞回线。

你看,这就像画一幅画,每一笔每一划都很重要。

这幅图不仅让人一目了然,更是研究磁性材料的重要依据。

然后,咱们再来聊聊应用。

磁滞回线不仅在科学研究中有用,实际上在很多工业应用中也能见到它的身影。

比如说,变压器和电动机的设计,就需要充分考虑到这种特性。

好的设计能够减少能量损失,提高效率,真是一举两得。

最后,咱们总结一下。

这次实验不仅让我们深入了解了铁磁材料的行为,更重要的是,让我们体会到了实验的乐趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二十五 铁磁材料的磁滞回线和基本磁化曲线
一、实验目的
1. 认识铁磁物质的磁化规律和动态磁化特性。

2. 测定样品的基本磁化曲线,作μ-H 曲线。

二、实验原理
铁磁物质是一种性能特异、用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁物质仍保留磁化状态。

图25-1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。

图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示。

继之B 随H 迅速增长,如ab 所示。

其后B 的增长又趋缓慢。

并当H 增至H S 时,B 到达饱和值B S 。

oabs 称为起始磁化曲线。

图25-1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条曲线SR 下降。

比较线段OS 和SR 可知,H 减小时B 也相应减小,但B 的变化滞后于H 的变化,这现象称为磁滞。

磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。

当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场。

H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。

图25-1还表明,当磁场按H S →
O →-H D →-H S →O →
H D ´→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S SRD 'S D R ''变化,这闭合曲线称为磁滞回线。

所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。

在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

应该说明,当初始态为H =B =O 的铁磁材料,在交变磁场强度由弱到强依次进行磁化,可以得到面积由小到大向外扩张的一簇磁滞回线,如图25-2所示。

这些磁滞回线顶点的连
线称为铁磁材料的基本磁化曲线。

由此曲线可近似确定其磁导率H
B
μ=。

因B 与H 的关系为非线性,故铁磁材料的μ不是常数,而是随H 而变化(如图25-3所示)。

铁磁材料的相对磁导率可高达数千乃至数万,这一特点是它用途广泛的主要原因之一。

磁化曲线和磁滞回线是对铁磁材料进行分类和选用的主要依据。

图25-4为常见的两种典型的磁滞回线。

其中软磁材料的磁滞回线狭长,矫顽力、剩磁和磁滞损耗均较小,是制造变压器、电机、和交流磁铁的主要材料。

而硬磁材料的磁滞回线较宽,矫顽力大,剩磁强,可用来制造永磁体。

图 25-3 铁磁材料µ与H 并系曲线 图 25-4 不同铁磁材料的磁滞回线
观察和测量磁滞回线和基本磁化曲线的线路如图25-5所示。

25-5 实验线路
被测样品为EI 型矽钢片,N 为励磁绕组,n 为用来测量磁感应强度B 而设置的绕组。

R 1为励磁电流取样电阻。

设通过N 的交流励磁电流为i ,根据安培环路定律,样品的磁化场强为 H=In/L , L 为样品的平均磁路。

1
1R U i =
11U LR N
H ∙=
∴=1
1U K ,(1
1LR N K = ) 式中的N 、L 、R 1均为已知常数,所以由U 1可确定H 。

在交变磁场下,样品的磁感应强度瞬时值B 是由测量绕组n 和22C R 电路给定的,根据法拉第电磁感应定律,由于样品中的磁通φ的变化,在测量线圈中产生的感生电动势的大小为:
dt d n
e ϕ= edt n ⎰=∴1ϕ edt nS
S B ⎰==1
ϕ,S 为样品的截面积
如果忽略自感电动势和电路损耗,则回路方程为222R i e u +=,式中2i 为感生电流,
2u 为积分电容C 2两端电压。

设在Δt 时间内,i 2向电容2C 的充电电量为Q ,则
2
2C Q U =
2
22C Q
R i e +
=∴ 如果选取足够大的R 2和C 2,使22R i >>
2
C Q ,则22R i e =
dt du C dt dq
i 222==
dt
du R C e 222=∴ ∴ 222U S n R C B =
=22U K ,(nS
R
C K 222= ) 上式中C 2、R 2、n 和S 均为已知常数。

所以由U 2可确定B 。

综上所述,将图25-5中的u 1和u 2分别加到示波器的“X 输入”和“Y 输入”便可观察样品的B -H 曲线。

三、实验内容
1. 实验线路:采用HE-18实验箱“磁滞回线的观测”线路。

由于H=K 1U 1,B=K 2U 2,故U 1、U 2的值即反映了H 、B 的大小。

将“降压选择”旋钮置于0位。

U 1和U 2分别接示波器的的“X 输入”和“Y 输入”,插孔⊥为公共端。

2. 样品退磁:开启降压变压器电源,对试样进行退磁,即转动“降压选择”旋钮,令U 从0增至3V ,然后再从3V 降为O ,其目的是消除剩磁,确保样品处于磁中性状态,即B =H =0,如图25-6所示。

3. 观察磁滞回线:开启示波器电源,令光点位于坐标网格中心,令U =2.2V ,并分别调节示波器x 和y 轴的灵敏度,使显示屏上出现图形大小合适的磁滞回线。

若图形顶部 出现如图25-7所示的小环,这时可降低励磁电压U 予以消除。

4. 观测基本磁化曲线。

按步骤2对样品进行退磁后,从U =0开始,逐档提高励磁电压,将在显示屏上得到面积由小到大一个套一个的一簇磁滞回线。

这些磁滞回线顶点的连线就是样品的基本磁化曲线。

借助示波器读出每一个磁滞回线两个顶点处的U 1、U 2值,记于下表中。

图25-6 退磁示意图
图25-7 U2和B 的相位差等
因素引起的畸变
四、实验报告
1. 根据实验数据,描绘基本磁化曲线,纵坐标为B (即K 2U 2),横坐标为H (即K 1U 1)。

2. 描绘μ-H 曲线,纵坐标为μ=)(1231231122K K K U U K U K U
K H B ===,横坐标H (即K 1U 1)。

以上K 1~K 3均为确定的常数,可纳入坐标尺的比例中,从而可直接用U 1、U 2、U 2/U 1来
作图,即可定性地表现出基本磁化曲线和μ-H 曲线。

相关文档
最新文档