减速电机驱动电路
MC33035内部电路图

产品说明MC33035是高性能第二代单片无刷直流马达控制电路。
它包含实现开环、三相或四相马达控制所需的全部功能。
此电路包括转子位子检测器,温度补偿基准,锯齿波振荡器,三个集电极开路的高速驱动器,和三个高电流的图腾柱低速驱动器,适用于驱动功率MOSFET 管。
此控制器还包含一些有保护特点的电路,如欠电压锁定,时间延迟可选的周期接周期限流控制,内部过热保护电路和一个独特的故障输出,易于和微控制系统连接。
典型的马达控制功能包括开环速率,前进/后退方向,运行使能和动态制动。
MC33035是专门为电气相位为60°/300°或120°/240°的马达电路设计的,并能有效的控制无刷直流马达。
DIP-24SOP-24• 10 ~ 30 V 工作电压 • 欠电压锁定• 6.25 V 基准传感器工作电源 • 闭环伺服应用中的误差放大器• 高电流驱动,可控制外部三相MOSFET 电桥• 周期接周期限流控制 • 管脚输出的电流感应基准 • 内部过热保护电路• 60°/300°或120°/240°传感器相位可选 • 通过外部MOSFET 电桥可有效控制产品归类产品型号工作温度封装MC33035DW SOP–24 MC33035PTA =-40° to +85°CDIP-24管脚连接低速驱动输出传感器输入/PWN 输入°选择典型原理图此器件包含了285个有效的晶体管。
极限参数参数符号范围单位电源电压VCC 40 V数字输入(管脚3, 4, 5, 6, 22, 23) – VrefV 振荡器输入电流(源电流或陷电流)IOSC 30 mA 误差放大器输入电压范围(管脚 11, 12,注1)VIR –0.3 ~ Vref V误差放大器输出电流(源电流或陷电流,注2)IOut 10 mA 电流检测输入电压(管脚9,15)VSense –0.3~5.0V故障输出电压VCE(Fault) 20 V故障输出陷电流ISink(Fault) 20 mA高速驱动电压(管脚1, 2, 24) VCE(top) 40 V高速驱动陷电流(管脚1, 2, 24) ISink(top) 50 mA低速驱动工作电压(管脚 18) VC 30V 低速驱动输出电流(源电流或陷电流,管脚19, 20, 21)IDRV 100 mA 功率消耗和热特性DIP-24最大功耗@ TA = 85°C 过热电阻,结对空SOP-24最大功耗@ TA = 85°C 热敏电阻,结对空电阻PDRθJAPDRθJA86775650100mW°C/WmW°C/W工作结温TJ 150°C环境温度TA –40 ~ +85 °C贮存温度Tstg –65~+150°C电气特性(除非特别制定,否则VCC = VC = 20 V, RT = 4.7 k, CT = 10 nF, TA = 25°C)参数符号最小值典型值最大值单位基准部分基准输出电压(Iref = 1.0 mA) TA = 25°CTA = –40°~ +85°C Vref5.95.826.24–6.56.57V线路调整(VCC = 10~30 V, Iref = 1.0mA)Regline -- 1.5 30 mV负载调整(Iref = 1.0~20 mA) Regload -- 16 30 mV输出短路电流(注 3) ISC 40 75 – mA基准欠电压锁定阈值 Vth4.04.55.0V误差放大器输入偏移电压(TA = –40° ~ +85°C) VIO -- 0.4 10 mV输入偏移电流(TA = –40°∼+85°C) IIO -- 8.0 500 nA输入偏置电流(TA = –40° ~ +85°C) IIB -- -46 -1000 nA输入共模电压VICR (0 V ~ Vref) V开环电压增益(VO = 3.0 V, RL = 15 k) AVOL 70 80 -- dB输入共模抑制比 CMRR5586--dB 电源抑制比(VCC = VC = 10 to 30 V) PSRR 65 105 -- dB输出电压摆浮高电平状态(RL = 15 k to Gnd) 低电平状态(RL = 15 k to Vref)VOHVOL4.6–5.30.5–1.0V振荡单元振荡频率 fOSC222528kHz 频率随电压改变(VCC = 10~30 V) ∆fOSC/∆V – 0.01 5.0 %锯齿波峰值电压 VOSC(P)–4.14.5V锯齿波谷值电压 VOSC(V)1.21.5–V逻辑输入输入阈值电压(管脚3, 4, 5, 6, 7, 22, 23)高电平状态低电平状态VIHVIL3.0--2.21.7--0.8V传感器输入(管脚4, 5, 6)高电平输入电流(VIH = 5.0 V) 低电平输入电流(VIL = 0 V)IIHIIL-150-600-70-337-20-150µA前进/后退,60°/120°可选(管脚3, 22, 23)高电平输入电流(VIH = 5.0 V) IIHIIL-75-300-36-175-10-75µA低电平输入电流(VIL = 0 V)输出使能高电平状态输入电流(VIH = 5.0 V) 低电平状态输入电流VIL =0V IIHIIL-60-60-29-29-10-10µA限流比较仪阈值电压 Vth85101115mV 输入共模电压 VICR--3.0--V输入偏置电流 IIB---0.9-5.0µA输出和电源单元高速驱动输出饱和陷电压(Isink = 25 mA) -- 0.51.5 V高速驱动输出关闭状态漏电流(VCE = 30 V) -- 0.06100 µA高速驱动输出转换时间(CL = 47 pF, RL = 1.0 k)上升时间下降时间trtf––10726300300ns低速驱动输出电压高电平状态(VCC = 20 V, VC = 30 V, Isource = 50 mA)低电平状态(VCC =20V, VC = 30V, Isink = 50 mA) VOHVOL(VCC-2.0)--(VCC-1.1)1.5--2.0V故障输出饱和陷电压(Isink = 16 mA) VCE(sat) -- 225 500 mV 故障输出关闭状态漏电流(VCE = 20 V)IFLT(leak) -- 1.0 100 µA欠电压锁定驱动输出允许 (VCC 或VC 增加)滞后Vth(on)VH8.20.18.90.2100.3V电源电流管脚17 (VCC = VC = 20 V)管脚17 ( VCC = 20 V, VC = 30 V) 管脚18 ( VCC = VC = 20 V)管脚18 (VCC = 20 V, VC = 30 V) ICCIC--------12143.55.01620 06.010mA注: 1.输入共模电压或输入信号电压不能低于-0.3V。
基于51单片机的直流减速电机驱动电路的设计

基于51单片机的直流减速电机驱动电路的设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!基于51单片机的直流减速电机驱动电路的设计引言直流减速电机在各种应用中广泛使用,其驱动电路设计直接影响到电机的性能和稳定性。
《电动机控制电路》课件

它主要用于驱动各种机械设备, 满足生产和生活需求。
电动机控制电路的组成
01
02
03
主电路
主电路是电动机直接接入 的部分,主要由断路器、 接触器、电动机等组成。
控制电路
控制电路用于控制主电路 的工作,主要由控制按钮 、继电器、接触器等组成 。
保护电路
保护电路用于保护电动机 和控制电路的安全,主要 由热继电器、熔断器等组 成。
ห้องสมุดไป่ตู้
04
CATALOGUE
电动机控制电路的应用
电动机控制电路在工业自动化中的应用
自动化生产线
电动机控制电路用于驱动 各种机械装置,实现自动 化生产线的连续运转。
物流系统
在物流系统中,电动机控 制电路驱动传送带、升降 机等设备,实现货物的快 速、准确传输。
工业机器人
电动机控制电路用于驱动 工业机器人的关节,使其 能够实现复杂、精确的动 作。
方向,实现方向控制。
02
CATALOGUE
电动机控制电路的种类
交流电动机控制电路
交流电动机控制电路是指通过交流电源驱动交流电动机的电路。它通常由电源开 关、接触器、热继电器、熔断器等组成,用于控制电动机的正反转、调速和制动 等操作。
交流电动机控制电路的优点是结构简单、成本低廉、维护方便,适用于大多数工 业控制和自动化设备中。
电动机控制电路的发展趋势和挑战
发展趋势
未来电动机控制电路将趋向于高效、 环保、智能化发展,满足日益增长的 需求。
挑战
随着技术的不断发展,电动机控制电 路面临着成本、技术更新换代、市场 接受度等方面的挑战。同时,如何实 现电动机控制电路的可持续发展也是 当前面临的重要问题。
四种直流电机驱动电路图及设计思路讲解,有图有真相!

四种直流电机驱动电路图及设计思路讲解,有图有真相!下面为您详细介绍直流电机驱动设计需要注意的事项,低压驱动电路的简易栅极驱动、边沿延时驱动电路图解及其设计思路。
一、直流电机驱动电路的设计目标在直流电机驱动电路的设计中,主要考虑一下几点:1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。
如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。
2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。
1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。
2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。
要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。
3)对控制输入端的影响。
功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。
4)对电源的影响。
共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。
5)可靠性。
电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。
电机不同的部分有不同的设计要求。
1.输入与电平转换部分:输入信号线由DATA引入,1脚是地线,其余是信号线。
注意1脚对地连接了一个2K欧的电阻。
当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。
当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。
或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。
高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。
4种直流电机控制电路详解,含图

4种直流电机控制电路详解,含图含公式,直观又细致,不懂都难!旺材电机与电控2小时前私信“干货”二字,即可领取138G伺服与机器人专属及电控资料!直流电机在家用电器、电子仪器设备、电子玩具、录相机及各种自动控制中都有广泛的应用。
但对它的使用和控制,很多读者还不熟悉,而且其技术资料亦难于查找。
直流电机控制电路集锦,将使读者“得来全不费功夫”!在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。
大家熟悉的录音机、电唱机、录相机、电子计算机等,都不能缺少直流电机。
所以直流电机的控制是一门很实用的技术。
本文将详细介绍各种直流电机的控制技术。
直流电机,大体上可分为四类:第一类为有几相绕组的步进电机。
这些步进电机,外加适当的序列脉冲,可使主轴转动一个精密的角度(通常在1.8°--7.5°之间)。
只要施加合适的脉冲序列,电机可以按照人们的预定的速度或方向进行连续的转动。
步进电机用微处理器或专用步进电机驱动集成电路,很容易实现控制。
例如常用的S A A l027或S A A l024专用步进电机控制电路。
步进电机广泛用于需要角度转动精确计量的地方。
例如:机器人手臂的运动,高级字轮的字符选择,计算机驱动器的磁头控制,打印机的字头控制等,都要用到步进电机。
第二类为永磁式换流器直流电机,它的设计很简单,但使用极为广泛。
当外加额定直流电压时,转速几乎相等。
这类电机用于录音机、录相机、唱机或激光唱机等固定转速的机器或设备中。
也用于变速范围很宽的驱动装置,例如:小型电钻、模型火车、电子玩具等。
在这些应用中,它借助于电子控制电路的作用,使电机功能大大加强。
第三类是所谓的伺服电机,伺服电机是自动装置中的执行元件,它的最大特点是可控。
在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小,除去控制信号电压后,伺服电机就立即停止转动。
伺服电机应用甚广,几乎所有的自动控制系统中都需要用到。
基于场效应管的直流电机驱动控制电路设计

基于场效应管的直流电机驱动控制电路设计一、本文概述随着现代电子技术的飞速发展,直流电机因其优良的控制性能和简单的结构设计,在工业自动化、精密仪器和消费电子等领域得到了广泛应用。
传统的直流电机驱动控制电路存在功耗大、效率低、响应速度慢等问题,难以满足当前对高性能电机控制系统的需求。
研究新型的直流电机驱动控制电路具有重要意义。
本文主要聚焦于基于场效应管的直流电机驱动控制电路设计。
场效应管(FET)作为一种高效、快速的电子器件,在电机驱动领域具有独特的优势。
本文将首先介绍场效应管的基本原理和特性,以及其在直流电机驱动控制中的应用优势。
接着,本文将详细阐述一种基于场效应管的直流电机驱动控制电路的设计方法,包括电路的拓扑结构、工作原理以及关键参数的设计与优化。
本文的研究重点在于如何通过优化电路设计,提高直流电机驱动控制系统的性能,包括降低功耗、提高效率、加快响应速度等。
本文还将探讨电路设计中可能遇到的问题和挑战,并提出相应的解决策略。
总体而言,本文旨在为直流电机驱动控制电路的设计提供一种新的思路和方法,以推动电机控制技术在现代工业和电子领域的应用与发展。
二、场效应管基础知识场效应管(FieldEffect Transistor,简称FET)是一种利用电场效应来控制电流流动的半导体器件。
它具有三个引脚:源极(Source)、栅极(Gate)和漏极(Drain)。
场效应管的主要类型包括结型场效应管(JFET)和金属氧化物半导体场效应管(MOSFET)。
在直流电机驱动控制电路中,MOSFET因其高输入阻抗、低导通电阻和高开关速度等特点而得到广泛应用。
场效应管的工作原理基于电场效应。
在MOSFET中,当在栅极和源极之间施加一个电压时,会在栅极和硅基片之间形成一个电场。
这个电场会影响硅基片中的电荷分布,从而控制源极和漏极之间的电流流动。
当栅极电压达到一定阈值时,MOSFET开始导通,电流可以在源极和漏极之间流动。
场效应管的特性参数对其在电路中的应用至关重要。
10W到500W-空心杯电机驱动电路-超稳定

10W到500W-空心杯电机驱动电路-超稳定空心杯电机灵敏、无齿槽效应、效率高达86%左右,特别是功率体积比非常高。
这点甚至超越永磁同步电机(伺服电机)。
目前价格正在快速下降。
数年内将替代很多铁芯电机。
这篇文章是我自己根据多个项目的工作经验写的,关于电机的驱动部分电路。
实际证明这电路适用范围广,高可靠性。
同行们应该很喜欢。
物有所值。
L301+24V4.7uH/13A31CODER_LD313__100CT12342CODER_L_ACODER_L_BC324101+5VE3011470uF/10VC325101CODER_L_BC_L_BCODER_L_A234567U3081A1Y2A2Y3A3YGND74HC14VCC6A6Y5A5Y4A4YR3222K/1WGND-P+24V-PC317102GND-P+5VC30714131211CODER_R_A1098C_R_ACODER_R_BC_R_B105E3112200uF/63VR3010RCODER_RM_L12L303M_L_R_VS47uH/6.8AC321C3204.7nF/630VM_L_L_VS4.7nF/630V1234CODER_R_ACODER_R_B470uF/10 VC327101M_R12L304M_R_R_VS47uH/6.8AC323C3224.7nF/630VM_R_L_ VS4.7nF/630VC326101+5VE302C_L_AU301M_L_PWM12345M_L_L_IN671A1B1Y2A2B2YGNDNAND74HC00VCC4B4A4Y3B3A3Y+5VC30214131211M_L_R_IN1098M_L_DIR105U302M_R_PWM12345M_R_L_IN671A1B1Y2A2B2YGNDNAND74HC00VCC4B4A4Y3B3A3Y+5VC30814131211M_R_R_IN1098M_R_DIR105U303M_R_R_IN12M_R_R_INM_R_L_IN345M_R_L_IN671A1B1Y2A 2B2YGNDNAND74HC00VCC4B4A4Y3B3A3Y+5VC3281413M_L_R_IN1051211M_L_R_IN10M_L_L_IN98M_L_L_INM_L_L_INR30210kU304123INSDVSSDTCOMLOVCCIRS__S2NCVBHOVSNCNCNC+15V+24V-P1U309IP+IP+__712VCCVIOUTFILTERGND8765R31010 5C31510K103M_L_IR31215KC318102+5VC309+24V-P_L2D3141.5KE33A3 R303+15V4GND-P10KE303514D3011312111049GND-P8+24V-P_LD3052C303M_L_L_HO1N4148105M_L_L_VSM_L_L_LO100UF/25V6E304+15V7C311100UF/25VM_L_R_INR3041 0k103123R305+15V4GND-P10KE3055Q302D307DG1R3151N4148S51M_L_R_VS__0Q304D308DG1SR3171 N414851__0M_L_R_HOU305INSDVSSDTCOMLOVCCIRS__SU306123INSDVSSDTCOMLO VCCIRS__SU307123INSDVSSDTCOMLOVCCIRS__SNCVBHOVSNCNC NC14D3041312111098C306M_R_R_HO1N4148105M_R_R_VS+15VM_R_ L_HONCVBHOVSNCNCNC14D30313+24V-P_R12111098GND-PC305M_R _L_HO1N4148105M_R_L_VSD3151.5KE33A+15VNCVBHOVSNCNCNC1 4D302131211109C304M_L_R_HO1N4148105M_L_R_VSM_L_L_LO+15V M_L_L_HOR3141N414851D306R3161N4148511G1GDS23Q301__0DS3Q303__023M_L_L_VSM_L_R_LOM_L_R_LO100UF/25V6E306+15V7C312100UF/25V103M_R_L_INR 30610kGND-P8+24V-P1234U310IP+IP+__712+24V-P_RVCCVIOUTFILTERGND87653+5VC310R311105C31610K103M_R_IR31315KC319102R307+15V4GND-P10KE3075M_R_L_LO100UF/25V6E308+15V7C313100UF/25VM_R_R_INR308 10k1032D309R3181N414851D310R3201N414851GG2Q306D311DR3191N4148S51M_R_R_VS_ _0Q308D312 DG1SR3211N414851__0G1M_R_R_HOD1S23Q305__0DM_R_L_LO1S3R309+15VQ307__04GND-P10KE309523M_R_L_VSM_R_R_LOM_R_R_L100UF/25VO6E310+15V7C314100UF/25V103GND-P3空心杯电机灵敏、无齿槽效应、效率高达86%左右,特别是功率体积比非常高。
减速器原理图

减速器原理图
减速器是一种用来减少机械设备运动速度并增加扭矩的装置。
它通常由齿轮传动系统组成,通过不同大小的齿轮组合来实现速度的减小和扭矩的增加。
下面我们将详细介绍减速器的原理图及其工作原理。
首先,我们来看一下减速器的结构。
减速器通常由输入轴、输出轴、齿轮组、外壳等部分组成。
输入轴连接到驱动装置,输出轴连接到被驱动装置,齿轮组则是实现速度减小和扭矩增加的关键部件。
外壳则起到保护和支撑齿轮组的作用。
接下来,我们来看一下减速器的工作原理。
当输入轴带动第一个齿轮转动时,它会通过啮合传动的方式带动第二个齿轮转动,第二个齿轮的大小通常比第一个齿轮大,因此它的转速会减小,但扭矩会增加。
同理,第二个齿轮再带动第三个齿轮转动,以此类推,最终输出轴的转速会比输入轴的转速小,但扭矩会比输入轴大。
减速器的原理图如下所示:
(在此插入减速器原理图)。
从原理图中可以看出,输入轴和输出轴之间通过齿轮组连接,而齿轮组的大小决定了最终的速度和扭矩。
减速器的工作原理就是通过这种齿轮传动的方式来实现速度和扭矩的转换。
除了常见的齿轮传动方式,减速器还可以采用带传动、链传动等方式来实现速度和扭矩的转换。
不同的传动方式在原理上略有差异,但都是通过改变传动比来实现速度和扭矩的转换。
总的来说,减速器是一种常见的机械传动装置,通过齿轮组等传动方式来实现速度和扭矩的转换。
它在各种机械设备中都有广泛的应用,如汽车、风力发电机、工业机械等领域。
希望通过本文的介绍,您对减速器的原理图和工作原理有了更深入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个电动小车整体的运行性能,首先取决于它的电池系统和电机驱动系统。
电动小车的驱动系统一般由控制器、功率变换器及电动机三个主要部分组成。
电动小车的驱动不但要求电机驱动系统具有高转矩重量比、宽调速范围、高可靠性,而且电机的转矩-转速特性受电源功率的影响,这就要求驱动具有尽可能宽的高效率区。
我们所使用的电机一般为直流电机,主要用到永磁直流电机、伺服电机及步进电机三种。
直流电机的控制很简单,性能出众,直流电源也容易实现。
本文即主要介绍这种直流电机的驱动及控制。
1.H 型桥式驱动电路
直流电机驱动电路使用最广泛的就是H型全桥式电路,这种驱动电路可以很方便实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。
它的基本原理图如图1所示。
全桥式驱动电路的4只开关管都工作在斩波状态,S1、S2为一组,S3、
S4 为另一组,两组的状态互补,一组导通则另一组必须关断。
当S1、S2导通时,S3、S4关断,电机两端加正向电压,可以实现电机的正转或反转制动;当S3、S4导通时,S1、S2关断,电机两端为反向电压,电机反转或正转制动。
在小车动作的过程中,我们要不断地使电机在四个象限之间切换,即在正转和反转之间切换,也就是在S1、S2导通且S3、S4关断,到S1、S2关断且S3、S4导通,这两种状态之间转换。
在这种情况下,理论上要求两组控制信号完全互补,但是,由于实际的开关器件都存在开通和关断时间,绝对的互补控制逻辑必然导致上下桥臂直通短路,比如在上桥臂关断的过程中,下桥臂导通了。
这个过程可用图2说明。
因此,为了避免直通短路且保证各个开关管动作之间的协同性和同步性,两组控制信号在理论上要求互为倒相的逻辑关系,而实际上却必须相差一个足够的死区时间,这个矫正过程既可以通过硬件实现,即在上下桥臂的两组控制信号之间增加延时,也可以通过软件实现(具体方法参看后文)。
驱动电流不仅可以通过主开关管流通,而且还可以通过续流二极管流通。
当电机处于制动状态时,电机便工作在发电状态,转子电流必须通过续流二极管流通,否则电机就会发热,严重时烧毁。
开关管的选择对驱动电路的影响很大,开关管的选择宜遵循以下原则:
(1)由于驱动电路是功率输出,要求开关管输出功率较大;
(2)开关管的开通和关断时间应尽可能小;
(3)小车使用的电源电压不高,因此开关管的饱和压降应该尽量低。
在实际制作中,我们选用大功率达林顿管TIP122或场效应管IRF530,效果都还不错,为了使电路简化,建议使用集成有桥式电路的电机专用驱动芯片,如L298、LMD18200,性能比较稳定可靠。
由于电机在正常工作时对电源的干扰很大,如果只用一组电源时会影响单片机的正常工作,所以我们选用双电源供电。
一组5V给单片机和控制电路供电,另外一组9V给电机供电。
在控制部分和电机驱动部分之间用光耦隔开,以免影响控制部分电源的品质,并在达林顿管的基极加三极管驱动,可以给达林顿管提供足够大的基极电流。
图3所示为采用TIP122的驱动电机电路,IOB8口为“0”,IOB9口输入PWM波时,电机正转,通过改变PWM的占空比可以调节电机的速度。
而当IOB9口为“0”,IOB8口输入PWM 波时,电机反转,同样通过改变PWM的占空比来调节电机的速度。
图4为采用内部集成有两个桥式电路的专用芯片L298所组成的电机驱动电路。
驱动芯片L298是驱动二相和四相步进电机的专用芯片,我们利用它内部的桥式电路来驱动直流电机,这种方法有一系列的优点。
每一组PWM波用来控制一个电机的速度,而另外两个I/O口可以控制电机的正反转,控制比较简单,电路也很简单,一个芯片内包含有8个功率管,这样简化了电路的复杂性,如图所示IOB10、IOB11控制第一个电机的方向,IOB8输入的PWM控制第一个电机的速度;IOB12、IOB13控制第二个电机的方向,IOB9输入的PWM控制第二个电机的速度。
LMD18200是美国国家半导体公司推出的专用于直流电动机驱动的H桥组件,同一芯片上集成有CMOS控制电路和DMOS功率器件。
此种芯片瞬间驱动电流可达6A,正常工作电流可达3A,具有很强的驱动能力,无“shot-through”电流,而且此种芯片内部还具有过流保护的测量电路,只需要在LMD18200的8脚输出端测出电压和给定的电压比较即可保护电路过流,从而实现电路的过流保护功能。
由LMD18200组成的电机驱动电路如图5所示。
LMD18200的5脚为PWM 波输入端,通过改变PWM的占空比就可调节电机的速度,改变3脚的高低电平即可控制电机的正反转。
此电路和以上几种驱动电路比较具有明显的优点,驱动功率大,稳定性好,实现方便,安全可靠。
2 .P W M 控制
PWM(脉冲宽度调制)控制,通常配合桥式驱动电路实现直流电机调速,非常简单,且调速范围大,它的原理就是直流斩波原理。
如图1所示,若S3、S4 关断,S1、S2受PWM控制,假设高电平导通,忽略开关管损耗,则在一个周期内的导通时间为t,周期为T,波形如图6,则电机两端的平均电压为:U=Vcc t/ T=αVcc ,其中,α=t/T称为占空比,Vcc为电源电压(电源电压减去两个开关管的饱和压降)。
电机的转速与电机两端的电压成比例,而电机两端的电压与控制波形的占空比成正比,因此电机的速度与占空比成比例,占空比越大,电机转得越快,当占空比α=1时,电机转速最大。
PWM控制波形的实现可以通过模拟电路或数字电路实现,例如用555搭成的触发电路,但是,这种电路的占空比不能自动调节,不能用于自动控制小车的调速。
而目前使用的大多数单片机都可以直接输出这种PWM波形,或通过时序模拟输出,最适合小车的调速。
我们使用的是凌阳公司的SPCE061单片机,它是16位单片机,频率最高达到49MHz,可提供2路PWM 直接输出,频率可调,占空比16级可调,控制电机的调速范围大,使用方便。
SPCE061单片机有32个I/O口,内部设有2个独立的计数器,完全可以模拟任意频率、占空比随意调节的PWM信号输出,用以控制电机调速。
在实际制作过程中,我们认为控制信号的频率不需要太高,一般在400Hz以下为宜,占空比16级调节也完全可以满足调速要求,并且在小车行进的过程中,占空比不应该太高,在直线前进和转弯的时候应该区别对待。
若车速太快,则在转弯的时候,方向不易控制;而车速太慢,则很浪费时间。
这时图6可以根据具体情况慢慢调节。
在2003年“简易智能电动车”的实际制作中,我们的小车驱动信号的占空比一般在8/16以下。
3.通过软件避免直通短路
从前面的分析可知,桥式驱动电路中,由于开关管有开通和关断时间,因此存在上下桥臂直通短路的问题。
直通短路的存在,容易使开关管发热,严重时烧毁开关管,同时也增加了开关管的能量损耗,浪费了小车宝贵的能量。
由于现在的许多集成驱动芯片内部已经内置了死区保护(如LMD18200),这里主要介绍的是利用开关管等分立元件以及没有死区保护的集成芯片制作驱动电路时增加死区的方法。
死区时间的问题,只有在正转变为反转的时候才存在,而在正转启动或反转启动的时候并没有,因此不需要修正。
如果开关管的开通和关断时间非常小,或者在硬件电路中增加延时环节,都可以降低开关管的损耗和发热。
当然,通过软件避免直通短路是最好的办法,它的操作简单,控制灵活。
通过软件实现死区时间,就是在突然换向的时候,插入一个延时的环节,待开关管关断之后,再开通应该开通的开关管。
图7为利用软件修正死区时间的流程图,在开关管每次换向的时候,不立即进行方向的切换,而是先使开关管关断一段时间,使其完全关断后再换向打开另外的开关管。
这个关断时间由单片机软件延时实现。
4.总结
以上主要分析了电机的全桥式驱动电路,这是直流电机调速使用最多的调速方法。
目前市场上有很多种电机驱动的集成电路,效率高,电路简单,使用也比较广泛,但是其驱动方法大多。