实验3半导体温度计的设计

合集下载

电子体温计毕业设计

电子体温计毕业设计

电子体温计毕业设计篇一:毕业论文-电子体温计设计毕业论文(设计)题目电子体温计(硬件部分)的设计院系专业年级学生姓名学号指导教师电子体温计(硬件部分)的设计电子信息工程专业学生指导教师【摘要】体温计是人们生活中的必不可少的用品。

在现代化的工业生产中,单片机技术已经普及到我们生活、工作、科研各个领域,已经成为一种有力的工具,本文介绍一种基于单片机控制的电子温度计。

本设计采用电子体温计系统的硬件设计,采用一种新型的可编程温度传感(DS18B20),不需复杂的信号调理电路和A/D转换电路能直接与单片机完成数据采集和处理,实现方便、精度高,性能稳定。

传感器DS18B20接触人体,感应温度后,模数转化后的电信号送入STC89C52单片机,并将其送入LCD1602数码管显示。

它能快速准确地测量人体体温,与传统的水银玻璃体温计相比,具有读数方便,测量时间短,测量精度高,能记忆并有蜂鸣提示的优点。

并且超过预定的温度,回有报警提示。

尤其是电子体温计不含水银,对人体及周围环境无害,特别适合于家庭,医院等场合使用。

【关键词】电子体温计 DS18B20传感器 STC89C52单片机 LCD1602显示屏The Design Of The Electronic ThermometerElectronic And Information Engineering【Abstract】The thermometer is essential necessities in people's lives. In modern industrial production, single-chip technology has spread to the way we live, work, research in various fields, has bexxe a powerful tool, this paper describes a microcontroller-based control of electronic thermometers.This design uses the hardware design of the electronic thermometer system, a new type of programmable temperature sensor , data acquisition and processing does not require xxplicated signal conditioning circuitry and the A / D conversion circuit with a microcontroller, easy to achieve accuracy high and stable performance. Sensor DS18B20 contact with thehuman body, the sensor temperature, the electrical signals into the analog-to-digital conversion STC89C52 microcontroller and into the LCD1602 digital display. It can quickly and accurately measure the body temperature, xxpared with traditional mercury glass thermometer, with the easy reading, short measurement time, high measurement accuracy, memory and Beeper advantages. And exceeds a predetermined temperature, back to the alarm. Electronic thermometer mercury-free, on the human body and ambient sound, especially suitable for families, hospitals and other occasions.【Key words】Digital Thermometer DS18B20 Sensor STC89C52 Microcontroller LCD1602 Display目录绪论 ................................................ (1)1 任务要求 ................................................ (2)2 设计思路 ................................................ (2)3 系统设计 ................................................ (2)4 方案设计与论证 ................................................ (2)5 系统框图 ................................................ (4)6 硬件电路设计 ................................................ .. (4)6.1 传感器电路 ................................................ . (4)6.1.1 DS18B20四个比较重要的主要的数据部件 (4)6.1.2 数字温度传感器DS18B20介绍 (6)6.2 单片机电路 ................................................ (7)6.3 LCD1602显示屏电路 ................................................ .. 116.4 电源模块 ................................................ .. (12)7 PCB电路板的制作 ................................................ (14)8 系统调试与测量 ................................................ .. (14)8.1 系统调试 ................................................ .. (14)8.2 测量数据 ................................................ .. (15)8.3 误差分析 ................................................ .. (16)设计总结 ................................................ . (17)参考文献 ................................................ . (18)致谢 ................................................ . (19)绪论体温测量的历史,最早出现在16世纪。

实验3半导体温度计的设计

实验3半导体温度计的设计

实验7.3 半导体温度计的设计温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关,温度与科研,生产,人们的生活,植物生长有密切的关系,因此对温度的研究就显得尤为重要。

半导体温度计是以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。

这种测量方法为非电量的电测法,它可以将各种非电量,如长度、位移、应力、应变、温度、光强等转变成电学量,如电阻、电压、电流、电感和电容等,然后用电学仪器来进行测量。

直流电桥是一种精密的电学测量仪器,可分为平衡电桥和非平衡电桥两类。

平衡电桥是通过调节电桥平衡,将待测电阻与标准电阻进行比较得到待测电阻的大小,如惠斯登电桥、开尔文电桥等都是平衡式直流电桥。

由于需要调节平衡,因此平衡电桥只能用于测量具有相对稳定状态的物理量。

随着测量技术的发展,电桥的应用不再局限于平衡电桥的范围,非平衡电桥在非电量的测量中已得到广泛应用。

实际工程和科学实验中,待测量往往是连续变化的,只要能把待测量同电阻值的变化联系起来,便可采用非平衡电桥来测量。

将各种电阻型传感器接入电桥回路,桥路的非平衡电压就能反映出桥臂电阻的微小变化,因此,通过测量非平衡电桥的输出电压就可以检测出待测量的变化,如温度、压力、湿度等。

本实验要求测试温度在20~70℃的范围内,选用合适的热敏电阻和非平衡电桥线路来设计一个导体温度计。

这是一个比较典型的非平衡电桥应用实例,也是市场上各类半导体温度计的雏形,具有一定实用价值。

【实验目的】1.了解非平衡电桥的工作原理及其在非电量电测法中的应用。

2.理解以热敏电阻为检测元件的温度传感器的电路结构及电路参数的选择原则。

3.根据热敏电阻的伏安特性和电阻-温度特性,依据设计要求,掌握半导体温度计的设计方案以及温度计的定标。

【实验仪器】计算机仿真软件【实验原理】1.热敏电阻热敏电阻是一种阻值随温度改变发生显著变化的敏感元件。

与一般常用的金属电阻相比,它有大得多的电阻温度系数值。

温度计的制作

温度计的制作

3.变压器
• 变压器在电器设备和无线电路中,变压器常用作 升降电压、匹配阻抗,安全隔离等。在发电机中, 不管是线圈运动通过磁场或磁场运动通过固定线 圈,均能在线圈中感应电势,此两种情况,磁通 的值均不变,但与线圈相交链的磁通数量却有变 动,这是互感应的原理。变压器就是一种利用电 磁互感应,变换电压,电流和阻抗的器件。
六、参考文献
• 1.史去非,等著 《温度计量测试丛书:电 阻温度计》
• 2.王魁汉. 《温度测量新技术 温度测量新 方法》
• 3. 李吉林. 《温度计量》
三、实验原理
• 1.热敏电阻的工作原理 • 热敏电阻将长期处于不动作状态;当环境温度和
电流处于c区时,热敏电阻的散热功率与发热功率 接近,因而可能动作也可能不动作。热敏电阻在 环境温度相同时,动作时间随着电流的增加而急 剧缩短;热敏电阻在环境温度相对较高时具有更 短的动作时间和较小的维持电流及动作电流。
2.热敏电阻的基本特性
• 热敏电阻的电阻-温度特性可近似地用下式表示: R=R0exp{B(1/T-1/T0)}:R:温度T(K)时的电 阻值、Ro:温度T0、(K)时的电阻值、B:B值、 *T(K)=t(ºC)+273.15。实际上,热敏电阻的 B值并非是恒定的,其变化大小因材料构成而异, 最大甚至可达5K/°C。因此在较大的温度范围内 应用式1时,将与实测值之间存在一定误差。此处, 若将式1中的B值用式2所示的作为温度的函数计 算时,则可降低与实测值之间的误差,可认为近 似相等。

四、实验过程及成果展示 • 1.直流稳压电源的制作
2、表头的制作
• 3.温度计的整合
• 将电源、热敏电阻、表头按一定顺序连成 一个完整的电路

半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告大学热敏电阻实验报告大学热敏电阻实验报告摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。

本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。

关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。

因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。

国产的主要是指MF91~MF96型半导体热敏电阻。

由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。

大多应用于测温控温技术,还可以制成流量计、功率计等。

Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。

这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。

载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。

应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。

2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。

【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。

半导体温度计的设计和制作实验

半导体温度计的设计和制作实验

半导体温度计的设计和制作实验(非平衡电桥)在温度不太低或不太高(如从-20o C到几百度)的情况下,通常可以用水银温度计来测一定的温度。

由于生产和科学实验的发展,需要精密和快速的温度测量,因而就需要灵敏度较高的温度计。

现在已有各种用途的温度计,半导体温度计就是其中的一种。

本实验的半导体温度计利用热敏电阻为传感器,利用非平衡电桥实现由电学量测量一些变化的非电量,这种思想现在应用范围扩展到很多领域,如长度、位移、应力、应变、温度、光强等转变成电学量,如电阻、电压、电流、电感和电容等,然后用电学仪器来进行测量。

一、实验目的1.理解非平衡电桥的工作原理及其在非电量的电测法中的应用。

2.了解半导体温度计的基本原理并设计制作一台半导体温度计二、实验原理1.热敏电阻伏安特性曲线为测量热敏电阻的阻值,需了解热敏电阻的伏安特性。

由图1可知,在V-I 曲线的起始部分,因电流很太小,温度变化微小,曲线接近线性。

此时其阻值主要与外界温度有关。

图1 热敏电阻伏安特性曲线半导体温度计是利用热敏电阻的阻值随温度变化急剧的特性制作的,通过测量热敏电阻的阻值来确定温度的仪器。

应根据待测温度区间和热敏电阻的阻值选用合适电学元件和测温电路。

2.半导体温度计测温电路的原理非平衡电桥的工作原理图如下:图2 半导体温度计测温电路原理图图中G 是微安表, R T 为热敏电阻,当电桥平衡时,表的指示必为零,此时应满足条件:TR R R R 321= (1) 若取R 1 = R 2,则R 3的数值即为R T 的数值。

平衡后的电桥若其中某一臂的电阻又发生改变,则平衡将受到破坏,微安表中将有电流流过,此为非平衡电桥。

由基尔霍夫方程组求出CD T T G T T G V R R R R R R R R R R R R R R R I 23232121232212+++++-+= (2)由此可见微安表中的电流大小直接反映了热敏电阻的阻值的大小程度。

由于热敏电阻的大小与环境温度是一一对应关系,因此可以利用这种“非平衡电桥”的电路原理来实现对温度的测量。

DS18B20数字温度计设计实验报告(1)【范本模板】

DS18B20数字温度计设计实验报告(1)【范本模板】

单片机原理及应用课程设计报告书题目:DS18B20数字温度计姓名: 李成学号:133010220指导老师:周灵彬设计时间: 2015年1月目录1. 引言 (3)1。

1.设计意义31.2。

系统功能要求32。

方案设计 (4)3. 硬件设计 (4)4. 软件设计 (8)5。

系统调试106. 设计总结 (11)7. 附录 (12)8. 参考文献 (15)DS18B20数字温度计设计1.引言1.1. 设计意义在日常生活及工农业生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。

而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。

其缺点如下:●硬件电路复杂;●软件调试复杂;●制作成本高.本数字温度计设计采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为—55~125℃,最高分辨率可达0。

0625℃。

DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的热点。

1.2. 系统功能要求设计出的DS18B20数字温度计测温范围在0~125℃,误差在±1℃以内,采用LED数码管直接读显示.2. 方案设计按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路.数字温度计总体电路结构框图如4。

1图所示:图4.13。

硬件设计温度计电路设计原理图如下图所示,控制器使用单片机AT89C2051,温度传感器使用DS18B20,使用四位共阳LED 数码管以动态扫描法实现温度显示。

AT89C51 主 控制器 DS18B20 显示电路 扫描驱动主控制器单片机AT89C51具有低电压供电和小体积等特点,两个端口刚好满足电路系统的设计需要,很适合便携手持式产品的设计使用.系统可用两节电池供电。

AT89C51的引脚图如右图所示:VCC:供电电压。

数字式温度计的设计与制作

数字式温度计的设计与制作

设计三数字式温度计的设计与制作一、目的和要求1.目的(1)通过本次综合设计,进一步了解智能传感与检测技术的基本原理、智能检测系统的建立和智能检测系统的设计过程。

(2)学生设计制作出数字式温度计,提高学生有关工程系统的程序设计能力,。

(3)进一步熟悉掌握单片机技术、c 语言、汇编语言等以及在智能检测设计中的应用。

2.要求(1)充分理解设计内容,并独立完成综合设计报告。

(2)综合设计报告要求:综合设计题目,综合设计具体内容及实现功能,结果分析、收获或不足,程序清单,参考资料。

二、实验设备及条件热电偶Easypro编程软件热电偶或智能传感器DS18B20Keil c安装盘PC机、剥线钳、面包板、镊子、导线、电源、示波器、万用表、频率计单片机及其外围电路所需元器件烙铁、焊接板等焊接工具万用表电源TEKTRONIX TDS1002 60MHZ示波器三、实验原理、内容本实验培养学生了解便携式数字仪表的制作,数字式显示仪表是一种以十进制数形式显示被测量值的仪表,与模拟式的显示仪表相比较,数字显示仪表具有读数直观方便,无读数误差准确度高,响应速度快,易于和计算机联机进行数据处理等优点。

数字式显示仪表的基本构成方式如下,图中各基本单元可以根据需要进行组合,以构成不同用途的数字式显示仪表。

将其中一个或几个电路制成专用功能模块电路,若干个模块组装起来,即可以制成一台完整的数字式显示仪表。

其核心部件是模拟/数字转换器,可以将输入的模拟信号转换成数字信号,以A/D转换器为中心,可将显示仪表内部分为模拟和数字两大部分。

仪表的模拟部分一般设有信号转换和放大电路,模拟切换开关等环节。

信号转换电路和放大电路的作用是将来自各种传感器或变换器的被测信号转换成一定范围内的电压值并放大到一定幅值,以供后续电路处理。

仪表的数字部分一般由计数器,译码器,时钟脉冲发生器,驱动显示电路以逻辑控制电路等组成。

经放大后的模拟信号由A/D转换器转换成相应的数字量后,译码,驱动,送到显示器件去进行数字显示。

基于PIC32单片机的温度计设计

基于PIC32单片机的温度计设计

北京邮电大学基于DS18B20和PT100的温度计的研究与设计实验报告姓名:班级:学号:学院:信息与通信工程学院指导老师:葛顺明摘要本设计为一个基于PIC32MX795F512L单片机的温度计,利用键盘按键来选择温度传感器的线路。

能够实时将数据传至液晶屏和电脑显示。

根据单片机的工作原理,通过硬件电路制作和软件编译,设计出一个能够双路实时显示的温度计。

该系统主要由液晶显示模块、键盘模块、温度传感器模块以及串口模块组成。

设计利用MPLAB软件对温度计源程序进行编译和调试。

可以进行数字和模拟两种方式得到相应的温度值并进行两种方式的优缺点比较。

关键词:PIC32MX795F512L单片机,模块,模拟,数字。

SUMMARYThe design for a thermometer based on PIC32MX795F512L microcontroller, using the keys on the keyboard to select the temperature sensor circuit. Real time data to the LCD screen and a computer display. According to the working principle of the single-chip hardware circuit production and software compiler design a two-way real-time display of the thermometer. The system mainly consists of the LCD module, keyboard module, temperature sensor module, and serial modules. Design thermometer source code to compile and debug using MPLAB software. Can be both digital and analog manner to give the corresponding temperature value, and the advantages and disadvantages of the two methods of comparison.KEY WORDS:PIC32MX795F512L microcontroller module, analog and digital.目录一,引言 4二,背景介绍 52.1 PIC32系列单片机简介52.2 DS18B20温度传感器52.3 PT100温度传感器82.4 LCD1602 82.5 4*4键盘92.6 串口与MAX232 102.7 MPLAB简介11三,设计总体方案和研究意义113.1系统模块图113.2 研究意义11四,每部分具体实施:121.DS18B20温度传感器部分122. ADC模数转换部分183. LCD1602部分184.键盘部分195. 串口部分20五,实验遇到的问题及心得体会20 六,实验源代码21七,参考文献33一,引言现在可以说单片机是百花齐放,百家争鸣的时期,世界上各大芯片制造公司都推出了自己的单片机,从8位、16位到32位,数不胜数,应有尽有,有与主流C51系列兼容的,也有不兼容的,但它们各具特色,互成互补,为单片机的应用提供广阔的天地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验7.3 半导体温度计的设计一、实验简介在温度不太低或不太高(如从-20°C到几百度)的情况下,通常可以用水银温度计来测一定的温度。

由于生产和科学实验的发展,需要精密和快速的温度测量,因而就需要灵敏度较高的温度计。

现在已有各种用途的温度计,半导体温度计就是其中的一种。

虽然热敏电阻对温度非常灵敏,但通常每个元件可适用的范围都不太宽,所以应根据所要测量的温度的上、下限和温度范围的高低选用具有合适阻值和B值的元件以及相应的测温电路。

元件的B值越高,其电阻温度系数越大,可测量的范围越窄。

表1给出了不同热敏电阻的适用范围和对应的B值。

表1 不同热敏电阻的适用范围和对应的B值适用的温度范围对应的B值T=23~173K B=200~1000KT=173~573K B=1500~6000KT=573~973K B=8000~10000KT>973K B>10000K由上表可知,测量低温采用B小的元件,测量高温采用B大的元件。

通常选用电阻值,因为电阻值太小灵敏度低,电阻值太大则会引起电绝缘和测量线路匹配困难。

在各种热敏电阻的测温电路中,以分压电路和桥式电路的应用最广。

本实验要求测试温度在20~70 ℃的范围内,选用合适的热敏电阻和非平衡电桥线路(或选用你认为更好的测温电路)来设计一半导体温度计。

二、实验目的1.根据热敏电阻的伏安特性和电阻温度特性,根据设计要求制订设计方案,标定温度计。

2.了解非平衡电桥的工作原理及其在非电量电测法中的应用。

三、实验原理半导体温度计就是利用半导体的电阻值随温度急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。

这种测量方法为非电量的电测法,它可以将各种非电量,如长度、位移、应力、应变、温度、光强等转变成电学量,如电阻、电压、电流、电感和电容等,然后用电学仪器来进行测量。

由于金属氧化物半导体的电阻值对温度的反应很灵敏,因此可以作为温敏传感器。

为实现非电量的电测法,采用电学仪器来测量热敏电阻的阻值,还需要了解热敏电阻的伏安特性。

由图1可知,在V-I曲线的起始部分,曲线接近线性,这是因为电流小时在热敏电阻上消耗的功率不足以显著地改变热敏电阻的温度,因而符合欧姆定律。

此时,热敏电阻的阻值主要与外界温度有关,电流的影响可以忽略不计。

图1 热敏电阻伏安特性曲线图2 热敏电阻测温电路原理图半导体温度计测温电路的原理图如图2所示(仅供参考),图中G是微安计,为热敏电阻,当电桥平衡时,表的指示必为零,此时应满足条件,若取,则R的数值即为的数值。

平衡后,若电桥某一臂的电阻又发生改3变(如),则平衡将受到破坏,微安计中将有电流流过,若电桥电压,微安计内阻,电桥各臂电阻、、已定,就可以根据微安计的读数的大小计算出的大小来。

也就是说,微安计中的电流的大小直接反映了热敏电阻的阻值的大小,因此就可以利用这种“非平衡电桥”的电路原理来实现对温度的测量。

由上述可知,可由、、、确定和的关系,如何选定和、、呢?由电桥原理可知:当热敏电阻的阻值在测温量程的下限时,要求微安计的读数为零(即),此时电桥处于平衡状态,满足平衡条件。

若取,则,即就是热敏电阻处在测温量程的下限温度时的电阻值,由此也就决定了的电阻值。

当温度增加时,热敏电阻的电阻值就会减小,电桥出现不平衡,在微安计中时,要求微安计就有电流流过。

当热敏电阻处在测温量程的上限温度电阻值RT2的读数为满刻度。

此时,流入微安计中的电流与加在电桥两端的电压和、有关,由于选取起始状态(时)是对称电桥,即,故只与和有关。

若流入热敏电阻中的电流比流入微安计内的电流大得多(即),则加在电桥两端上的电压近似有(1)根据所选定的热敏电阻的最大工作电流(当时),可由式(1)确定供电电池的个数。

根据图2的电桥电路,由基尔霍夫方程组可以求出流入微安计的电流与、、、、的关系:(2)由于、,整理后有(3)由式(3)就可以最后确定()的数值。

这样确定的和是与选择的相对应,也就是和相对应的,由式(1),它取决于所选择的,小一些,则也小一些,相应的和的实际值也可以比计算值小一些,但不应比计算值大(为什么?)。

在本实验中,可以选取,代入式(3),可得。

一般加在电桥两端的电压比所选定的电池的电动势要低些,为了保证电桥两端所需的电压,通常在电源电路中串联一个可变电阻器R,它的电阻值应根据电桥电路中的总电流来选择。

四、实验内容用半导体热敏电阻作为传感器,设计制作一台测温范围为20~70 ℃的半导体温度计,参考电路见图3。

图3 半导体温度计参考电路1.设计要求(1)在所测量的温度范围内,要求作为温度计用的微安计的全部量程均能有效地利用,即当温度为20℃时,微安计指示为零;而温度为70℃时,微安计指示为满刻度。

(2)要求长时间的测量(如几分钟)时,微安计的读数应稳定不变。

2.可提供的仪器和元件热敏电阻及恒温水浴箱、微安表、可调电阻器(3个)、四线电阻箱、1.5V电池、单刀开关、滑动变阻器、万用表及表笔等。

3.参考设计方案(1)根据数据表(数据表格要加入)格中所给的热敏电阻值与各温度点对应关系表,确定所设计的半导体温度计的下限温度(20℃)所对应的电阻值RT1和上限温度(70℃)所对应的电阻值RT2。

再由热敏电阻的伏安特性曲线确定最大工作电流IT 。

根据实验中采用的热敏电阻的实际情况,选取VCD=1V,它可以保证热敏电阻工作在它的伏安特性曲线的直线部分。

数据表格(2)令,即测量温度的下限电阻值,由式(3)计算出桥臂电阻和的电阻值,公式中RT2为量程上限温度的电阻值,RG为微安表的内阻。

(3)调节可调电阻器R1、R2、R3电阻值,用多用表边测量边调节可调电阻器和,使之阻值达到式(3)的计算值(可以取比计算值略小的整数);并同样调节可调电阻器为测量下限温度(20℃)所对应的。

注意正确使用万用表,特别是欧姆档的正确使用方法。

(4)熟悉线路原理图(图2),并对照实验参考电路图(图3)所用元件、位置及线路的连接方向进行实验线路的连接。

(5)调节电桥平衡状态。

1)电阻箱的阻值为测量下限温度(20℃)所对应的;2)微安表调零,调节微安表调零旋钮,将微安表进行调零;3)调节滑动变阻器,选择使用数字万用表的电压档测量电桥分压,令。

4)闭合线路开关,观察电桥是否平衡。

如果不平衡,则微调可调电阻器,保持不变)。

使电桥平衡,平衡时微安表的读数为零(注意,在以后调节过程中,R3(6)标定微安表表盘1)电桥调节平衡完成以后,然后调节电阻箱的阻值为上限温度(70℃)所对应的,再次调节滑动变阻器,使微安表满量程(为什么调节滑动变阻器可使电表满刻度?)。

设想如果微安表正负输入端接反会有什么现象?2)保持电路各个仪器状态不变,依次调节电阻箱阻值等于20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃时对应的热敏电阻阻值,将不同阻值时微安表对应的电流值记录到数据表格中,同时将微安表表盘刻度改为温度刻度。

3)将图4的表盘刻度改成温度的刻度,将温度值输入到微安表窗体的“新增刻度”输入框中,并点击“新增刻度”按钮,此时会在微安表指针当前位置处新增一条红色刻度线并标有相应的温度值。

图4 微安表读数刻度盘(7)用实际热敏电阻代替电阻箱,整个部分就是经过定标的半导体温度计。

用此温度计测量两个恒温状态的温度(如35℃、55℃)。

读出半导体温度计和恒温水浴自身的温度,比较其结果。

4.注意事项(1)所要定标的温度点,应从热敏电阻的电阻-温度表格中读取。

(2)要先调节并测量好可调电阻器的阻值以后,再进行实验线路的连接。

(3)注意事项按钮。

右上角工具箱:各种使用工具,如计算器等。

右上角help和关闭按钮: help可以打开帮助文件,关闭按钮功能就是关闭实验。

实验仪器栏:存放实验所需的仪器,可以点击其中的仪器拖放至桌面,鼠标触及到仪器,实验仪器栏会显示仪器的相关信息;仪器使用完后,则不允许拖动仪器栏中的仪器了。

提示信息栏:显示实验过程中的仪器信息,实验内容信息,仪器功能按钮信息等相关信息,按F1键可以获得更多帮助信息。

实验状态辅助栏:显示实验名称和实验内容信息(多个实验内容依次列出),当前实验内容显示为红色,其他实验内容为蓝色;可以通过单击实验内容进行实验内容之间的切换。

切换至新的实验内容后,实验桌上的仪器会重新按照当前实验内容进行初始化。

五、实验仪器半导体温度计设计实验装置包括:热敏电阻及水浴锅、微安表、1.5V电池、1.5V电池、滑线变阻器、四线电阻箱、数字万用表以及表笔、单刀开关等,实验场景如下图所示:实验主场景图数字万用表及表笔:数字万用表是一种多用途电子测量仪器,有时也称为万用计、多用计、多用电表,或三用电表。

本实验中使用的是3 位半数字万用表,如图所示:万用表面板结构图表笔图(一)仪器结构:1.液晶显示器:显示仪表测量的结果,超量程时,最高位显示“1”或“-1”;2.POWER电源开关:鼠标点击时,可以打开或关闭电源;3.B/L背光开关:开启背光灯,约10秒后自动关闭;4.三极管测试面孔:测试三极管特性的插孔,实验中无此项功能;5.HOLD保持开关:按下此功能键,仪表当前所测数值保持在液晶显示器上并出现“HOLD”字样,再次按下,“HOLD”符号消失,退出保持功能状态;6.档位旋钮:用于改变测量功能及量程,本实验中旋钮只可置于二极管测试档、欧姆档、直流电压档、交流电压档、交流电流档、直流电流档等档位,其他档位不可用;7.电压、电阻及频率插孔:当进行电压、电阻及频率的测量时,使用此插孔;8.公共地COM插孔:测试附件正极插孔;9.毫安电流测量插孔:用于测量小于20mA电流的插孔;10.20A电流测量插孔:用于测量大于20mA并小于20A的大电流插孔;(二)测量方法:1、使用前,首先要点击Power开关,打开万用表电源。

”。

2、直流电压的测量:首先将黑表笔插进“com”孔,红表笔插进“VΩHZ把旋钮选到比估计值大的量程(注意:表盘上的数值均为最大量程,“V-”表示直流电压档,“V~”表示交流电压档),然后将测试表笔跨接在被测线路上,红表笔所接的该点电压与极性显示在液晶显示屏上。

3、交流电压的测量:表笔插孔与直流电压的测量一样,不过应该将旋钮打到交流档“V~”处所需的量程即可。

交流电压无正负之分,测量方法跟前面相同。

4、直流电流的测量:先将黑表笔插入“COM”孔。

若测量大于200mA的电流,则要将红表笔插入“20A”插孔并将旋钮打到直流“20A”档;若测量小于200mA 的电流,则将红表笔插入“200mA”插孔,将旋钮打到直流200mA以内的合适量程。

调整好后,就可以测量了。

将万用表串联到电路中,保持稳定,即可读数。

5、交流电流的测量:测量方法与直流电流的测量相同,不过档位应该打到交流档位。

相关文档
最新文档