10界面现象2全解

合集下载

最新物理化学10-2界面现象ppt精品课件

最新物理化学10-2界面现象ppt精品课件

θ
Va Vma
再联系(10.3.3)式 可得:
bp V a θ 1 b p Vma
10.3.4
第十四页,共22页。
因此,朗缪尔吸附等温式还可写成以下形式:
Va
Vma
bp 1 bp
1 Va
1 Vma
1 Vma
b
1 p
10.3.5a 10.3.5b
由10.3.5b
可知,若以
1 Va

1 p
作图,应得一条直线,由其斜率
1 Vma /dm 3
kg1
kPa 0.01868 kPa
( 计算机求得: b = 0.01839 kPa )
由定义,饱和(bǎohé)吸附量是 1 kg 活性炭吸附的气体在标 准状态下的体积。所以在 m kg 活性炭上吸附的 CO 分子数为:
N m pVma L RT
( 这里 p、T 指标准态压力与温度)
数)N。因为吸附速率与A的压力 p 及固体表面上的空位数
( 1- )N 成正比。
v吸附 k1 p (1 θ)N
第十二页,共22页。
解吸速率与固体表面上被复盖的吸附位置数,即被吸附
的分子数成正比。 v解吸 k1θ N
动态平衡时吸附速率与解吸速率相等:v 吸附= v 解吸
k1 p1 θ N k1θ N
及截距,可求得 Vma 和 b
第十五页,共22页。
朗缪尔公式的性状:
a. 压力很低时,b p << 1, 式(10.3.5a)简化为:V a Vma b p
吸附量与压力成正比,这反映了,吸附等温线的起始段, 几乎是直线的情况。
b. 压力很高时,b p >> 1, 则有: V a Vma

物理化学 第十章 界面现象

物理化学 第十章  界面现象

4. 热力学基本公式
考虑了表面功,热力学基本公式中应相应增加一项,即:
dU TdS pdV
dn
B
B
dAS
B
dH TdS VdP
dn
B
B
dAS
B
dA SdT pdV
dn
B
B
dAS
B
dG SdT VdP
dn
B
B
dAS
B
由此可得:
( U AS
Ga 0 1800 任何液体与固体间都能粘湿
在等温等压条件下,单位面积的液固界面分开产生液体表面与固体表 面所需的功称为粘附功。粘附功越 大,液体越能润湿固体,液-固结合 得越牢。
Wa Ga gl (cos 1 )
Wa o
(2)浸湿(work of immersion)
浸湿:固体浸入液体,固体表面消失,液-固界面产生的润湿过程。
当将边长为10-2m的立方体分割成10-9m的小立方体 时,比表面增长了一千万倍。
可见达到nm级的超细微粒具有巨大的比表面积, 因而具有许多独特的表面效应,成为新材料和多相 催化方面的研究热点。
对具有巨大表面积的分散体系,界面分子的 特殊性对体系性质的巨大影响不能忽略
界面与表面:是指两相接触的约几个分子厚度的过渡区 (界面相),若其中一相为气体,这种界面通常称为表 面。
Langmuir吸附等温式的缺点:
1.假设吸附是单分子层的,与事实不符。 2.假设表面是均匀的,其实大部分表面是不均匀的。
3.在覆盖度 较大时,Langmuir吸附等温式不适用。
§ 10.4 液—固界面
接触角 粘附功 浸湿功 铺展系数
1 接触角(contact angle)和Young equation

(完整版)第十章界面现象

(完整版)第十章界面现象
1.汞在光滑的玻璃上呈球形,在玻璃管中呈凸形。 2.水在光滑的玻璃上完全铺展,在玻璃管中呈凹形。 3. 露珠在荷叶、草叶上呈球形。 4. 液体的过热、过冷,溶液的过饱和。
产生表面(界面)现象的原因是什么?
§10.1表面张力
1、表面张力、表面功及比表面Gibbs函数
(1)比表面吉布斯函数
在恒温恒压下,可逆 地增加系统的表面积dAs, 则环境对系统所做的功正 比于表面积的增量
δW’= γ dAs
G As
T , p
表面层分子受力与体相不同 比表面吉布斯函数
(2)表面张 力
肥皂膜
l
无摩擦、可自由活动
dx
F
现象:加大外力F,膜面积增大,且F与长度 l 成正比。 结论:若撤去外力F,皂膜自动收缩;即液体表面有自 动收缩的趋势。
产生原因:液体表面处处存在着一种使液面紧张的力( 紧缩力)。 相同体积的几何形状中,球形的表面积最小。 一定量的 液体自其他形状变为球形时,就会伴随面积的缩小
G As
T
,
p ,nB (
)
U As
S ,V
,nB (
)
H As
S,
p ,nB (
)
A As
T
,V
,nB (
)
3.界面张力的影响因素
由来:分子间的Van der Waals 引 力 影响因素:
①与物质的本性有关:分子间相互作用力越大,γ越大 一般对于气液界有: γ(金属键)> γ(离子键)> γ(极性键)> γ(非极性键)
② 可知自发降低表面吉布斯函数 有两种途径
降低表面积 ,降低表面张力
③表面张力、单位面积的表面功、单位面积的表面吉 布斯函数三者的数值 、量纲等同,但它们有不同的物 理意义,是从不同角度说明同一问题。

第十章 界面现象

第十章 界面现象

由于以线圈为边界的两边表面张
力大小相等方向相反,所以线圈成任 意形状可在液膜上移动,见(a)图。
如果刺破线圈中央的液膜,线 (b) 圈内侧张力消失,外侧表面张力立 即将线圈绷成一个圆形,见(b)图, 清楚的显示出表面张力的存在。
精选2021版课件
21
表面张力(surface tension)
(a)
A m A /m或 A V A /V
式中,m和V分别为固体的质量和体积,A为其表面 积。目前常用的测定表面积的方法有BET法和色谱 法。
精选2021版课件
17
表面功(surface work)
由于表面层分子的受力情况与本体中不同,因此 如果要把分子从内部移到界面,或可逆的增加表面积, 就必须克服体系内部分子之间的作用力,对体系做功。
精选2021版课件
43
3.毛细现象
⑴毛细现象
把一支毛细管垂直地插入 某液体中,该液体若能润 湿管壁,管中的液面将呈 凹形,润湿角θ < 90O 如 图所示:毛细管的半径为 R 弯曲液面的曲率半径为 R‘,
由于附加压力 ps 指向大 气,而使凹液面下的液体 所承受压力小于管外水平 液面下的液体所承受压力。 在这种情况下毛细管中的 水上升。
l是滑动边的长度,因膜有两个面,
所以边界总长度为2l, 就是作用于
单位边界上的表面张力。
精选2021版课件
24
恒温恒压下增加肥皂膜面积dA时,力F需对体系所作 的最小功(可逆非体积功):
wr Fdx 2 ldx dAs dG
wr/dA s G/A sT,p
G As
T
,
p, N
F 2l
表面自由能也可以看作沿着液面垂直作用于

材料物理化学:10界面现象

材料物理化学:10界面现象

§10 界面现象在有关固体催化反应动力学一章中,我们已经简单地讨论了固体物质表面上的一些现象——吸附。

本章将讨论的重点放在液体的界面上。

举例有关界面现象:密切接触的两相之间的过渡区称为界面(interface),约有几个分子的厚度。

实际上,当两个不同的物相之间表现了与两个本体中的不同性质的现象就称为界面现象。

界面的相接触有:s-s,s-l,s-g,l-l,l-g。

界面现象的出现是因为界面层的分子所受到的分子-分子之间的作用力与相本体中的分子所受到作用力不一样,在相本体中的分子受到的作用力是对称的、均匀的,而界面层的分子受到两个不同相中不同分子的相互作用,而作用力是不对称的、不均匀的。

因此界面层的性质与相本体的性质不同。

作用力大的那一相有自动收缩其界面到最小值的趋势。

对于固体物质的界面就表现为对气体或液体物质的吸附。

对于一个体系而言,界面现象(界面性质)所表现的显著程度,取决于体系的相对界面积大小,相对界面积的大小可以用比表面来表示:A o =V A或 A o =mA 比表面小的体系,界面现象表现不显著,常常可以忽略;比表面大的体系,表现出很显著的界面现象。

表13.1为相同体积(或质量)不同尺寸时界面积的大小。

●§10.1表面Gibbs 自由能和表面张力 ● §10.1.1表面Gibbs 自由能和表面张力的概念由于表面上的分子所受到的力与相本体中分子所受到的力不同,所以如果将一个分子从相本体中移到表面成为表面分子(或者说扩大表面积),就必须克服体系内部的分子间作用力而对体系做功。

在等温、等压和组成不变时,可逆地使表面积增加dA 所需要对体系做的功,称为表面功:-δw ’=γdA γ=dAw 'δ- γ为比例系数。

它在数值上等于当等温、等压及组成不变的条件下,增加单位表面积时必须对体系做的可逆非膨胀功。

将表面功引入到热力学中,得到:dU= TdS ―pdV +γdA +∑BμB dn BdH= TdS +Vdp +γdA +∑BμB dn BdF =―S dT ―pdV +γdA +∑BμB dn Bd G=―S dT +Vdp +γdA +∑BμB dn Bγ=(A U ∂∂)S ,V ,n B =(A H ∂∂)S ,p ,n B =(A F ∂∂)T ,V ,n B =(AG ∂∂)T ,p ,n B 从能量的角度上看:γ就是等温、等压及组成不变的条件下,每增加单位表面积时所引起的Gibbs 自由能变化,所以可以称为表面Gibbs 自由能。

物理化学知识点chap 10

物理化学知识点chap 10

Pa
2.356
103
kPa
【10.5】水蒸气迅速冷却至298.15K时可达到过饱和状态。已
知该温度下水的表面张力为71.97×10-3 N·m -1 ,密度为997
kg·m-3。 当过饱和水蒸气压力为平液面水的饱和蒸气压的4
倍时,计算: (1)开始形成水滴的半径;(2)每个水滴中
所含水分子的个数。
m
= 7.569 ? 10- 10m
(2)每个水滴的体积
( ) V 水滴=
4 3
pr
3
=
4 创3.14 3
7.569 ? 10- 10 3 m 3
1.815 ? 10- 27m 3
每个水分子的体积
V 水分子=
M rL
=
骣 琪 琪 琪 桫997

0.018 6.022
m 3 = 3.00 ? 10- 29m 3 1023
分析: 利用拉普拉斯方程
p 2
r
解: (1)和(2)两种情况下均只存在一个气-液界面, 其附加压力相同。根据拉普拉斯方程
p
2
r
2 58.91103 0.1106
Pa
1.178
103
kPa
(3)空气中存在的气泡,有两个气-液界面,其附加压力 为
p
4
r
4
58.91103 0.1106

pg
••



p
• •
pl
(a)
pg
• 气 p • •
液•
pl (b)
附加压力方向示意图


气•


• •
p=• 0

物理化学 10 界面现象

物理化学 10 界面现象
19 of 153
(10 .1 .12)
河北联合大学
由吉布斯函数判据可知:在恒温、恒 压、各相中各种物质的量不变时,系统总 界面吉布斯函数减小的过程为自发过程。 例:液体对固体的润湿,小液滴聚集成大液滴……
3.界面张力及其影响因素
界面张力取决于界面的性质,能影响物质性质的因素,都 能影响界面张力。 ①与物质的本性有关:不同的物质,分子间的作用力不 同,对界面上分子的影响也不同。分子间相互作用力越大,γ 越 大。 一般对于气液界面有:γ(金属键)> γ(离子键)> γ(极 性键)> γ(非极性键)
液体
水 乙醇 甲醇 CCl4 丙酮 甲苯 苯
河北联合大学
25 of 153
③ 压力及其它因素对表面张力的的影响:
压力增加,使气相密度增加,减小表面分子受力不对称 程度;也使气体分子更多溶于液体,改变液相成分,这些 因素都使表面张力下降。 a.表面分子受力不对称的程度 ↓ p↑ b.气体分子可被表面吸附,改变γ, ↓ γ↓
α B
4.2.7
河北联合大学
16 of 153
dU TdS pdV μB (α )dnB (α)
α B
4.2.8 4.2.9 4.2.10
dH TdS Vdp μB (α )dnB (α)
α B
dA SdT pdV μB (α )dnB (α)
t /°C
1050 215 5.5 0. 25 1850 20 -196
/mNm-1
1670 1140 685 527 12010 1000 905 4500 1030
Cu Ag Sn 苯 冰 氧化镁 氧化铝 云母 石英
河北联合大学

第十章 界面现象

第十章  界面现象

在恒温恒压、各相组成和量不变时:
dG dAs
dG称为表面吉布斯函数变化dGs。
当界面面积自0到As变化时:Gs=As
在恒温恒压下,系统的自发过程总是 朝着表面吉布斯函数减小的方向进行。
3.影响表面张力的因素 (1)物质的本性
不同物质其分子间作用力不同,表面 张力也不同。分子间作用力大,其表面张 力也大。 同一物质: (固)>(液)>(气)
kc
n
(c为被吸附物质浓度)
Freundlich公式不能说明吸附作用的机理, 公式中n和k没有明确的物理意义。
6.单分子层吸附理论(Langmuir吸附理论) (1)理论要点(基本假设)
表面层分子、 内部分子所处 的力场不同。
表面层的分子受到指向物体内部并垂直 于表面的作用力,使物体表面有自动缩小 的趋势。若将内部分子移至表面,必须对 所移动的分子施加外力(做功)。 产生界面现象的原因:物质表面层分子 与内部分子所具有的能量、作用力不相同。
(2)表面张力(surface tension)
而 r1=r/cos
2 cos 则有: h r g
当液体不能湿润管壁时,>90,cos<0, h为负值,表示管内凸液面下降深度。 毛细现象应用之一:锄地可破坏土壤毛 细管,以减少水分蒸发。
(4)表面张力测定方法
最大气泡法、毛细管法等。 机械、自动、全自动表面张力仪。
2.微小液滴的饱和蒸气压—开尔文公式
对于一定的吸附剂与吸附质的体系,达到吸附
平衡时:
=f (T,P)
通常固定一个变量,求出另外两个变量之间的关系:
(1)T=常数, = f (p),得吸附等温线。 (2)p=常数, = f (T),得吸附等压线。 (3) =常数,P = f (T),得吸附等量线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如人工降雨,向空中撒凝结核心AgI,使凝聚水滴的初始曲 率半径加大,其相应的饱和蒸气压小于高空中已有的水蒸 气压力,因此蒸气会迅速凝结成水,便成了雨。
2020/1/28
11
3)过热液体(过冷液体)
沸腾(结晶)是液体从内部形成气泡(微小晶体)、在液体表 面上剧烈汽化的现象。但如果在液体中没有提供气泡(晶体) 的物质存在时,液体在沸点(凝固点)时将无法沸腾(结晶)。 我们将这种按相平衡条件,应当沸腾(结晶)而没有沸腾(结 晶)的液体,称为过热液体(过冷液体)。
越大。
对凹面:
RT
ln

p p0
g
=
-
2 Vm
R/
特别注意负号
凹面曲率半径R/ 越小,与其平衡的小蒸汽泡中的蒸汽压越低。
2020/1/28
ln
pr
/
po



凸 凹
2
M
/

RTr
——Kelvin 公式
pr 半径为 r 的液滴在温度T时的蒸气压; p0 平液面液体同温度下的蒸气压;
Kelvin公式也可以表示为两种不同曲率半径的液滴或蒸汽泡
的蒸汽压之比:
RT ln
p2 p1

2M

1 R2'

1 R1'

或两种不同大小颗粒的饱和溶液浓度之比:
RT ln
c2 c1

2 l sM

1 R2'

1 R1'

对凸面,R/ 越小,液滴的蒸汽压越高,或小颗粒的溶解度
h 液柱上升的高度,m g 重力加速度,9.80N kg1 R/ 曲率半径,m R 毛细管半径,m
2
C. 表面曲率对液体蒸汽压力的影响——Kelvin公式
实验现象:
T
t
微小液滴的蒸气压力大于大液滴的蒸气压力,使微小液滴 的水蒸发成蒸气而凝结在大液滴上。
实验结论:
物质的饱和蒸气压( ps* )除与温度T 有关,还与物质 的分散度(微粒半径 r )有关。
凹面 ln pr / po 0 pr po
p凹 p平面 p凸
2020/1/28
9
Kelvin公式的应用
1) 毛细管凝结
考虑液体及其饱和蒸气与孔性固体 构成的体系。孔内液面与孔外液面的曲 率不同,导致蒸气压力不同。 凹液面:孔内液体的平衡蒸气压低于液 体的正常蒸气压。故在毛细管中发生凝 结。此即所谓毛细管凝结现象。
ln pr / po如何2得M到/ ?RT?r ——Kelvin 公式
2020/1/28
3
液体(T, p*l,0 )
饱和蒸汽(T, p*g,0)
同样,对于小液滴与其蒸汽的平衡:
小液滴(T, p*l )
饱和蒸汽(T, p*g)
=0, 即:Gm (l ) Gm (g)

Gm (l pl
)
T
dpl


Gm
(g)

pg T
dpg
NOTE: 为简便省去p的上标*
设蒸气相为理想气体:
Vm (l )dpl Vm (g)dpg = RTd ln pg
Vm(l)
dp pl
pl ,0
l
Vm (g)dpg =
RT
pg pg ,0
吸附作用力 吸附选择性 吸附分子层
吸附热 吸附温度 吸附速率
范德华力

单分子层、多分子层 较小,近似气体凝结热
( <25kJ.mol-1) 较低
快(不需要活化能), 易达吸附平衡
化学键力
有(需要形成吸附化学键)
单分子层 较大,近似于化学反应热
( >40kJ.mol-1 ) 常在较高温度下 较慢(需要活化能),
M、 液体的摩尔质量、密度。
r /m
20℃时水滴半径 (r) 与蒸气压力pr的关系
1×10-6 1 × 10-7
1 × 10-8
1 × 10-9
pr / p0 1.001 1.011
1.114
2.95
2020/1/28
8
ln
pr
/
po


(
凸 凹
)2
M
/
RTr
Discussion: 凸面 ln pr / po 0 pr po
二、凝聚相的界面现象
A. 液体对固体的润湿作用
cos /
气固
Байду номын сангаас
液固
气液
B. 弯曲液面的附加压力和毛细现象
p 2 —Laplace 公式
R
2020/1/28
1
毛细现象:
h

2 R/ g
h 2 cos R g
2020/1/28
液体的密度,kg m3
吸附平衡慢
Note:同一系统中,随外界条件的变化两类吸附可相伴发生。
2020/1/28
14
固体表面的特点
固体表面原子或分子处于力场不平衡状态,表面具有过 剩的能量(表面能)。
固体表面的特点:
1.固体表面分子(或原子)移动困难,表面积不能缩小, 会自动与外来分子结合来降低表面自由能。
2.固体表面是很不均匀的,不同类型的原子的化学行为、 吸附热、催化活性和表面态能级的分布都是不均匀的。
原因:液体过热(过冷)现象的产生是由于液体在沸点(结 晶)时无法形成微小气泡(微小晶体)所造成的,这样便造成 了液体在沸点(凝固点)时无法沸腾(结晶)而液体的温度继续 升高(降低)的过热(过冷)现象。过热较多时,极易暴沸。
解决办法:为防止暴沸,可事先加入一些??。
2020/1/28
12
三、固体表面的吸附作用
d ln
pg
Vm(l)
pl - pl,0
RT ln pg pg,0
2020/1/28
2
pl - pl,0 p = R/
RT
ln

p p0
g
=
2Vm (l )
R/
=
2 M R/
RT ln

p
p0
g
=
2 M R/
=
2 Vm
R/
—Kelvin 公式,为液体密度,kg.m-3, M 为摩尔质量, g.mol-1。
硅胶能作为干燥剂就是因为硅胶能自动地吸附空气中的 水蒸气,使得水气在毛细管内发生凝结。
2020/1/28
10
2)过饱和蒸汽
恒温下,将未饱和的蒸汽加压,若压力超过该温度下液体 的饱和蒸汽压仍无液滴出现,则称该蒸汽为过饱和蒸汽。 原因:液滴小,饱和蒸汽压大,新相难以形成而导致过饱和。
解决办法:引入凝结核心
吸附:以一种物质的原子或分子附着在另一种物质的 表面上的现象,或者说物质在相界面上浓度自动变化的 现象。 吸附的热力学原理:固体表面质点处于力场不平衡状态, 表面具有过剩的能量(表面能)。
吸附剂:具有吸附作用的物质。
吸附质:被吸附的物质。
2020/1/28
13
物理吸附与化学吸附比较
物理吸附
化学吸附
相关文档
最新文档