汽轮机表面式凝汽器抽气设备

合集下载

《汽轮机原理》凝汽设备素材

《汽轮机原理》凝汽设备素材
冷 却 水 的 进 口 温 度 取决于电厂所在的地理位置、 季节和供水方 式 。 电厂供水方式有直流供水方式和循环供水方式两种。
在 直 流 供 水 系 统 中 , 电厂 从河流上游取水, 冷却水流经汽轮机 凝 汽 器 、 冷油器和有关冷却器之后, 排入河流下游。
采 用 循 环 供 水 方 式 时 , 冷却水则沿着联结凝汽器等有关装置的 回 路 循 环 流 动 , 取自水源的水只作为损失的补充水, 故采用循环供水 方式可以节约大量的水。
启 动 抽 气 器 功 率 大 建 立 真 空 快 , 但工质和工质的热量不能回 收, 有 经 济 损 失 。 故它只 作 为 启 动 时 用 。 一旦汽 轮机正常工作以后, 主 抽气器便投入工作, 启 动抽气器停止工作。
15
2. 主 抽 气 器
主抽气器的作用:是在汽轮机正常工作时使用,以维持凝汽器的高度真 空 。主抽气器一般都采用带中间冷却器的多级型式。其目的在于可以得到更高 的真空度,同时也可以回收工质和热量,提高经济性。图5-- 9为两级射汽抽气 器工作原理图。凝汽器内的汽气混合物由第一级抽气器抽出,并压缩到某一中 间压力(低于大气压力),然后进入中间冷却器2。在中间冷却器2中,混合物 中的部分蒸汽被凝结成水,而未凝结的 汽气混合物又被第二级抽走。在第二级 抽气器中,汽气混合物被压缩到略高于 大气压力,再经第二级冷却器4进一步 凝结并回收工质和热量。最后的空气 和少量未凝结的蒸汽一起排入大气 。
17
(三)水环式真空泵
国产300MW和600MW汽轮机组的抽气装置都是采用水环式真空泵。其主 要 部件有叶轮和壳体。壳体内形成一个圆柱体空间,叶轮偏心地安装在壳体内 。在壳体上开有吸气口和出气口,实行轴向吸气和排气。叶轮带有前弯叶 片,偏心地安装在充有适量工作水(密封水)的椭圆形泵体内。 当叶轮旋转 时,由于离心力作用,水向周围运动, 形成一个运动着的圆环(密封水 环)。由于偏心地安装的,水环的内表面也就与叶轮偏心,叶轮轮毂与水环间 形成一个月形空间。叶轮每转一周,每两个 相邻叶片与水环间所形成的空间由小到大, 又由大到小地周期性变化。当空间处于由小 到大变化时,该空间产生真空,由进气口吸 入气体。当空间处于由大到小变化时,该空 间产生压力,吸入的气体被压缩并经排气口 排出。这样,当叶轮连续运转时,就不断地 重复上述过程,起到一个连续抽气的作用。

第五章+汽轮机的凝汽设备

第五章+汽轮机的凝汽设备

第五章 汽轮机的凝汽设备第一节 凝汽设备的作用及工作过程一、凝汽设备的作用凝汽设备是凝汽式汽轮机装置的重要组成部分之一,它在热力循环中起着冷源作用。

降低汽轮机排汽的压力和温度,可以提高循环热效率。

降低排汽参数的有效办法是将排汽引入凝汽器凝结为水。

凝汽器内布置了很多冷却水管,冷却水源源不断地在冷却水管内通过,蒸汽放出汽化潜热凝结成水。

凝汽器中蒸汽凝结的空间是汽液两相共存的,压力等于蒸汽凝结温度所对应的饱和压力。

蒸汽凝结温度由冷却条件决定,一般为30℃左右,所对应的饱和压力约为4~5KPa ,该压力大大低于大气压力,从而在凝汽器中形成高度真空。

图5-1 最简单的凝汽设备示意图 1—凝汽器;2—循环水泵;3—凝结水泵;4—抽气器以水为冷却介质的凝汽设备,一般由凝汽器、凝结水泵、抽气器、循环水泵以及它们之间的连接管道和附件组成。

最简单的凝汽设备如图5-1所示。

汽轮机的排汽排入凝汽器1,其热量被循环水泵2不断打入凝汽器的冷却水带走,凝结为水汇集在凝汽器的底部热井,然后由凝结水泵3抽出送往锅炉作为给水。

凝汽器的压力很低,外界空气易漏入。

为防止不凝结的空气在凝汽器中不断积累而升高凝汽器内的压力,采用抽气器4不断将空气抽出。

凝汽设备的主要作用有两方面:一是在汽轮机排汽口建立并维持高度真空;二是保证蒸汽凝结并供应洁净的凝结水作为锅炉给水。

此外,凝汽设备还是凝结水和补给水去除氧器之前的先期除氧设备;它还接受机组启停和正常运行中的疏水和甩负荷过程中旁路排汽,以收回热量和减少循环工质损失。

二、凝汽器的结构类型目前火电厂和核电站广泛使用表面式凝汽器,其特点是冷却介质与蒸汽经过管壁间接换热,从而保证了凝结水的洁净。

(一)表面式凝汽器的结构及工作过程表面式凝汽器的结构如图5-2所示。

冷却水管2装在管板3上,冷却水从进水管4进入凝汽器,先进入下部冷却水管内,通过回流水室5流入上部冷却水管内,再由冷却水出水管6排出。

蒸汽进入凝汽器后,在冷却水管外汽侧空间冷凝。

汽轮机_问答题综合

汽轮机_问答题综合

为什么说多级汽轮机的相对内效率较单级汽轮机可得到明显的提高?①在全机总比焓降一定时,每个级的比焓降较小,每级都可在材料强度允许的条件下,设计在最佳速比附近工作,使级的相对内效率较高;②除级后有抽汽口,或进汽度改变较大等特殊情况外,多级汽轮机各级的余速动能可以全部或部分地被下一级所利用,提高了级的相对内效率;③多级汽轮机的大多数级可在不超临界的条件下工作,使喷嘴和动叶在工况变动条件下仍保持一定的效率。

同时,由于各级的比焓降较小,速度比一定时级的圆周速度和平均直径也较小,根据连续性方程可知,在容积流量相同的条件下,使得喷嘴和动叶的出口高度增大,叶高损失减小,或使得部分进汽度增大,部分进汽损失减小,这都有利于级效率的提高;④由于重热现象的存在,多级汽轮机前面级的损失可以部分地被后面各级利用,使全机相对内效率提高。

简述在汽轮机的级中,蒸汽的热能是如何转化为机械能的。

具有一定压力、温度的蒸汽通过汽轮机的级时,首先在喷管叶栅通道中膨胀加速,将蒸汽的热能转化为高速汽流的动能,然后进入动叶通道,在其中改变方向或者既改变方向同时又膨胀加速,推动叶轮旋转,将高速汽流的动能转变为旋转机械能。

汽轮机主蒸汽温度不变时,主蒸汽压力升高有哪些危害?当主蒸汽温度不变,主蒸汽压力升高时,蒸汽的初焓减小;此时进汽流量增加,回热抽汽压力升高,给水温度随之升高,给水在锅炉中的焓升减小,一公斤蒸汽在锅炉内的吸热量减少。

此时进汽量虽增大,但由于进汽量的相对变化小于机组功率的相对变化,故热耗率相应减小,经济性提高,反之亦然。

当凝汽器漏入空气后将对汽轮机组运行产生什么影响?① 影响机组运行的经济性:a.使传热恶化,凝汽器压力Pc 上升,蒸汽的做功能力↓ ,使循环效率降低。

b.使凝结水过冷度↑,低压抽汽量↑,机组的功率下降。

② 影响机组运行的安全性:a.使Pc 上升,排汽温度↑→机组振动和冷却水管泄漏。

b.使过冷度↑→凝结水含氧量↑,加剧低压设备、管道及附件的腐蚀。

汽轮机名词解释

汽轮机名词解释

第一章一.概念1.级:汽轮机做功的基本单元,由喷嘴叶栅和与之相配合的动叶栅所组成。

2.反动度:蒸汽在动叶栅中膨胀时的理想比焓降Δh b 和整个级的滞止理想比焓降Δh t *之比,即b n b t b m h h h h h ∆+∆∆≈∆∆=Ω**3.部分进汽度:工作喷嘴所占的弧段长度Z n t n 与整个圆周长πd n 的比值:nnn d t Z e π= 4.级的速度比:级的圆周速度u 与喷嘴出口速度c 1或级的假象出口速度c a 之比,即 11c ux =或a a c u x =5.最佳速度比:动叶出口绝对速度c 2在轴向排气时,余速损失最小,有一特定的速度关系可使最小速度损失得以实现。

6.级的轮周效率:1kg/s 蒸汽在级内所做的轮周功P ul 与蒸汽在该级中所具有的理想能量E 0之比,即 00E h E P u ul u ∆==η 7.级的相对内效率:级的有效比焓降Δh i 与理想能量E 0之比,即 21*2*0c t c x e f l b n t i h h h h h h h h h h h h E h ∆-∆∆-∆-∆-∆-∆-∆-∆-∆-∆-∆=∆=μηδθξξ8.压力级:以利用级组中合理分配的压力降或比焓降为主的级,效率较高,又称单列级。

9.调节级:在采用喷嘴调节的汽轮机中,第一级的通流面积是可以随负荷变化而改变的,这种改变的另一个原因是部分进汽。

10.反动级:反动度Ωm ≈的级,即蒸汽在喷嘴叶栅和动叶栅中的膨胀各占一半左右。

11.径高比:级的平均直径d m 与动叶片高度l b 之比。

12.动叶进出口速度ω1与ω2大小比较:21*21222'2''ωψωψωψω+∆Ω=+∆==t m b t h h在纯冲动级中,Ωm =0,即Δh b =0,即ω2=4ω113.冲角:叶型几何进口角与气流进口角之差。

14.叶栅:有相同叶片构成气流通道的组合,分为环形叶栅,直列叶栅,平面叶栅。

凝汽式汽轮机

凝汽式汽轮机
理想情况下表面式凝汽器的凝水温度应与排汽温度相同,被冷却水带走的热量仅为排汽的汽化潜热。但实际 运行中,由于排汽流动阻力及非凝结气体的存在,导致凝结水温度低于排汽温度,两者的温差称为过冷却度。冷 却水管布置不当,运行中凝结水位过高而浸泡冷却水管,均会加大过冷却度。正常情况过冷却度应不大于1~2℃。
机组功率
工作原理
主要由汽轮机本体、凝结水泵、凝汽器和循环水泵等部分组成,是指蒸汽在汽轮机内做功之后进入凝汽器由 气体冷却成为水,随后经凝结水泵送回锅炉。而在这当中,凝汽器起到了至关重要的作用,其主要目的是提高汽 轮机的热效率,这是个运用蒸汽再冷却成为水的过程中,其体积会大幅度减小,使得剩下的空间变成真空,增大 了蒸汽的理想焓。
凝汽式机组设计为低转速(1500或1800转/分)时,可提高极限功率,但这又使汽轮机尺寸及材料消耗增加, 因为汽轮机总重量与转速的三次方成反比。因此,除核电站为适应低参数、大流量特点,常采用低速汽轮机外, 中国火力发电厂均采用3000转/分汽轮机。
故障解决
凝汽式汽轮机在运行过程中,气缸由于铸造缺陷、受应力作用变形、隔板及汽封套或挂耳压板的膨胀间隙不 合适、气缸密封剂杂质过多、螺栓紧力不足或紧固顺序不正确等原因,结合面常会出现变形、渗漏等现象,影响 机组的安全运行。
抽气器的作用是在汽轮机启动前,使汽轮机和凝汽器建立必要的真空,在凝汽式汽轮机运行中,及时地将空 气及其他不凝结气体从凝汽设备中不断抽出,以保证凝汽器换热管换热效率,维持真空度。抽真空设备性能的好 坏,直接决定了凝汽式汽轮机排汽压力的高低,进而影响了机组焓降的大小和耗汽量的高低 ;不同的抽真空方
式,会影响汽轮机组的设备投资成本、操作方式繁简和系统复杂程度,所以抽真空设备对凝汽式汽轮机而言 是相当重要的。

汽轮机各设备的作用

汽轮机各设备的作用

汽轮机各设备的作用01. 凝汽设备主要有凝汽器、循环水泵、抽汽器、凝结水泵等组成。

任务:⑴在汽轮机排汽口建立并保持高度真空。

⑵把汽轮机排汽凝结成水,再由凝结泵送至回热加热器,成为供给锅炉的给水。

此外,还有一定的真空除氧作用。

02. 凝汽器冷却水的作用:将排汽冷凝成水,吸收排汽凝结所释放的热量。

03. 加热器疏水装置的作用:可靠的将加热器内的疏水排出,同时防止蒸汽随之漏出。

04. 轴封加热器的作用:回收轴封漏汽,用以加热凝结水从而减少轴封漏汽及热量损失,并改善车间的环境条件。

05. 低压加热器凝结水旁路的作用:当加热器发生故障或某一台加热器停用时,不致中断主凝结水。

06. 加热器安装排空气门的作用:为了不使空气在铜管的表面形成空气膜,使热阻增大,严重地影响加热器的传热效果,从而降低换热效率,故安装排空气门。

07.高压加热器设置水侧保护装置的作用:当高压加热器发生故障或管子破裂时,能迅速切断加热器管束的给水,同时又能保证向锅炉供水。

08.除氧器的作用:用来除去锅炉给水中的氧气及其他气体,保证给水的品质。

同时,又能加热给水提高给水温度。

09.除氧器设置水封筒的目的:保证除氧器不发生满水倒流入其他设备的事故。

防止除氧器超压。

10. 除氧器水箱的作用:储存给水,平衡给水泵向锅炉的供水量与凝结水泵送进除氧器水量的差额,从而满足锅炉给水量的需要。

11. 除氧器再沸腾管的作用:有利于机组启动前对水箱中给水加温及备用水箱维持水温。

正常运行中对提高除氧效果有益处。

12. 液压止回阀的作用:用于防止管道中的液体倒流。

13. 安全阀的作用:一种保证设备安全的阀门。

14. 管道支吊架的作用:固定管子,并承受管道本身及管道内流体的重量和保温材料重量。

15. 给水泵的作用:向锅炉连续供给具有足够压力,流量和相当温度的给水。

16. 循环水泵的作用:主要是用来向汽轮机的凝汽器提供冷却水,冷凝进入凝汽器内的汽轮机排汽,此外,还向冷油器、发电机冷却器等提供冷却水。

汽轮机-第四章.

汽轮机-第四章.

§4.4 抽气器 §4.4.2 射水抽气器 以压力水为动力。压力水在喷嘴中降压增速,形成水 射流,在混合室中牵连不凝结气体运动。水射流达到 一定行程后发生破碎,与不凝结气体产生碰撞与强烈 的动量交换,压缩升压,然后利用水柱对其进一步压 缩。为提高射水抽气器的效率,要求喷嘴距离水面高 度应大于水射流破碎长度,这就是长喉管射水抽气器 的工作原理。 §4.4.3 水环式真空泵 置于水室中的偏心叶轮,旋转时产生与水室同心的水 环,利用叶片与水环间空间容积随转子旋转一周由小 变大和由大变小的变化,完成吸气、压缩。水环真空 泵的效率约为高效射水抽气器的2倍。故新建机组主要 采用水环真空泵。
pc B0 H 0 133.3
折合到标 准温度0℃下的数值。
B0与H 0是 B与H
§4.1 凝汽设备的工作原理、任务和类型(思考)
• 1.简述汽轮机凝汽设备的工作原理。 • 2.凝汽器的真空是如何形成的? • 3.影响凝汽器真空的因素有哪些?
§4.2 凝汽器的真空与传热 §4.2.1 凝汽器内压力 pc 的确定 蒸汽凝结过程中释放出不凝结气体(如化学药剂分解产 生或原蒸汽中夹带),真空系统不严密漏入系统的空气, 即凝汽器汽侧空间是多组分介质共存。这里,将它们 分为蒸汽和不凝结气体两大组分。由道尔顿定律知, pc 汽侧空间的总压力 是组成气体分压力之和。
(4.2.3)
' h c c 只有2140~2220KJ/Kg左右,取平均值,则 2177 520 t 4.187m m 循环倍率m---- m Dw Dc ,冷却水量与被凝结蒸汽量之
h

比。 循环水的温升决定于循环倍率,循环倍率越大,温升
§4.2 凝汽器的真空与传热
则越小,凝汽器的真空就越高。即在循环水量一定时, 机组负荷越大,循环水温升就越高,凝汽器真空则越 低。反之,机组负荷一定时,循环水量越多,温升越 小,凝汽器真空就越高。

汽轮机辅机(入门)

汽轮机辅机(入门)

汽轮机辅机——凝汽设备1.凝汽设备主要是由凝汽器,凝结水泵,循环水泵,抽气装置等组成。

2.凝汽设备主要的作用:⑴在汽机排汽口建立真空,提高汽机循环的热效率。

(2)回收工质,形成循环(3)对凝结水和补给水有真空除氧的作用(4)在负荷变化时回收排汽(5)回收疏水。

3.在机组启动时,凝汽器的真空是靠抽气器抽出其(凝汽器)中的空气建立起来的。

.正常运行中,凝汽器的真空主要是依靠排汽的凝结形成的。

4.抽气器的作用:(1)在机组启动时建立凝汽器真空,(2)在机组.正常运行时,维持凝汽器真空。

(3)回收热能,工质。

(射水没有,射汽有)。

5.在4.9KPa的压力下1㎏蒸汽的体积比1㎏水的体积大两万多倍。

6初参数不变,.凝汽器压力降低,汽轮机的有效焓降增加,功率增加,排气温度降低,冷源损失减少,循环热效率提高。

7.国内大容量机组的凝汽器压力一般在4~6.8KPa。

凝汽器压力每降低9.81KPa,循环热效率提高0.5%~0.7%。

但是,汽轮机的排汽压力并不是越低越好。

(1)极限真空:蒸汽在末级动叶片斜切部分膨胀达到极限时的背压,称为极限背压,他对应的真空称为极限真空。

(2)最佳真空:当提高真空使汽轮发电机组增加的电功率,与增加冷却水量所造成的循环水泵多耗的电功率之差值为最大时,对应的凝汽器真空即称为最有利真空(经济真空)或最佳真空。

8.不可凝结气体和漏入的空气给凝汽器的安全,经济运行有哪些不利影响?(1)使凝汽器端差增大,机组热效率降低。

(2)使凝结水产生过冷度。

(3)降低了凝汽器的除氧效果,凝结水中有溶解氧的存在,造成了凝结水系统设备与管道的氧腐蚀。

(4)直接降低了凝汽器的真空。

9.冷却水的温升与进入凝汽器的蒸汽量成正比,与冷却水量成反比。

10.凝汽器端差与机组负荷成相同方向变化。

它们之间并不完全成正比。

传热系数也要制约它。

11凝汽器端差: 凝汽器压力下的饱和水温度与凝汽器循环冷却水出口温度之差称为端差。

3~10℃凝汽器端差的大小与凝汽器循环冷却水入口温度、低压缸排汽流量、凝汽器铜(钛)管的表面清洁度、凝汽器内漏入空气量以及循环冷却水在管内的流速有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附 录 C (资料性附录)
抽气设备
C.1 抽气设备能力的确定
C.1.1 凝汽器中需要抽出的不凝结气体的来源包括但不仅限于以下几项: ——低于大气压下运行的系统部件中漏进的空气; ——进入凝汽器的疏水和排汽释放的气体; ——进入凝汽器的补给水释放的气体;
——循环冷却中所使用的凝结水平衡箱内所产生的气体;
——在某些形式的核燃料的循环中,从给水中解析出来的氧气、氢气及其他不凝结气体。

C.1.2 除不凝结气体外,还应抽出一定量的附带蒸汽,以确保凝汽器的正常性能,并产生合理的气流速度,使凝汽器汽侧的腐蚀减少到最小程度。

C.2 设计吸入压力
抽气设备的吸入压力应符合下列要求:
——电站汽轮机凝汽器的设计吸入压力为3.386 kPa (a )或凝汽器设计压力,取二者中的较小值。

最终选择还应考虑到在整个预期的运行压力内的凝汽器与其抽气设备的协调运行。

此外,当选择设计吸入压力时,还应考虑抽气设备的实际位置。

——工业和船用汽轮机或泵等其他机械动力设备用凝汽器的设计吸入压力为凝汽器设计压力减去
3.386 kPa 或为运行所要求的最低压力,取二者中的较小值,但不得低于3.386 kPa (a )。

C.3 设计吸入温度
设计吸入温度(即抽吸的汽-气混合物温度),应为抽气设备设计压力相对应的饱和蒸汽温度t vs (℃)减去0.25(t s -t w1)或4.16 ℃中的较大值(t s 为蒸汽凝结温度,t w1为冷却水进口温度)。

运行中抽气口的蒸汽实际温度受到运行特性、不凝结气体负荷和抽气设备容量特性的影响,不一定等于设计吸入温度。

C.4 水蒸汽量的计算
混合气体中饱和水蒸汽量与不凝结气体的比值按公式(C.1)计算:
w
VS w g
g
w 18
P P P M W W -⨯
=
.................................. (C.1)
式中:
W w ——混合气体中的饱和水蒸汽质量,单位为千克(kg ); W g ——混合气体中的不凝结气体质量,单位为千克(kg );
P w ——与凝汽器抽气口处温度相对应的水蒸汽的饱和压力,单位为千帕[kPa (a )]; M g ——不凝结气体的平均分子量。

不凝结气体为干空气时其分子量为29;
P VS——凝汽器抽气口处总的绝对压力,单位为千帕[kPa(a)]。

C.5 推荐的最小容量
C.5.1 建议抽气器的容量大于或等于表C.1、表C.2和表C.3中各设计压力对应的数值。

在应用各表查值时应结合以下各条说明:
a)总排汽量由主汽轮机进凝汽器的排汽量和辅助汽轮机进入凝汽器的排汽量组成;
b)主排汽口数为与凝汽器壳体连接的主汽轮机排汽口,但不包括辅助汽轮机的排汽口;
c)每个主排汽口有效的蒸汽流量为a)表示的总排汽量除以b)的排汽口数量所得的结果;
d)凝汽器壳体的总排汽口数是将主排汽口数加上进入凝汽器的辅助汽轮机排汽口数;
e)如果多壳体凝汽器的每一个壳体均采用独立抽气系统,则每个系统的能力是由表格中查得的总
容量除以独立抽气系统的数目来确定,亦可选择一个容量较大的单一抽气系统,即串联抽气系统。

C.5.2 确定抽气设备系统和容量时,应考虑下述情况:
——单压多壳体凝汽器应分别对每个壳体配置独立抽气系统;
——多压单壳体凝汽器的抽气容量对于每一压力区可选择独立抽气系统,也可选择一个容量较大的单一抽气系统,并确定相应的容量;
——多压多壳体凝汽器的抽气容量应符合C.5.1,应分别对每个壳体配置独立抽气系统;
——使用射汽抽气器时,进入其冷却器的凝结水(作为冷却水用)的温度按凝汽器可能出现的最高压力下的蒸汽饱和温度计算;
——核电机组在按表C.1、表C.2、表C.3查得抽气容量时,还应考虑循环中排入凝汽器的附加的非凝结气体;
——有旁路蒸汽全负荷排放时,循环水泵全部或部分投入,抽气器应能抽出比凝汽器最高压力所对应的饱和温度低4.16 ℃时的非凝结气体量。

表C.1 抽气设备容量(单壳体凝汽器)
57
表C.1 抽气设备容量(单壳体凝汽器)(续)
58
表C.1 抽气设备容量(单壳体凝汽器)(续)
59
表C.2 抽气设备容量(双壳体凝汽器)
60
表C.2 抽气设备容量(双壳体凝汽器)(续)
61
表C.3 抽气设备容量(三壳体凝汽器)
62
表C.3 抽气设备容量(三壳体凝汽器)(续)
63
JB/T 10085—××××C.6 启动抽气器
启动抽气器的容量取决于汽轮机轴封的密封性、凝汽器壳体、汽轮机汽缸和真空系统的容积,以及抽真空所需要的时间。

启动抽气器按表C.4选择容量。

表C.4 快速抽气器能力。

相关文档
最新文档