数学建模--葡萄酒的分级(正式版)

合集下载

2012数学建模A题论文:葡萄酒的评价

2012数学建模A题论文:葡萄酒的评价

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012年 9月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要葡萄拥有很高的营养价值,含有多种氨基酸、蛋白质和维生素,而以葡萄为原料的葡萄酒也蕴藏了多种营养物质,而且这些物质都是人体必须补充和吸收的营养品。

目前,已知的葡萄酒中含有的对人体有益的成分大约就有600种。

葡萄酒的营养价值由此也得到了广泛的认可,可以说葡萄酒是一个良好的滋补品。

本文通过对葡萄酒的评价,以及酿酒葡萄和葡萄酒的理化指标之间的关系进行讨论分析。

对不同的酿酒葡萄进行了分类,并更深入讨论两者的理化指标是否影响葡萄酒质量。

对于本题,我们主要采用SPSS软件对模型进行求解。

针对问题一,首先我们将附件1中数据在Excel中进行处理;其次,我们在SPSS中,采用T检验,分别分析出两组评酒品红、白葡萄酒的评价结果有无差异性。

数学建模之葡萄酒的评价

数学建模之葡萄酒的评价

葡萄酒的评价摘要葡萄拥有很高的营养价值,含有多种氨基酸、蛋白质和维生素,而以葡萄为原料的葡萄酒也蕴藏了多种营养物质,而且这些物质都是人体必须补充和吸收的营养品。

目前,已知的葡萄酒中含有的对人体有益的成分大约就有600种。

葡萄酒的营养价值由此也得到了广泛的认可,可以说葡萄酒是一个良好的滋补品。

本文通过对葡萄酒的评价,以及酿酒葡萄和葡萄酒的理化指标之间的关系进行讨论分析。

对于本题,我们主要采用SPSS和MATLAB软件对模型进行求解。

针对问题一,首先我们将附件1中数据在Excel中进行处理;其次,我们在SPSS中,采用T检验,分别分析出两组评酒品红、白葡萄酒的评价结果有无差异性。

最后,我们通过T检验,在SPSS中可其相应的标准差,通过比较标准差来确定哪个组更可靠。

针对问题二,首先利用主成分分析法对酿酒葡萄的指标进行简化,将问题转化成一个多元函数的求解问题,然后分别对酿酒葡萄中的指标和葡萄酒理化指标进行相关性分析,得出指标间的相关性关系,将问题转化为求解超定方程组的解,最后利用最小二乘法建立了酿酒葡萄与葡萄酒理化指标间的关系式。

一、问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

二、问题分析2.1针对问题一,我们将它分成两个问题去解决1、针对问题一中的两组评酒员的评价结果有无显著性差异,我们在SPSS 中利用T检验去判断。

在这之前,我们对附录1中数据进行处理,利用excel 分别求出两组评酒员分别对红葡萄酒和白葡萄酒的评价结果的平均值。

数学建模葡萄酒评价优秀论文

数学建模葡萄酒评价优秀论文

葡萄酒的评价模型摘要近年来,我国掀起了一场葡萄酒热,对葡萄酒的需求与日俱增。

特别是随着食品科学技术的发展,人们不再满足传统感官评价葡萄酒的水平。

如何运用数据资料定量研究葡萄酒的品质,加快建立葡萄酒市场指标规则成为人们关注的焦点。

本文通过对感官评价分析,结合葡萄酒和酿酒葡萄的理化指标和芳香物质的大量数据,建立了客观可靠的葡萄酒质量综合评价模型。

针对问题一:本题需要检验两组品酒员的评价结果是否存在显著差异,并选出更可靠的一组。

我们将各种葡萄酒的10个二级指标得分,相加得到每种酒的总分。

在判断知每组品酒员的评价总分均服从正态分布后,用t检验分析两组品酒员对各葡萄酒评价的差异性,由此计算得到两组评价的显著性差异率为13.36%,即总体上两组品酒员的评价不存在显著差异。

但由于两组品酒员的评价仍存在部分差异,我们比较两组品酒员对55种葡萄酒评价的方差,发现第二组评分的方差普遍小于第一组,所以第二组的评价结果更可信。

针对问题二:为了对酿酒葡萄进行分级,我们将葡萄的理化指标作为媒介。

先根据国际指标制定适用于本题评分的分级标准,将葡萄酒进行分级,再根据理化指标经标准化之后的数值,利用欧氏距离对酿酒的55种酿酒葡萄进行Q型聚类分析。

聚类得到红白葡萄各六个分类后,再把各类酿酒葡萄对应至相应葡萄酒的等级,将酿酒红葡萄和酿酒白葡萄各分为五级。

针对问题三:由于各种酿酒葡萄的理化指标种类复杂,我们用主成分分析的方法,从酿酒红葡萄和酿酒白葡萄的27个有效指标中各提取出了8个和9个主要成分。

考虑到酿酒葡萄经化学反应酿造成葡萄酒的过程中各项理化指标一般存在线性关系,我们建立多元线性回归模型,得出酿酒葡萄和葡萄酒各项有效理化指标的正负相关关系。

关键词:显著性检验;聚类分析;主成分分析;多元回归。

一、问题的重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

数学建模毕业论文--葡萄酒的评价

数学建模毕业论文--葡萄酒的评价

数学建模毕业论文--葡萄酒的评价
葡萄酒的评价是一项复杂的任务,涉及多个因素,包括葡萄品种、酿造过程、年份、产地和存储条件等。

在数学建模中,我们可以利用统计分析和机器学习算法来对葡萄酒进行评价,以预测其质量和特征。

首先,我们可以采集一定数量的葡萄酒样本,并测量其相关属性,如酒精含量、酸度、pH值、残留糖分、挥发性酸、柠檬
酸等。

利用统计分析方法,我们可以探索这些属性与葡萄酒质量之间的关系,建立相应的数学模型。

例如,可以使用线性回归分析来确定具体属性与葡萄酒得分之间的相关性。

另一方面,机器学习算法可以帮助我们构建更复杂的评价模型。

可以使用聚类算法将葡萄酒样本分成不同的类别,以发现具有相似特征的葡萄酒群体。

此外,可以使用分类算法或回归算法来预测葡萄酒的质量评分。

这些算法可以利用已知的葡萄酒样本数据进行训练,并在新样本上进行预测。

除了属性数据,我们还可以考虑其他因素对葡萄酒评价的影响。

例如,可以考虑葡萄酒的价格、评分和消费者评价等因素,以构建更综合的评价模型。

可以使用模糊数学方法来处理这些不确定性和主观性因素,以得出更准确的评价结果。

最后,为了验证模型的准确性和稳定性,可以使用交叉验证或留一验证的方法进行模型评估。

这些方法可以帮助我们评估模型的泛化能力,并进行必要的调整和改进。

数学建模可以帮助我们对葡萄酒进行评价,为葡萄酒生产商、消费者和酒评人提供有关葡萄酒质量和特征的有价值信息。

葡萄酒评价数学建模matlab

葡萄酒评价数学建模matlab

葡萄酒评价数学建模matlab【原创实用版】目录一、引言二、葡萄酒评价的数学模型介绍三、数学建模在葡萄酒评价中的应用案例四、MATLAB 在葡萄酒评价数学模型中的应用五、结论正文一、引言随着人们生活水平的提高,对葡萄酒的需求也日益增加。

葡萄酒的品质不仅取决于酿酒葡萄的品种、产地、气候等条件,还与酿酒工艺紧密相关。

为了对葡萄酒的质量进行客观评价,数学建模方法被广泛应用于葡萄酒评价领域。

本文将介绍葡萄酒评价的数学模型,并探讨如何利用 MATLAB 进行葡萄酒评价数学模型的实现。

二、葡萄酒评价的数学模型介绍葡萄酒评价的数学模型主要基于葡萄酒的理化指标,如花色苷、总酚、单宁等,以及葡萄酒的外观、香气和口感等感官评价指标。

通过建立数学模型,可以客观地评价葡萄酒的质量,并为酿酒师提供参考意见。

常用的数学模型包括多元线性回归模型、逐步回归模型、主成分分析模型等。

三、数学建模在葡萄酒评价中的应用案例数学建模在葡萄酒评价中的应用案例有很多,其中之一是利用逐步回归分析找出对葡萄酒理化指标影响显著的因素,得出酿酒葡萄与葡萄酒理化指标之间的函数关系。

另一个案例是基于多目标优化模型研究酿酒葡萄的分级方法,同时考虑酿酒葡萄和葡萄酒的理化指标,建立以误差平方和最小为目标的多目标优化模型。

四、MATLAB 在葡萄酒评价数学模型中的应用MATLAB 是一种强大的数学计算软件,可以方便地实现葡萄酒评价数学模型。

例如,通过 MATLAB 可以轻松地完成多元线性回归模型的参数估计、逐步回归模型的变量筛选等任务。

此外,MATLAB 还可以绘制葡萄酒理化指标与感官评价指标的关系图,便于酿酒师直观地了解葡萄酒的质量状况。

五、结论数学建模方法在葡萄酒评价领域具有广泛的应用前景,可以提高葡萄酒评价的客观性和准确性。

MATLAB 作为一种有效的数学计算工具,在葡萄酒评价数学模型的实现中发挥着重要作用。

建模论文-葡萄酒的评价

建模论文-葡萄酒的评价

葡萄酒的评价摘要葡萄酒的质量评价是研究葡萄酒的一个重要领域,目前一般是通过聘请一些有资历的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其进行打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

本文分析了如何对酿酒葡萄进行分类,寻找了酿酒葡萄与葡萄酒的理化指标之间的联系,以及解决了酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响等问题,建立了相应的数学模型,并且充分运用了Excel和SPSS等数学工具。

对于问题一,我们首先使用Excel对附件一中的数据进行了加权平均,求得两组品酒员对红白葡萄酒的评分;再通过方差分析法比较两组品酒员对红白葡萄酒评分的波动性大小。

在判断显著性差异的时候,我们使用了成对样本的t检验,通过比较p值和0.05,得到红葡萄酒和白葡萄酒都存在显著性差异;通过对方差大小的观察,可以得到第二组评分结果更加可信。

对于问题二,我们先运用主成分分析法找出红白酿酒葡萄的主成分,再运用SPSS软件通过聚类分析法对酿酒葡萄进行分类。

对于问题三,首先我们运用主成分分析法对葡萄酒的理化指标进行了降维,再利用SPSS对酿酒葡萄和葡萄的理化指标进行了相关性分析,发现酿酒葡萄和葡萄的理化指标之间的相关性不强。

对于问题四,我们把酿酒葡萄和葡萄酒的理化指标作为自变量,对第二组评酒员的评分作为因变量,建立多元回归线性模型,最终发现葡萄酒的质量仅用酿酒葡萄和葡萄酒的理化指标来评价是不客观的,还与葡萄品种和环境等很多因素有关。

关键字:SPSS软件聚类分析主成分分析多元线性回归模型 t检验一、问题的提出确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

葡萄酒理化指标与质量的评鉴分析摘要用好的葡萄也许酿不出好酒,但没人能用劣质葡萄酿出好酒。

巧妇难为无米之炊,再优秀的酿酒师,如果没有优质的葡萄,也很难酿出好酒。

不同葡萄品种酿制出的葡萄酒是不同的,但是,除了品种间的差异,葡萄自身的质量是酿制高品质葡萄酒的关键。

本文通过建立meansK-聚类模型、典型相关分析等模型,逐步探求用葡萄和葡萄酒的理化指标来评鉴葡萄酒质量的方法。

问题一要求我们分析附件1中两组评酒员的评价结果是否存在显著性差异,为此我们依据小概率原理建立模型Ⅰ-显著性检验模型。

首先我们利用F检验求解两组评酒员之间是否存在显著性差异,再利用配对t检验对检验样本做再次检验,以提高研究效率,确保评价结果的准确性。

利用Excel软件处理数据后,进行t、F的联合检验,当联合检验均被接受,得到两组评酒员的评价结果有显著性差异的结论。

同时通过对两组品酒员对55种葡萄酒样品评分的稳定性、统一性分析,确定第二组品酒员的评价结果更可信。

针对问题二本文根据附件2提供的数据,利用模糊数学原理[3],建立模型ⅢK-聚类模型,对酿酒葡萄进行分类,再以葡萄酒品尝评分作为质量评价依据,means对酿酒葡萄进行分级。

首先,考虑到酿酒葡萄的理化指标过多,不便分类,我们利用多元统计分析原理对红、白酿酒葡萄进行主成分分析,得出红、白酿酒葡萄分别有8个和11个主成分,从而大大减少了分类指标。

再利用meansK-算法求出最佳聚类数k,建立meansK-聚类模型对各种葡萄样品在各个主成分上的得分进行聚类,将红、白葡萄样品分别划分为3类和4类。

最后,根据每个类别中葡萄样品对应的葡萄酒的品尝评分,对各类酿酒葡萄进行分级。

针对问题三建立模型Ⅳ-典型相关分析模型,定量分析酿酒葡萄与葡萄酒的理化指标之间的联系。

我们首先选取酿酒葡萄与葡萄酒皆含有的花色苷、单宁等成分作为理化指标,然后构建典型相关分析模型,研究酿酒葡萄与葡萄酒两组样品的理化指标之间的相关性。

关于葡萄酒问题的数学建模.

关于葡萄酒问题的数学建模.

葡萄酒评价模型摘要本文讨论了葡萄酒的评价问题。

对问题一,分别求出两组评酒员对各葡萄酒样品的平均评分,通过SPSS软件对同一类酒的两组得分进行T检验,检验结果表明两组评酒员的评价结果有显著性差异。

再建立评酒员和样品葡萄酒得分的典型相关分析模型,运用MATLAB 求解,以样品葡萄的得分与评酒员的相关系数越大评分越不可信为依据,得出第二组的评分更可信的结论。

对问题二,以第二组的评分为准,对葡萄酒的质量进行排序,得出排序向量,对酿酒葡萄中各个理化指标进行排序,得出排序矩阵,排序向量与排序矩阵的各列进行点乘,得到葡萄酒质量与酿酒葡萄中各个理化指标的内积,以此内积作为葡萄酒的质量与酿酒葡萄中各个理化指标的相似度指标,选出相似度较高的五项指标作为酿酒葡萄分级的参考指标。

根据参考指标对酿酒葡萄进行分级,分别得出了依香气、口感、外观进行分级的酿酒葡萄分级结果(见表五,表六)。

对问题三,建立非线性回归模型,讨论酿酒葡萄与葡萄酒理化指标的联系。

将葡萄和葡萄酒的理化指标进行无量纲化处理,利用最短距离法,选出葡萄理化指标中对葡萄酒理化指标影响最大的五项作为回归自变量,以葡萄酒的理化指标为回归因变量,运用MATLAB求解得到酿酒葡萄与葡萄酒的理化指标之间的4次函数关系式(见表七,表八)。

对问题四,建立酿酒葡萄的理化指标、葡萄酒的理化指标与葡萄酒质量的多重T检验模型。

应用SPSS软件进行T检验,通过检验结果所体现出的向量整体差异程度表明,酿酒葡萄和葡萄酒的理化指标对葡萄酒质量影响较大,故可以用酿酒葡萄和葡萄酒的理化指标评价葡萄酒质量。

关键词理化指标;T检验;典型相关系数;回归模型;葡萄酒评价一、问题重述由于葡萄酒不仅饮用口感佳,而且还具有延缓衰老、滋补养颜、预防心脑血管病、预防癌症等功效,因而受到越来越多人的亲睐。

葡萄酒厂在对葡萄酒质量进行鉴定时,一般是通过聘请一批有专业知识和资质的评酒员对葡萄酒进行品评。

每名评酒员品评后会根据评判标准对所品葡萄酒进行打分,然后求其所有评酒员的打分之和,从而确定葡萄酒的质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):西安理工大学参赛队员 (打印并签名) :1. 郑晓东2. 罗璐3. 宫维静指导教师或指导教师组负责人 (打印并签名):日期: 2013 年 05月10 日葡萄酒质量的综合评价分析摘要近年来,随着人们生活水平的提高,葡萄酒也随之受到人们的喜爱,加之食品科学技术的提高,人们对葡萄酒的品质也有了更高的要求,本文就针对葡萄酒品质的相关问题进行建模,求解和有关分析。

对问题一,首先基于两组评酒员对同一批葡萄酒的评价分数数据,采用假设检验中的t检验法建立评估两组数据差异的模型,运用Spss软件求解,得到两组数据存在显著性差异的结论,其次,通过计算两组数据的方差,用以比较稳定性,得到第二组更可信的结论。

对问题二,首先对酿酒葡萄理化指标数据进行标准化处理,经过主成分分析法将葡萄分为四个等级,其次,按可信度高的一组(第二组)得分将葡萄酒分为五级,综合两种分级,将酿酒葡萄分为了——级。

对问题三,首先同问题二对酿酒葡萄与葡萄酒的理化指标进行主成分分析,用Matlab的曲线拟合得到葡萄酒的得分,分别与酿酒葡萄与葡萄酒的理化指标之间的函数关系,再进行反解即得到酿酒葡萄与葡萄酒的理化指标之间联系。

对问题四,采用灰色关联度分析的方法进行求解,分别求出酿酒葡萄的理化指标与葡萄酒质量的关联度、葡萄酒理化指标与其质量的关联度,通过关联度值的大小,即可看出酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响大小,并以此为基准来论证酿酒葡萄和葡萄酒的理化指标能否用来评价葡萄酒的质量。

关键词:t检验主成分分析曲线拟合灰色关联度分析一、问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?二、问题分析2.1 问题一本题给出了两组评酒员对同一批葡萄酒的评价分数,在本文,采用假设检验中的t检验建立评估两组数据差异性的模型,研究两组评论员的评价是否存在差异,判断能否接受它们存在显著性差异的假设。

若接受,则继续第二步:可靠性分析,分别对两组数据求方差,方差小的说明波动小,既评酒员的评价较稳定,可靠性高。

2.2 问题二首先,我们利用问题一得到的结果,对可靠性高的一组数据进行处理,降低评论员之间的差异,提高葡萄酒样品最终得分的可靠度。

按得分对葡萄酒进行分级。

然后,用标准化处理后的酿酒葡萄的理化指标对葡萄进行主成分分析。

最后,结合葡萄酒的分级对酿酒葡萄进行分级。

2.3 问题三首先,用处理酿酒葡萄的理化指标的方法对葡萄酒的理化指标做同样的处理,得到葡萄酒理化指标的主成分。

然后,分别根据主成分获得红葡萄和红葡萄酒的的得分。

通过曲线拟合,分别建立红葡萄得分和专家的评分之间的关系;红葡萄酒得分和专家评分之间的关系。

最后,根据两种理化指标和专家的评分之间的关系,建立两种理化指标之间的关系。

2.4 问题四运用灰色关联度分析的方法,定量描述酿酒葡萄与葡萄酒的理化指标对葡萄酒质量的影响,以此为基准来论证酿酒葡萄和葡萄酒的理化指标能否用来评价葡萄酒的质量。

三、问题假设1.同种葡萄酒在同一组评酒员的得分下成正态分布。

2.一种葡萄对应酿制一种葡萄酒。

3.葡萄的成分充分转化为葡萄酒里的成分,不存在意外的浪费和挥发。

四、符号说明这里只列出主模型的全局参数,其他局部参数见具体模型。

(1)i J :第i 个红葡萄酒样品(1)ij a :第i 个红葡萄酒样品的得分T1:第一组评酒员全体 T2:第二组评酒员全体五、模型的建立与求解5.1 模型一:基于t 检验建立差异评估模型我们采用假设性检验验证是否能接受两组评酒员的评价结果存在显著性差异的假设。

然后用方差分析两组评酒员评价数据的波动,认为较平稳的一组比较可靠。

5.1.1、数据预处理我们在分析数据是发现了几个显著性的异常数据:第一组红酒数据——样品20——色调——评酒员4号 数据缺失 第一组白酒数据——样品3——持久性——评酒员7号 怀疑多了一个7 第一组白酒数据——样品8——口感分析——评酒员2号 数据明显异常 因为随机样本在均值附近振荡,所以我们选用均值来代替异常数据以求误差最小。

5.1.2 t 检验模型的建立21,T T 分别代表第一,第二组整体,分别对红葡萄酒i R (i=1,2, (27)和白葡萄酒i W(i=1,2,…,27)进行感官评价,1T 的评价结果通过组内的每一评酒员的评分的均值来表示。

同样的,T2的评价结果通过组内的每一评酒员的评分的均值来表示。

从而得到两组评论员分别对红葡萄酒的评价结果见表一:表1 红葡萄酒的评价结果表中对于同一酒样品的两个评价差异是由两个评酒员引起的,为鉴定他们的评价结果有无显著性差异,可对两组数据对同一样品的差值进行分析,既表中的D 。

以红葡萄酒为例:有27对相互独立的评价结果(X1,Y1)(X2,Y2)...(X27,Y27),D1=X1-Y1,D2=X2-Y2,...,D27=X27-Y27,由于Di (i=1,2, (27)是由同一因素造成的,可认为它们服从同一分布。

现假设Di~N (D μ,2D σ),i=1,2…,27,且D μ,2D σ未知,基于这一样本检验假设:0:,0:100≠=D H H μμ (1)分别记1227,,,D D D 的样本均值和样本方差的观测值为d ,2D s 。

对1227,,,D D D 进行单个均值的t 检验,检验问题的拒绝域为(显著水平为α):(1)t t n α=≥-. (2)当t 的值不落在拒绝域内时,接受0H ,既认为两组评价无显著性差异。

否则,两组评价有显著性差异。

对白葡萄酒的处理同红葡萄酒。

2)模型的求解现以红葡萄酒为例求解,首先,作出同一酒样品(1)i J (1,2,,27)i =分别由两组品酒员1T 、2T 得到的评价结果之差,列于表一的第三行,根据建立的模型检验假设:01:0,:0D D H H μμ=≠. (3)取α=0.05,运用spss 软件求解得到表二:表二 t 检验求解结果根据上表得到的Sig=0.020<0.05,所以拒绝接受,即认为两组品酒员的评价结果有显著性差异。

5.1.3 可信度定量分析记第一组10位品酒员对红葡萄酒样品(1)i J (1,2,,27)i =的评分为(1)ij a (1,2,,10)j =10(1)(1)1110iij j a a ==∑,10(1)(1)2(1)2111()10i ij i j s a a ==-∑ (4)其中,(1)i a 表示第一组品酒员对红葡萄酒样品(1)i J 的评分均值,(1)21i s 表示(1)i J 的评分方差;同样,第二组对红葡萄酒样品(1)i J 的评分均值和方差分别为10(1)(1)1110iij j c c ==∑,10(1)(1)2(1)2211()10i ij i j s c c ==-∑ (5)从而对每一组品酒员得到一个评分方差向量(1)2(1)2(1)2(1)211112127(,,,)S s s s = (1)2(1)2(1)2(1)222122227(,,,)S s s s =同理可求得白葡萄酒的(2)21S ,(2)22S 。

再对(1)21S 和(1)22S 中的元素分别求和得到总方差,对于同一批红葡萄酒用总方差来代表两组不同的评价水平。

总方差小的稳定性好,评价结果是更可信的。

运用excel 软件可以求解得到(1)21S ,(1)22S ,(2)21S 和(2)22S 。

得到(1)21S = 1415.513,(1)22S =821.11,(2)21S =2986.77,(2)22S =1411.69。

不管是红葡萄酒还是白葡萄酒,第一组的总方差总是远远大于第二组。

说明第二组的评价结果更为可信。

5.2 模型二:对于问题二,是要基于酿酒葡萄的理化性质和葡萄酒的质量对酿酒葡萄进行分级,因此,对于模型二可分为三步进行,即:1) 根据酿酒葡萄的理化指标对酿酒葡萄进行分级; 2) 根据评酒师的评分对葡萄酒的质量进行分级; 3) 综合两种因素,对酿酒葡萄进行分级。

5.2.1 根据酿酒葡萄的理化指标对酿酒葡萄进行分级根据附录给出的酿酒葡萄的理化指标,可以看出,有些理化指标含量很低,有些理化指标含量很高。

所以对于此种情况,我们采用主成分分析法对附录中的理化指标进行处理,将理化指标分为几种主成分,然后根据主成分对酿酒葡萄进行打分,通过得分对酿酒葡萄进行分级。

5.2.1.1 对于不同的理化指标可能存在着不同的量纲,因此在进行主成分分析之前应对酿酒葡萄的理化指标进行标准化处理。

处理方法如下: 将原始数据标准化,即做如下数据变换:(6)其中 , ,j = 1,2,…,p 。

标准化后的数 据阵记为X *,其中每个列向量(标准化变量)的均值为0,标准差为1,数据无量纲。

标准化后变量的协方差矩阵(Covariance Matrix )Σ = (s ij )p ⨯p ,即原变量的相关系数矩阵(Correlation Matrix )R= (r ij )p ⨯p :i ,j = 1,2,…,p (7) 此时n 个样品在m 个主成分上的得分应为:F j = a 1j X 1* + a 2j X 2* +...+ a pj X p * j = 1,2,…,m (8)*1,2,...,;1,2,...,ij jij j x x x i n j ps -===11nj ij i x x n ==∑2211()1n j ij j i s x x n ==--∑**11()()1111nkii kj j nnij ki kj ijk k xx x x x x xs x x r n n ==---====--∑∑5.2.1.2 主成分分析法的步骤如下: 步骤一:计算协方差矩阵计算样品数据的协方差矩阵:Σ = (s ij )p ⨯p ,其中i ,j = 1,2,…,p (9)步骤二:求出Σ的特征值及相应的特征向量求出协方差矩阵Σ的特征值λ1≥λ2≥…λp >0及相应的正交化单位特征向量:则X 的第i 个主成分为F i = a i 'X i = 1,2,…,p 。

相关文档
最新文档