镍系双金属和手性修饰镍系双金属纳米材料的制备及其在苯乙酮电羧化中的应用研究
高分子聚合物模板剂制备介孔材料的研究

V ol 38N o 76 化 工 新 型 材 料N EW CH EM ICAL M A T ERIA L S 第38卷第7期2010年7月综述与专论基金项目:国家自然科学基金(20976100);山东省自然科学基金重点项目(No.Z2006B07);济南市留学人员创业计划(No.20080309)作者简介:王熙梁(1984-),男,研究生,从事高分子基复合材料的研究。
联系人:周国伟,男,教授,主要研究纳米材料的可控制备与酶催化反应。
高分子聚合物模板剂制备介孔材料的研究王熙梁1 周国伟2* 杜施鑫1(1 山东轻工业学院材料科学与工程学院,济南250353;2 山东轻工业学院化学工程学院,山东省轻工助剂重点实验室,济南250353)摘 要 高聚物模板剂在介孔材料的合成中起着重要的作用,选择不同的高聚物模板剂可以合成出具有不同形态结构的介孔材料。
对介孔材料合成中使用的高聚物模板剂如单一高聚物模板剂、复合高聚物模板剂和天然高聚物模板剂等,进行了综述。
关键词 介孔材料,模板剂,高聚物Researching on preparation of mesoporous materials via polymer templateWang Xiliang 1Zho u Guow ei 2Du Shix in1(1 Scho ol o f Material Science and Engineering,Shandong Institute of Light Industry,Jinan 250353;2 Key Laboratory for Fine Chemicals o f Shandong Pro vince,School of Chem ical Engineering,Shandong Institute o f Lig ht Industry,Jinan 250353)Abstract Po ly mer template plays an impo rtant ro le in the synthesis o f mesopor ous materials,a v ariet y of mesopor ous materials w ith differ ent mor pho log ies can be sy nt hesized by po lymer as templates.T he polymer template used in t he synthesis o f meso po rous materials,such as sing le polymer template,composit e polymer template and natur al po ly mer tem plate were r eview ed.Key words meso po ro us mater ial,template,po lymer国际纯粹与应用化学联合会(IU PA C)根据多孔性材料孔径的不同将其分为三类:孔径d>50nm 称为大孔材料;孔径d <2nm 的称为微孔材料;孔径2nm <d<50nm 称为介孔材料。
ZnMn2O4_多孔微球作为水系锌离子电池正极材料的合成及其电化学性能

第52卷第8期 辽 宁 化 工 Vol.52,No. 8 2023年8月 Liaoning Chemical Industry August,2023收稿日期: 2022-08-10ZnMn 2O 4多孔微球作为水系锌离子电池 正极材料的合成及其电化学性能卢彦虎,刘晨阳,马雷(沈阳化工大学 材料科学与工程学院,辽宁 沈阳 110142)摘 要: 采用水热法制备了ZnMn 2O 4水系锌离子电池正极材料,并采用X 射线衍射、X 射线光电子能谱、扫描电镜和电化学工作站等手段对材料进行了表征。
结果表明:水热温度对ZnMn 2O 4正极材料的形貌和电学性能均有较大影响。
当水热温度为160 ℃时,ZnMn 2O 4为尖晶石型多孔状球体,在 1 mA ·g -1的电流密度下获得了155 mAh ·g -1的比容量,良好的电化学性能表现主要得益于其多孔结构。
关 键 词:锌电池; 正极材料; ZMO 多孔微球; 电化学性能中图分类号:TM911 文献标识码: A 文章编号: 1004-0935(2023)08-1122-04尖晶石型锌锰氧化物ZnMn 2O 4(ZMO)材料具有安全性好、成本低、环保等优点[1-3],在数据存储、生物技术、光催化剂、气敏元件、电池电极材料等领域得到了广泛的研究[4-5]。
目前,尖晶石结构的氧化物(如LiMn 2O 4、LiCo 2O 4)已经在LIBs 中被成功应用并且商业化[6-7]。
因此借鉴这一成功经验,ZMO 电极材料在水系锌离子中的应用成为当下研究的 热点[8-9]。
先前的尖晶石材料多采用高温固相反应法合成,大多是采用研磨氧化物、含碳酸根的盐类化合物的混合物,并进行高温热处理以获得所需材料。
制备温度较高,晶体形貌较难控制[10]。
现在多采用温和的化学方法进行合成,例如溶胶-凝胶法[11]。
WU[12]等通过聚乙烯醇吡咯烷酮分散的溶剂热碳为模板制备的ZMO 材料,在100 mA ·g -1的条件下比容量可达106.5 mAh ·g -1。
安徽大学2016年大学生科研训练计划项目师生互选情况一览表

资助经费 (万元) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
KYXL2016020 物理与材料科学学院 高效远程量子态制备方案的设计 KYXL2016021 物理与材料科学学院 氢氧化钴基纳米结构在外加磁场驱动下的物相转变机理研究 KYXL2016022 物理与材料科学学院 稀土铁氧体单晶磁热效应的研究 KYXL2016023 化学化工学院 KYXL2016024 化学化工学院 KYXL2016025 化学化工学院 KYXL2016026 化学化工学院 KYXL2016027 化学化工学院 KYXL2016028 化学化工学院 KYXL2016029 化学化工学院 KYXL2016030 化学化工学院 KYXL2016031 化学化工学院 KYXL2016032 化学化工学院 KYXL2016033 化学化工学院 KYXL2016034 生命科学学院 KYXL2016035 生命科学学院 KYXL2016036 生命科学学院 KYXL2016037 生命科学学院 KYXL2016038 生命科学学院 KYXL2016039 生命科学学院 氮、铁和钴多元素掺杂多孔碳微球材料制备与电催化性能研究
王章银 讲师 吴明在 教授 李秋菊 讲师 陈平 副教授 副教授
许非凡 刘瑶瑶 奚坚超,黄京城 刘闯,薛震泳 孙帅,钱鹏飞 纪迎港,刘小虎 洪峰,印月如 钟卓浩,韦丹蕾 李鋆,尹博皓 谢兴丽,陈贵宝 何文军,何仕辉 孙奇轩,陆影 时旭,谢小雨 李天竹,谢志远 刘壮 程源江,周舒利 李竹君 刘天妍,程毓 吴思妤,邹思唯
KYXL2016017 物理与材料科学学院 强磁性纳米粒子表面处理与功能化 KYXL2016018 物理与材料科学学院 基于量子级联激光器的双光谱气体检测技术研究
【人物与科研】华中科技大学夏宝玉...

【人物与科研】华中科技大学夏宝玉...导语金属有机框架材料(MOFs)是由有机配体和金属离子或团簇配位形成的配合物。
由于其可控的形貌、高比表面积和多孔结构而被广泛应用于储能领域。
MOFs材料中的金属组分对电极材料的性能有很大影响,通过金属离子的活化可以有效提升材料性能,然而这种活化往往伴随着结构的严重破坏而没法最大限度提升材料电化学性能。
近日,华中科技大学夏宝玉课题组通过一种氧化还原的方法调控双金属Co-Ni MOF中的金属组分得到稳定低价的混合价态的Co-Ni MOF 衍生物,得到的材料具有优异的电化学性能。
相关成果在线发表于Adv. Mater.(DOI: 10.1002/adma.201905744)。
夏宝玉教授课题组主要从事结构功能材料及其在能量转换与存储等领域的研究工作。
团队围绕新材料在新能源技术中的服役和失效问题,以高活性长寿命低成本电极材料为导向,通过探究材料腐蚀现象和规律,利用传统腐蚀科学与技术开发新型、稳定的材料与器件,使其达到高水平长寿命服役的目的,实现传统腐蚀学科与新能源领域的深度交叉融合。
夏宝玉,教授/博士生导师,2010年毕业于上海交通大学,获得博士学位。
2011-2016年在新加坡南洋理工大学从事博士后研究作,2016年入职华中科技大学,入选中组部第十二批“计划”。
近年来在包括Science, Nature Energy, J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater.等国际期刊发表学术论文70余篇(包括1篇ESI热点论文和21篇ESI高被引论文),发表的研究工作被国内外同行引用8000余次,参与3本专著编写(三章),申请专利6项(已授权3项),H指数29,研究成果被Chemistry Views,Materials Views 等媒体报道。
夏宝玉教授入选2018年、2019年科睿唯安全球高被引科学家和2019年Journal of Materials Chemistry A Emerging Investigators。
【doc】Cu-Ni三元金属间化合物粉末

Cu-Ni三元金属间化合物粉末第33卷第1期2006年2月湖南大学(自然科学版)JournalofHunanUniversity(NaturalSciences)V ol_33.No.1Feb.2006文章编号:1000—2472(2006)01—0098—04固液反应球磨制备AI.Cu.Ni三元金属间化合物粉末蔡建国,陈刚,周冰(湖南大学材料科学与工程学院,湖南长沙410082)摘要:利用固液反应球磨技术制备了Al—Cu—Ni三元合金粉末.采用Ni球球磨叫Ar33.2%WCu,叫Al-54%wcu(Cu)和"gOAl一70%wc.(A1Cu)-~TL合金熔体,在893K 分别球磨Al-33.2%叫熔体12h和24h后均生成了Cu4Ni粉末;在893K球磨"COAl一54%wcul2h后生成Cu4Ni粉末,在993K和1123K球磨"gOAl一54%叫cu(AI2Cu)24h后均生成al0.28Cu0~69Ni0.粉末;在1123K球磨叫Ar70%WCu(A12Cu)24h后生成.28Cu0.69Ni0.粉末同时,对一Cu-Ni三元合金相形成规律进行了研究,对固液反应球磨机理进行了探讨.关键词:固液反应球磨;机械力化学;三元合金;金属间化合物;Al—Cu.Ni合金中图分类号:TB383文献标识码:AFabricationofA1—.Cu—.NiTernaryAlloyPowders bySolid—liquidReactionMillingCAIJian—guo.CHENGang,ZHOUBing (CollegeofMaterialsScienceandEngineering,HunanUniv.Changsha,Hunan410082.Chi na)Abstract:A1.Cu..Niternaryalloypowderswerefabricatedwithanewsolid..1iquidreaction millingtechnolo..gy.AI7Cu4NipowderwereobtainedbymillingWAI一33.2%7A)Cmassfriction)eutecticalloymeltat893Kfor12or24hours,andA17Cu4NipowderwerealsopreparedwhenWAl一54%"g.UCualloymeltweremilledat893Kfor24hours.al0.28Cu0.69Ni0.powderwereobtainedbymillingW Al一54%wc~(AlzCu)hypereutecticalloymeltat993Kor1123Kfor24hours.Al0.280U069Ni0powderwastheresultofmillingWAl一70%叫cu(A1Cu)alloymeltat1123Kfor24hours.Moreover,thereactionmechanismandadvantageswereanalyzed anddiscussed.Keywords:solid~liquidreactionmilling;mechanicalalloying;ternaryalloys;intermetalliccompounds;A1一Cu—Nialloy固液反应球磨技术…是在机械力化学【2j和机械合金化_3J基础上发展起来的一种新型的材料制备技术.在现有的反应球磨技术研究工作中,对固一固反应体系,固一气反应体系的研究较多l4j,对固一液反应体系的研究却开展得很少.目前,采用固.液反应球磨已成功地制备了Fe—zn,Fe—Sb,Fe—sn,Fe一,收稿日期:2005一O120基金项目:国家自然科学基金资助项目(50304008)作者简介:蔡建国(1972一),男,湖南益阳人,湖南大学讲师,博士E-mail:*****************Ni—Al,-ri—Al,A1一Cu—Fe和一Si—Fe等多种其它工艺难以获得的二元系和三元系金属间化合物[j.本文采用固液反应球磨技术以Ni球为球磨介质,熔融Al—Cu合金为球磨对象,开展三元合金系的固液反应球磨的研究.为研究磨球作用下三元合金固液反应的相形成规律及机理,丰富固液反应球磨工艺的第1期蔡建国等:固液反应球磨制备AI—cuNi三元金属间化合物粉末99 内容,进一步探讨该工艺机理提供参考1实验过程本实验采用的固液反应球磨设备是自行设计和发明的专利装置——卧式固液反应球磨机,密封的球磨罐在可控温加热电炉内工作,球磨罐转速由调速电机控制.在本实验中球磨罐为Ni质,球磨机转速为80r/min(为0,75Vl临界),球料质量比为11:1.每次二元母合金配料为200g.当球磨时间达到预定值后,快速冷却至室温,将得到的粉末混合均匀然后按化学分析法取样或取块状产物进行钻屑均匀混合取样,球磨产物在德国西门子的D5000型衍射仪上进行物相分析,衍射靶为Cu靶,加速电压为30kV,记数率仪的时间常数为0.5s,测角仪连续扫描速度为0.01o/s,扫描范围为10~100.,采用H800型电显微镜对粉末状产物进行形貌和显微组织分析.本实验是采用Ni球在一定温度下分别对液态强鼎W AI一33.2%WCu,一54%ZUC,WAI一70%WC进行球磨.训Al一33.2%WCu,叫Ar54%WCu,W AI一70%"WCu的液相点分别是821K,864K,1073K,所以选定在893K温度下对W AI-33.2%W(=I,进行球磨,在893K,993K,1123K温度下对训Ar54%训c进行球磨,在1123K温度下对训AI-70%WCu进行球磨.球磨一定时间后,快速冷却球磨筒及球磨产物,取出粉末样品进行物相和形貌分析.2实验结果2.1采用Ar33.2%WCu母合金的球磨实验结果在893K下来用Ni球球磨WAI一33.2%训cu熔体12h和24h后,产物的物相分析结果.Ni球下W AI-33.2%训,熔体时发生了固一液化学反应,生成物的主相是三元金属间化合物A17CuaNi,图1所示为在893K下用Ni球球磨训AI-33,2%训c熔体l2h和24h后产物的x射线衍射图,2o1(o)(a)在893K球磨12h20/(.)(b)在893K球磨:24h图1用Ni球球磨叫A1—33.2%硼熔体后产物的X射线衍射图谱Fig.1XRDpatternoftheasmilledproductsobtainedbymillingtheAI一33,2%Cumelt 2.2采用Ar54%c¨母合金的球磨实验结果Ar54%('u熔体在选定温度下与Ni球发生了化学反应.在893K时球磨12h后生成的三元化合物是A17CtaNi,在993K和1123K时球磨24h生成的三元化合物均是A28Cuo.69Nio.与前面实验结果对比发现,母合金中Cu含量增加对球磨产物有明显影响.图2所示为在不同条件下球磨时得到的产物的x射线衍射图谱.由图可见,A1o.2sCuo.69Nio相的纯度很高.100湖南大学(自然科学版)20o6年越氍趟崩2o/(.)(a)在893K球磨12h△--AI~28c69N二垒全I.全一—J0-.一'.'''一——T一2O304OSO6O7OB09010020/(.)(b)在993K球磨24h2or(o)(c)在1123K球磨24h图2用Ni球球磨wA1—54%叫熔体后产物的X射线衍射图谱big.2XRDpatternoftheasmilledproductsobtainedbymillingtheWAI一54%叫cumelt 2.3采用W AJ-70%WCu母合金的球磨实验结果图3所列为在1123K下用Ni球球磨WAr70%WWcu(Cu)熔体24h后产物的物相分析结果.从表3中可以看出:叫Ar70%WCu熔体在选定的温度(由于受球磨机使用温度的限制,无法在更高温度下进行球磨)与Ni球发生了固一液化学反应,生成的三元化合物相是.28Cuo.69Nio一.图3所示为球磨产物的x射线衍射图谱.'20/(o)图3用Ni球球磨训一70%W(熔体后产物的X射线衍射图谱Fig.3XRDpatternoftheas-n~lledpreductsobtainedbymillingthe删A1—70%wc~melt 照片,图4(c),图4(d)为A10瑚Cu0.69Nio一合金粉末的2-4粉末显微组织分析TEM照片,照片显示粉末颗粒粒径在150nm以内,图4(a),图4(b)为A17Cu4Ni合金粉末的TEM且粉末颗粒明显存在层状组织. ∞帅∞帅∞∞∞05O5O505第1期蔡建国等:固液反应球磨制备A1一Cu—Ni三元金属问化合物粉末101 (a)AICu4Ni粉末(×40000)(c)AI.2sCu009Nio_粉末(X80000)3实验结果分析(b)AI,Cu,Ni粉末(×100000)(d)AI8Cu069Nio_粉末(×100000)图4A1一Cu—Ni系球磨产物的TEM照片Fig.4TEMphotographoftheas-milledproductsobtainedbymillingAI—Cu—Ni1)随着一Cu二元母合金中Cu的含量的增加,球磨时的固一液反应难度加大,生成的三元化合物相中Ni的含量减少,同时Al的含量也相应减少.2)提高球磨温度,延长球磨时间,形成的三元合金产物中的Ni和的含量减少,Cu的含量增加,且有利于三元合金产物的形成.3)球磨温度超出二元母合金熔点越高,则固一液反应越容易进行.4)一Cu—Ni系固液反应球磨过程中可直接生成三元化合物微细粉末.4结论1)采用采用Ni球球磨成分为AI-33.2%0.的合金熔体,在8933K下球磨12h和24h后生成的三元化合物均是AICu4Ni粉末.2)采用Al一54%WCu合金熔体时,在893K球磨12h后形成的三元化合物是A1Cu4Ni粉末,在993K球磨24h时生成的三元化合物则是舢l28Cu0.69Nio.粉末.3)采用Al一70%c合金熔体时,在1123K,球磨24h后生成的三元化合物足.28Cu0.69Ni0粉末.4)AI—Cu—Ni系在固一液反应球磨过程中生成的金属间化合物粉末颗粒尺寸在150nrn左右,形状不规则.5)AI—Cu—Ni系在同一液反应球磨过程机理符合打击一剥落模型.参考文献[1]严红单,陈振华.反应球磨技术原理及其在材料制备中的应用[J] 功能材料,1997,28(1):15一l8.12JFOXPG.ReviewIIlelllyitfitiat~tchern.icalreactionins~d[J] JaumlofMateriaksScience,1975,10(4):340一.360.[3]BENJAMINjs,Fuv~talsofmechanicalalloying[J]MatersciFo-r1.~l,1992,(88):1—5[4]【](II)G,MULASG,SCHIFFIN1L.Mechanicalalbyingpmcandr~-tiveuiT1g_J].¨ImofMetaLs,1995,47(3):1621.[5]陈鼎,陈振华,黄培云.固液反应球磨制备Zn和Fe-Sb系金属问化合物[J]湖南大学,2004,31(1):12—16.[6]陈鼎,陈刚.固液反应球磨制备Fe-Sn金属问化合物粉末[J].中国有色金属,2oo3,13(3):579—583.[7]陈鼎,陈振华,陈刚,等.固液反应球磨制备Al,N._Al和FAl金属问化台物[J].湖南大学,2004,31(2):20—24,[8]陈鼎,黄培云.固液反应球磨制备AI.Cu-Fe与AI-Si.Fe二元合金[J].中南大学,2004,35(4):537—542.[9]蔡建国,陈刚,徐红梅.固液反应球磨制备AICuzCo二元金属问化合物[J],湖南大学,2005,32(3):28—32,。
纳米多孔PtNiMo合金的制备及其对甲醇电催化氧化性能的研究

纳米多孔PtNiMo合金的制备及其对甲醇电催化氧化性能的研究∗周魁元;李强;刘旭燕;潘登【摘要】NP-PtNiMo catalysts were fabricated by dealloying method in present study.The surface morpholo-gy,composition,phase constitutions,and electrocatalytic properties were characterized by scanning electron microscopy (SEM),energy dispersive X-ray spectroscopy (EDX),X-ray diffraction (XRD),and electrochemi-calmeasurements,respectively.The electrocatalytic activity of the NP-PtNiMo for methanol electrooxidaion was evaluated characterized by the cyclic voltrametry and chronoamperometry at room pared to commercial Pt/C,NP-PtNiMo electrocatalysts exhibit better electrocatalytic performance,better electrocata-lytic stability,and more tolerant to CO poisoning.%利用脱合金的方法制备了纳米多孔铂镍钼(NP-PtNiMo)合金纳米催化剂,通过扫描电子显微镜(SEM)、能量色散X射线光谱仪(EDX)、X射线衍射仪(XRD)和电化学测试的方法对 NP-PtNiMo 合金纳米催化剂的表面形貌、成分、物相和电催化性能进行了表征。
湖南大学2012年各类SIT计划拟立项项目一览表

张兴博、齐家敏、颜璧 娇 叶如蕙、杜思源、彭伟 男 韩雪、周雅雯、朱林炎 徐志鹏、周自牧 丑高武、朴金焱、何枫 欧阳倩蓉、陈莘 陈冬恺、李豆 黄青 郝一鸣、龙极祥、王之 兴、张鹏辉 李洁、赵小娇 肖念琦、邱海霞、陈显 斌 王浩洁、苏晨眉、王思 齐 符跃峰、朱琨、任福臣 刘雅君
龙海明 周再清 王于栋 乔海曙 晏艳阳 姚小义 杨胜刚 侯俊军 祝树金 王良健 罗丽英 郭平 贺国强 李丹
项目参与 项目负责 年级 学生人数 人姓名
5 6 2 3 2 5 4 3 3 2 4 4 4 3 5 3 3 朱博慧 麻玉圣 赖梦珠 胡倩蕙 何慧 李师 金倩颖 王婧宇 陈玥 郭庆 林兰兰 马英杰 王飞 翁杨紫菀 吴佳静 肖鹏宇 许愉梓 2010 2010 2011 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010
序号
35 36 37 38 39 40
学院
化工 化工 化工 环工 环工 环工
项目名称
铝阳极氧化膜组成结构与绝缘耐压 性能相关性研究 电子显示屏用胶黏剂的研制 含DOPO苯并噁嗪的合成及其性能的 研究 基于神经网络模型的洞庭湖冬季水 鸟栖息地模拟 功能化ACF制备方法及以其制备的 催化剂SCR脱硝性能 环糊精及典型表面活性剂混合增溶 模式下的石油烃微生物降解效果的 探索研究 针对环保文化推广的社会创业理论 与时间研究—多项目集群推广环保 文化 多功能高空树枝修剪兼高空设备清 洁装置的设计 主动式安全头枕的研制 超市快捷收银系统的改进与研制 便携式小广告清除机 新型可再生高效三效催化转化器 二维跟踪碟式斯特林太阳能热发电 装置 过滤单元集中微波再生的柴油机微 粒捕集器 基于智能手机的车道偏离预警系统 高效OWC波能转换器设计 水资源再生利用装置设计 智能家居远程控制器
镍铁双金属系列电催化材料的研究进展

镍铁双金属系列电催化材料的研究进展王雅;方志强;史晓雨;楚意月;郝召民【摘要】氢能源由于其成本低、可再生、绿色环保等优点,成为世界上公认的清洁能源之一.电解水则是目前最有潜力的提供氢燃料的方案之一,镍铁双金属电催化剂由于其来源丰富、成本低、清洁无污染且有较强的催化性能,得到了人们的广泛关注.本文主要综述了近些年来双金属镍铁氧化物和镍铁合金方面的发展与研究,对他们的合成方法,性能及其稳定性进行了深入探讨.【期刊名称】《化学研究》【年(卷),期】2018(029)006【总页数】4页(P638-641)【关键词】电化学;双金属镍铁电催化剂;析氢反应;析氧反应【作者】王雅;方志强;史晓雨;楚意月;郝召民【作者单位】河南大学化学化工学院,河南开封475004;河南大学化学化工学院,河南开封475004;河南大学化学化工学院,河南开封475004;河南大学化学化工学院,河南开封475004;河南大学化学化工学院,河南开封475004【正文语种】中文【中图分类】O613.72随着化石燃料的逐渐枯竭及其相关的负面环境影响,合理开发可再生资源是解决当前能源,实现能源结构调整并保证人类社会经济和环境可持续发展的重要条件,同时也是当前社会的迫切需要[1-2]. 纵观各种可替代的能源,氢能源是洁净的低碳、可再生资源,不但能量密度高,其燃烧的产物水几乎对环境没有影响[3]. 目前世界上大部分的氢气是以化石燃料为原料进行制取的,不仅消耗了大量的化石能源,而且对环境产生有害的气体. 电化学水分解则是公认的一个最有潜力的解决方案之一为未来全球环境污染和能源危机提供可再生清洁的氢燃料[4-5]. 电解水反应一般分为两类:析氢反应(HER)和析氧反应(OER)[6]. 两者的分离效率对整体水分解都非常重要. 因此,为了降低过电势,加快反应速率,提高能量转换效率,需要一个高效的催化剂去降低反应能量势垒. 已经尝试很多方法去提高对于电水解反应的效率,包括在酸性和碱性条件中,之后发现贵金属铂、钯、钌、铑催化剂在HER和OER 中能表现出高效电催化性能,降低反应所需电压. 但高成本,低资源限制了他们在析氢反应和析氧反应中的广泛应用. 所以当前在清洁能源领域一个主要的目标是去发现高效,廉价的非贵金属催化剂把水分解成氢.为了更有效地解决这个问题,许多科研人员把研究集中在双金属镍铁的电催化剂上. 镍铁在自然界中资源丰富且价格低廉,且人们研究发现双金属镍铁电催化剂具有良好的催化活性,低的过电势和优秀的稳定性,有利于电催化水的大规模产业化,符合国家一直提倡的发展绿色环保新能源的要求[7]. 本文主要综述了镍铁电催化剂近些年的研究进展,对他们的合成、结构以及电催化性能进行了分析和讨论,并对这些催化电极材料的性能进行总结与展望.1 镍铁合金对能量储存和应用的迫切需要,急需我们发展高效率,低成本的多功能电催化剂应用于电化学分解水. 由于NiFe合金催化活性高,稳定性好,电势低等优点,近些年来在电催化方面得到了突飞猛进的发展. 例如:在2017年XU等[8]报道了由直接镍基化修饰的镍/铁金属有机骨架衍生而成的NiFe-Se/c纳米棒作为高效率非贵金属电催化剂. 1 mol/L的KOH溶液中,在电流密度10 mA·cm-2析氢反应电压仅仅为160 mV、析氧反应为240 mV,且都表现出很高的催化活性. 同时,优化的NiFe-Se/c纳米棒的塔菲尔斜率为73 mV·dec-1,显著低于RuO2 (94 mV·dec-1), Ni/Fe@C(105 mV·dec-1) 和裸泡沫镍的(109 mV·dec-1)(如图1). 在这项研究中,虽然电压有所降低,但并没有达到我们理想中的电压值. 之后HAKHYEON等[9]在2017年,利用镍铁反纳米结构发现了高效率,低成本的镍铁双功能电催化剂应用于水分解反应,通过优化反纳米结构的厚度层,在1 mol/L 的NaOH中电流为10 mA·cm-2时镍铁(IO)能够降低OER和HER的电压分别到70、90 mV. 由于镍铁纳米材料催化性能的增强主要是依赖于多的活性位点和大的比表面积,反应物和产物主要在纳米多孔IO表面参与反应,有效减小了电子在高电位下的迁移率. 另外,2018年LIU等在工作中[10],通过一个简单的途径合成了一类FeNi@N-GR纳米复合材料的多功能电催化剂.图1a显示了FeNi@N-GR催化剂的OER的极化曲线. 证明FeNi@N-GR核壳纳米结构在析氢反应和析氧反应中具有高活性和稳定性双功能催化,为设计电化学和其他可利用能源的多功能催化剂提供了一个新的途径.图1 LIU课题组测试的(a)OER极化曲线和(b)NiFeSe /C纳米棒、Ni/Fe OH、Ni/Fe @ C、IrO2和裸Ni泡沫在1 mol/L KOH中的对应塔菲尔图. (c)NiFeSe / C纳米棒在不同扫描速率下的极化曲线. (d)NiFeSe / C纳米棒在静态过电位为240 mV下的时间依赖电流密度曲线20 hFig.1 (a) OER polarization curves and (b) Corresponding Tafel plots of NiFe-Se/C nanorods, Ni/Fe-OH, Ni/Fe@C, IrO2 and bare Ni foam in 1.0 mol/L KOH. (c) LSV plots for the NiFeSe/C nanorods at different scan rates. (d) Time-dependent current density curve for the NiFeSe/C nanorods under a static overpotential of 240 mV for 20 h tested by the LIU’s group2 NiFeOx及其复合物由于Ni、Fe及其NiFe氧化物在自然界中拥有丰富的自然资源并且他们也是自然界中重要的半导体材料,近些年来被广泛地应用在很多领域. 另外他们具有价格低廉,催化活性高以及稳定性好等优点,被广泛用作电解水的电催化剂. 在电学、光学、以及磁学中,对材料的尺寸、大小以及一些微观结构都有比较严格的要求. 因此,很多课题研究致力于对镍铁氧化物的微观结构的研究. 例如:2018年我们课题组[11]在NiFe-MOF中密闭渗碳并进行二次煅烧,成功地合成了双金属NiFe2O4(如图2),并通过XRD、XPS、SEM和TEM进行表征,合成的NiFe2O4化合物在碱性条件下展现了很好的催化性能与很高的稳定性. 从中我们可以得到启发,合成的NiFe2O4化合物将提高MOFs在非贵金属作为OER电催化剂中的应用.图2 HAO课题组合成的NiFe MOFs两步热处理制备NiFe2O4材料的示意图Fig.2 Schematic representation of the formation of NiFe2O4 materials through the two-step thermal treatment of NiFe-MOFs in HAO’s group 除了我们课题组做了研究外,其他研究工作者也做了大量的工作. 在2018年,KUMAR等[12]发现由镍铬青铜模拟金属-有机骨架制成的介孔氧化镍纳米立方体(NiFe-NCs),可以作为一种有效的用于全解水的催化剂. 在该电催化材料中,具有200 nm侧边长度的NiFe-NCs中 Ni/Fe物质的量之比为3∶2,是NiO和α/γ-Fe2O3的复合物. NiFe-NCs在1 mol/L KOH溶液中,10 mA·cm-2的过电势处演示OER和HER的过电势是271、197 mV,优于具有类似组成的球形镍铁氧化物纳米粒,而当全解水时,在电流密度为10 mA·cm-2使用NiFe-NCs时只需1.67 V的电压. NiFe-NCs水分解催化剂表现出长期稳定的耐腐蚀性能,同时NiFe-NCs暴露的边缘和顶点处的活性位点对它们的整体催化性能起着至关重要的作用. 此外DENG等在2017年发现[13],具有离散N掺杂石墨碳覆盖层的核壳NiFe纳米复合物可以用于增强水氧化,促进析氧反应. 被离散N掺杂石墨覆盖层的核/壳NiFe纳米复合物在析氧反应活性和稳定性方面增强,并具有低起始电位1.48 V,降低过电位320 mV·cm-1,小的塔菲尔斜率值41 mV·dec-1,优于Ir/C. 除此之外,2015年FOMINYKH等对铁掺杂氧化镍纳米晶在碱性条件下水分解的高效电催化剂作了相关研究[14]. 通过XRD和EDS测定了纳米颗粒的铁含量和组成(如图3),结构分析显示Fe3+已进入NiO岩盐结构. 纳米颗粒在乙醇中的优异分散性使其可以在各种衬底上制备具有光滑表面的大约8 nm的均匀薄膜.Fe0.1Ni0.9O在电压为300 mV时具有高效电化学催化水分解性能,而且在电流为10 mA·cm-2时电压仅为297 mV,塔菲尔斜率为37 mV·dec-1. 其次通过溶剂热合成的超小、可结晶的NiO纳米粒(NPS),发现其性能不太理想,当NiO纳米粒中加入20%铁时,发现其性能明显增强. 当纳米粒在电压为300 mV时展现的最高周转频率是1.9 s-1,对于百分之十的三价铁杂质,优于大量的铁镍氧化物和昂贵的稀土铱催化剂. Fe0.1Ni0.9O组成中粒子尺寸的降低和高结晶率使其长时间电解之后仍能稳定存在,有利于大幅度提高电催化活性和结构的稳定性.(a)概述纳米颗粒分散在TEM网格上. (b)单一的Fe0.1Ni0.9O纳米粒子的HRTEM 图像. (c)几十个Fe0.1Ni0.9O的电子衍射图样纳米颗粒.图3 KSENIA FOMINYKH 课题组测试的Fe0.1Ni0.9O纳米粒子(NP-10%)的TEM图像Fig.3 TEM images of the Fe0.1Ni0.9O nanoparticles (NP-10%)3 总结与展望由于镍铁在地球上拥有丰富的资源,且成本低易于获取,发展镍铁电催化剂在析氢反应和析氧反应方面具有巨大的应用价值. 尤其是镍铁合金、镍铁氧化物和镍铁双层金属氧化物近些年的发展,使得镍铁双金属电催化在低电压、低成本、低消耗、环境友好方面得到了很大进步,促进了电催化的进一步发展. 电催化剂从与贵金属性能的研究到与非贵金属的性能的发展,是研究过程中的重要突破,为电催化剂提供了更为广阔的发展空间.参考文献:【相关文献】[1] WANG C, WANG X, ZHANG X, et al. Hierarchically porous Ni3S2 nanorod array foam as highly efficient electrocatalyst for hydrogen evolution reaction and oxygen evolution reaction [J]. Electrochimica Acta, 2015, 174(18): 297-301.[2] SUN X P, TIAN J Q, ABDULLAH M A, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14 [J]. Journal of America Chemietry Society, 2016, 72(21): 7587-7590. [3] MORALES-GUIO G G, STERM L A, HU X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution [J]. Chemical Society Reviews, 2014, 43(18): 6555-6560.[4] ZOU X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting [J]. Chemical Society Reviews, 2015, 44(15): 5148-5180.[5] COOK T R, DOGUTAN D K, REECE S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds [J]. Chemical Reviews, 2010, 110(11): 6474-6502.[6] VESBORG P C, SEGER B, CHORKENDORFF I. Recent development in hydrogen evolution reaction catalysts and their practical implementation [J]. Journal of Physical Chemistry Letters, 2015, 6(6): 951-956.[7] GONG M, ZHOU W, TSAI M C, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis [J]. Nature Communications, 2014, 5(15): 4695-4701.[8] XU B, YANG H, YUAN LC, et al. Direct selenylation of mixed Ni/Fe metal-organic frameworks to NiFe-Se/C nanorods for overall water splitting [J]. Journal of Power Sources, 2017, 366(17): 193-199.[9] SONG H, OH S, YOON H, et al. Bifunctional NiFe inverse opal electrocatalysts with heterojunction Si solarcells for 9.54%-efficient unassisted solar water splitting [J]. Nano Energy, 2017, 429(21): 1-7.[10] LIU P T, GAO D Q, XIAO W, et al. Self-powered water-splitting devices by core-shell NiFe@N-graphite-based Zn-Air batteries [J]. Advanced Functional Mater, 2018, 28(14): 1706928-1706936.[11] FANG Z Q, HAO Z M, DONG Q S, et al. Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction [J]. Journal ofNanoparticle Research, 2018, 20(14): 106-115.[12] KUMAR A, BHATTACHARRYA S. Porous NiFe-Oxide nanocubes as bifunctional electrocatalysts for efficient water-splitting [J]. ACS Applied Materials Interfaces, 2017, 9(48): 41906-41915.[13] DENG C, WU KH, SCOTT J, et al. Core/shell NiFe nanoalloy with a discrete N-doped graphitic carbon cover for enhanced water oxidation [J]. ChemElectroChem, 2018, 5(5): 732-736.[14] FOMINYKH K, CHERNEV P, ZAHARIEVA I, et al. Iron-doped nickel oxide nanocrystalsas highly efficient electrocatalysts for alkaline water splitting [J]. ACS Nano, 2015, 9(6): 5180-5188.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镍系双金属和手性修饰镍系双金属纳米材料的制备及其在苯乙
酮电羧化中的应用研究
近几十年来,人们在工业生产及生活中排放的CO<sub>2</sub>越来越多,导致了“温室效应”逐渐加剧。
因此,如何减少和利用CO<sub>2</sub>一直都受到人们的极大关注。
电化学催化合成作为一种固定和利用CO<sub>2</sub>的方法之一,因其条件简单温和且方便而具有极大的发展潜力。
传统不对称催化合成一直以高收率和高选择性等优势成为手性化合物的主要合成方法。
但是,由于传统不对称催化合成是一种均相催化合成,而在均相体系中普遍存在着溶液中的催化剂难以分离、回收以及反应条件苛刻等主要问题,因而使得传统不对称催化合成的成本较高,难以应用于工业生产。
这使得电化学不对称催化合成开始受到人们的关注,尤其是在结合固定和利用CO<sub>2</sub>这一研究后,使得电化学不对称羧化成为绿色化学领域具有很大前景的研究方向。
电化学不对称羧化属于非均相催化合成,在非均相催化合成中最重要的部分则是使用高催化性能的催化剂。
所以寻找一种具有优异的催化性能的催化剂是电化学不对称羧化中重要的研究内容。
近些年,因为双金属纳米材料可以利用两种不同金属之间的协同效应(包括电子效应和几何效应)来提高材料的催化性能,所以在催化领域得到了广泛的应用。
本论文则通过探索研究一种简单温和的方法制备镍系及其手性修饰双金属纳米材料,并将其用于苯乙酮的不对称电羧化反应中,从而研究其催化性能。
主要研究内容如下:(1)镍银双金属纳米材料的制备及其应用于苯乙酮不对称电羧化的研究探索了一种简单温和的水热法,利用廉价易得的过渡金属盐制备
了Ni/Ag、Ni/Cu和Ni/Fe等镍系双金属纳米材料,而且可以通过改变投料比制备得到相应的不同金属摩尔比的双金属纳米材料。
通过XRD、SEM和SEM-EDX等表征分析了双金属材料的组成结构、表面形貌以及元素分布。
利用这些材料制备相应的电极用于催化苯乙酮不对称电羧化反应。
通过考察优化不同双金属纳米材料电极、手性诱导剂的种类和用量、电解电量和电流密度以及温度等条件,发现在最优的反应条件下,当辛可尼定(CD)作为手性诱导剂时,利用Ni/Ag 5/3双金属纳米材料催化苯乙酮不对称电羧化反应得到的产物R-2-羟基-2-苯基丙酸(阿卓乳酸)的产率和光学活性(ee值)最高。
(2)酒石酸修饰镍系双金属纳米材料的制备及其应用于苯乙酮不对称电羧化的研究将酒石酸修饰到镍系双金属纳米材料上制备得到一种手性修饰的纳米复合材料。
通过XRD和SEM表征证明酒石酸修饰后不会对复合材料的组成结构和表面形貌产生影响。
通过FT-IR和TGA表征证明酒石酸成功的修饰在双金属纳米材料上。
然后,通过紫外分光光度法对复合材料中酒石酸的修饰量进行测定。
最后,将手性修饰的复合材料应用于苯乙酮的不对称电羧化反应中,研究了不同构型酒石酸修饰的双金属纳米复合材料的催化性能,并且还考察了复合材料的重复使用性。