高速铁路供电专题
第二章 高速铁路牵引供电系统的供电方式

第二章高速铁路牵引供电系统供电方式第一节牵引供电系统供电方式交流牵引供电系统可采用的供电方式主要有4种:直接供电方式,BT(吸流变压器)供电方式,AT(自耦变压器)供电方式和CC(同轴电缆)供电方式。
交流电气化铁道对邻近通信线路的干扰主要是由接触网与地回路对通信线的不对称引起的。
如果能实现由对称回路向电力机车供电,就可以大大减轻对通信回路的干扰。
采用BT、AT、CC等供电方式就是为了提高供电回路的对称性,其中CC供电方式效率最高,但投资过大。
目前,电气化铁路对采用BT、AT供电方式。
下面逐一介绍。
一、直接供电方式这是一种最简单的供电方式。
在线路上,机车供电由接触网(1)和轨(2)-地直接构成回路,对通信干扰不加特殊防护措施,如图2-1所示。
电气化铁路最早大都采用这种供电方式。
这种供电方式最简单,投资最省,牵引网阻抗较小,能损也较低,供电距离一般为30—40km。
电气化铁路的单项负荷电流由接触网经钢轨流回牵引变电所。
由于钢轨和大地不是绝缘的,一部分回流由钢轨流入大地,因此对通信线路产生感应影响,这是直接供电方式的缺点。
它一般用在铁路沿线无架空通信线路或通信线路已改用地下屏蔽电缆区段,必要时也将通信线迁到更远处。
图2-1带回流线的直接供电方式是在接触网支柱上架设一条与钢轨并联的回流线,称为负馈线(NF),如图2—2所示。
利用接触网与回流线之间的互感作用,使钢轨中的回流尽可能地由回流线流回牵引变电所,减少了电气空间,因而能部分抵消接触网对邻近通信线路的干扰,但其防干扰效果不及BT供电方式。
这种供电方式可在对通信线路防干扰要求不高的区段采用,能进一步降低牵引网阻抗,供电性能要好一些,但造价稍高。
目前我国京广线、石太线均采用此种供电方式。
图2—2二、BT供电方式BT供电方式是在牵引网中架设有吸流变压器—回流线装臵的一种供电方式,目前在我国电气化铁路中应用较广。
吸流变压器的变比是1:1.它的一次绕组串接在接触网中(1)中,二次绕组串接在专为牵引电流流回牵引变电所而特设的回流线(NF)中,故称之为吸流变压器—回流线供电方式,如图2—3所示。
第一章 高速铁路外部供电电源

第一章高速铁路外部供电电源第一节我国外部供电电源的电压选择电气化铁路供电系统的外部电源来自公用电力系统的电力网,而限制电力网送电能力的因素有4个方面:①导线发热;②电压损失;③功率和能量损耗;④稳定破坏。
这4个方面都是由电流引起的。
解决方法就是提高供电电压,减小电流。
因为三相功率和线电压、线电流的关系为S﹦3UI,当输入功率一定时,电压越高,电流越小,所以提高电压是提高电网输送能力、降低网损、提高电能质量的有效措施。
但是电压提高会导致电器设备的投资增大。
因此,选择一个合适的电压电压等级牵引变电所设计中的一项重要工作。
电力网的电压等级一般根据输送功率和输电距离来选择,其应用的大致范围可参照表1-1我国第一条电气化铁路宝风段1961年建成开通时,牵引变电所外部电源即采用110KV电源供电,随后建成的其他电气化铁路一直习惯采用110KV,应该说均保证了安全、可靠供电。
对于高速铁路牵引负荷增大较为明显。
一般来说,时速350KM/H铁路按间隔3min16辆编组运行时,牵引变电所的负荷瞬间可达170MVA,高峰小时可达130MVA。
由于牵引负荷电流大,波动比较剧烈,谐波含量丰富,并且属于单项负荷,为了增大电网对谐波、负序的承受力,减少牵引变电所母线电压的波动,降低输电线路损耗,保证输电线路的动态、静态稳定,需牵引变电所进线电压等级与负荷匹配;同时,20世纪80年代后,是我国500KV 电网大发展时期。
目前我国已运行750KV超高压电网和正在试运行1000KV特高压电力线路。
结合负荷需要和电网发展,牵引变电所进线电压等级选择220KV。
目前在我国西北地区因无220KV电压等级,因此西北地区电压等级可选择330KV。
牵引变电所进线电压等级选择220KV/330KV,由于系统具有较强的负序和谐波承受能力,有利于牵引变压器采用单项接线。
在我国目前已经实施的武广、郑西、石太、京石、石武、京津、京沪、合武等客运专线、高速铁路均采用220KV电压等级;郑西客运专线河南省境内采用220KV电压等级,陕西省境内采用330KV电压等级。
高速铁路牵引供电技术 (1)精选全文

2、牵引网供电方式的比较
2)直接供电方式
④牵引网回路是不平衡回路,防干扰性能差,加 设回流线后的防干扰效果一般,并需增加防干 扰费用;
⑤适用于防干扰问题不突出和外部电源投资相对 较小的区段及运输繁忙干线、重载和高速线。
⑥供电回路结构简单,运行可靠,造价低。 ⑦要对绝缘子闪络采取保护措施。
4、牵引变压器选型及容量
2)牵引变压器接线特点
V接线牵引变压器 :两臂牵引负荷相等的前提 下,V接线牵引变压器的负序功率等于牵引负荷 功率的50%,对电力系统的负序影响较小。 ;结 构较简单,但供电范围小,实际安装容量比单相 牵引变压器要大。
Y/牵引变压器 :制造和运行经验较成熟,对 电力系统的负序影响介于单相牵引变压器和平衡 型牵引变压器之间,但是其容量利用率较低。
综合自动化系统既要考虑重要保护的独 立性,又要建立经济灵活的网络形式,以 实现资源共享,最大限度地利用系统资源, 通过网络实现辅助保护功能及自动控制功 能,完善保护配置,提高系统的故障处理 速度和运行的可靠性。
6、牵引供电所设计
3)综合自动化系统 特点: ☆软、硬件结构模块化,集中加分布式的单元布置, 功能分布式配置。 ☆馈线间隔采用保护测控一体化设备,在系统可靠 性和安全性的前提下,合理优化系统配置。 ☆综合利用系统资源,实现故障点参数的检测及处 理。 ☆实现系统自动组态功能,提高系统自动化的能力。 ☆根据系统检测参数,优化牵引供电系统运行工况。 ☆实现分区所越区供电的自动控制。 ☆避免不合理的系统资源配置,节省工程投资。
4、牵引变压器选型及容量
3)牵引变压器容量 ①计算条件
高速列车4min追踪间隔模拟仿真、变压器过载能 力为过载75%情况下满足负荷需求运行1小时、采用 单相变压器;参照500系高速动车组的参数,进行 牵引计算;选取一段完整供电臂的线路条件,配以 机车特性进行模拟。
中国高速铁路牵引供电关键技术-最新资料

中国高速铁路牵引供电关键技术引言2008年8月1日,我国第1条高速铁路京津城际铁路通车运营,实现了高速动车组350km/h的运营速度目标,这标志着我国高速铁路技术达到世界先进水平。
我国高速铁路目前正在快速发展阶段,相应的铁路通道也处于加速建设中。
牵引供电系统是为高速动车组提供动力的重要系统,其工作性能的安全可靠,是高速动车组安全运行的重要保障。
高速列车在正常行驶中需要大容量、可靠的高电压,即牵引供电系统对电网的要求很高,因此高速铁路牵引供电技术面临着巨大的挑战。
1 高速铁路牵引供电系统概述高速铁路牵引供电负荷量很大,具有很强的冲击力和不平衡性,因此要保证供电的可靠性,需要全面提升公用电网的供电容量与供电品质,在供电可靠性上远远高于普速的电气化铁路。
由于牵引变电所的负荷大,且1个区段内的多个牵引变电所一般属于同一区域性或地方公用电网,从而使高速铁路牵引供电负荷对公用电网、尤其是电力系统受端电网的冲击,远大于普速电气化铁路。
我国的高速铁路主要由三相220kV电网供电。
牵引变压器将三相电压转变为两相2×27.5kV分别为左右供电臂供电,自耦变压器,即AT的两个接头分别接:接触线27.5kV,正馈线-27.5kV,而中性线接地并与钢轨相连。
由于牵引网采用全并联AT供电方式,沿线平均10~15km需要设置一台AT于AT所和分区所。
在复线2×27.5kV供电系统的基础上,在AT所和分区所,横连线将上下行同类线路进行并联。
2 高速铁路牵引供变电技术2.1 AT供电系统自耦变压器AT是普通双绕组变压器的一种特殊连接,此种变压器最大的特点就是高压绕组与低压绕组的连接方式,两者之间不但有相互的磁路耦合,而且其电路也有直接联系,所以其传递的功率为感应功率和传导功率之和。
由于AT的高低压绕组间有直接电路联系,便要求低压侧与高压侧具有同样的绝缘水平,且其常用于高低侧电压比较接近的场合。
与以往的供电系统不同,全并联AT供电系统的电流分布可以有效的减少供电线路中的电流和电压损失,并且可以大大降低通信线路的电磁干扰。
模块1.高速铁路基础知识《高速铁路牵引供电》教学课件

谢谢观看!
Thanks for your watching!
1.4 中国发展高速铁路的技术条件与社会需求
1. 技术条件
1 工程建造技术达到世界先进水平 针对我国复杂多样的地质及气候条件,攻克了湿陷性黄土和软土地区沉降变形控制难题, 掌握了复杂地质条件下高速铁路地基处理和路基填筑技术等。
2 高速列车技术达到世界先进水平 系统掌握了时速200~250 km动车组核心技术,全面构建了设计制造体系。在此基础上, 攻克了制约速度提升的技术难题等。 3 列车控制技术达到世界先进水平 系统掌握了满足时速250 km的CTCS-2级列车运行控制技术,成功应用于既有线第六次 大面积提速和新建的时速250 km高速铁路等。
《高速铁路牵引供电》
第一章
高速铁路基础 知识
目录 目录
1.1 高速铁路的定义与特点 1.2 我国高速铁路的发展历程与方向 1.3 高速铁路的技术特点 1.4 中国发展高速铁路的技术条件与
社会需求
1.1 高速铁路的定义与特点
1. 高铁的定义
1 国际规定 西欧把新建时速达到250~300 km、旧线改造时速达到200 km的铁路线路称为高速铁 路。1985年联合国欧洲经济委员会在日内瓦签署的国际铁路干线协议规定:新建客运列车专 用型高速铁路时速为350 km以上,新建客货运列车混用型高速铁路时速为250 km。 2 中国规定 中国2014年1月1日起实施的《铁路安全管理条例》规定:高速铁路(高铁)是指设计开 行时速250 km以上(含预留),并且初期运营时速200 km以上的客运列车专线铁路(客运 专线)。
高速铁路牵引供电概述

1.1 牵引供电方式
2.BT供电方式
BT供电方式就是在牵引供电系统中加 装吸流变压器(3~4 km安装一台)和 回流线。这种供电方式由于在接触网 同高度的外侧增设了一条回流线,回 流线上的电流与接触网上的电流方向 相反,因此大大减轻了接触网对邻近 通信线路的干扰。采用BT供电方式的 电路是由牵引变电所、接触悬挂、回 流线、轨道及吸上线等组成。牵引变 电所作为电源向接触网供电;动车组 列车运行于接触网与轨道之间;吸
正馈线与轨道之间的电压也是25 kV。自 耦变压器是并联在接触悬挂和正馈线之间 的,其中性点与钢轨(保护线)相连接。 彼此相隔一定距离(一般间距为10~16 km)的自耦变压器将整个供电区段分成 若干个小的区段,叫作AT区段,从而形 成了一个多网孔的复杂供电网络。接触悬 挂是去路,正馈线是回路。接触悬挂上的 电流与正馈线上的电流大小相等、方向相 反,因此其电磁感应影响可以互相抵消, 故对邻近的通信线有很好的防护作用。
高
速 铁
项目
高速铁路牵引供电概述
路
高速铁路牵引供电概述
高速铁路的牵引供电系统,其本身没有发电设备,而是从电力系统获取电能。 目前,牵引供电系统的供电方式有直接供电方式、BT供电方式、AT供电方式、 同轴电力电缆(coaxial cable,CC)供电方式、直供加回流线供电方式、单 边供电方式和双边供电方式等。
1.1 牵引供电方式
3.AT供电方式
随着铁路电气化技术的发展及动车组的投 入运行,传统的供电方式已不能适应铁路 发展的需要,各国开始采用AT供电方式。 AT供电方式就是在牵引供电系统中并联 自耦变压器的供电方式。实践证明,AT 供电方式是一种既能有效地减弱接触网对 邻近通信线的电磁感应影响,又能适应高
高速铁路电力设备应急供电方案

高速铁路电力设备应急供电方案清晨的阳光透过窗帘的缝隙,洒在我的笔记本上,键盘上敲击的声音,仿佛是铁路上列车行进的节奏。
十年的方案写作经验,让我对这个话题有了自己的理解和感悟。
下面,就让我用意识流的方式,为你呈现这份“高速铁路电力设备应急供电方案”。
我们要明确应急供电的目的。
高速铁路作为国家重要的交通基础设施,其电力设备的稳定运行至关重要。
一旦出现电力故障,不仅会影响列车正常运行,还可能对旅客安全构成威胁。
因此,我们的目标是确保在电力故障发生时,能够迅速、高效地恢复供电,保证铁路运行的安全和稳定。
一、应急供电设备的选择1.1应急发电机组应急发电机组是应急供电的核心设备,其容量和类型应根据高速铁路电力设备的实际需求来确定。
考虑到高速铁路的用电量较大,我们建议选择大功率的柴油发电机组,以保障电力供应的连续性和稳定性。
1.2应急电源柜应急电源柜是应急供电系统的关键组成部分,负责将应急发电机组产生的电能分配到各个电力设备。
在选择应急电源柜时,应考虑其输出电压、电流、频率等参数与高速铁路电力设备的要求相匹配。
二、应急供电系统的设计2.1供电方案设计应急供电系统应采用双回路供电方式,即正常供电回路和应急供电回路。
正常供电回路负责日常电力供应,应急供电回路在正常供电回路发生故障时自动切换,确保电力设备正常运行。
2.2供电设备布局应急发电机组和应急电源柜应安装在便于操作和维护的位置,同时考虑到铁路沿线环境,应选择具有良好散热性能的设备。
应急供电设备应与正常供电设备保持一定的距离,以防止相互影响。
2.3供电线路设计应急供电线路应采用专用电缆,电缆敷设时应避免与其他电缆交叉,减少故障概率。
同时,电缆应具有一定的抗拉强度和耐磨性能,以适应铁路沿线的恶劣环境。
三、应急供电系统的实施3.1设备安装在设备安装过程中,要严格按照施工图纸和技术要求进行,确保设备安装到位。
同时,对设备进行调试,检查各项参数是否满足高速铁路电力设备的需求。
高铁供电模式知识点

高铁供电模式知识点高铁是一种高速铁路交通工具,其供电系统是保障列车正常运行的重要组成部分。
本文将介绍高铁供电模式的相关知识点,包括常用的供电方式、供电系统的组成以及其优势和不足之处。
一、常用的高铁供电方式1. 变电所供电方式变电所供电方式是目前高铁常用的供电方式之一。
该方式通过架设变电所,将市电的交流电能转化为高铁列车所需的直流电能。
变电所供电方式具有供电可靠、运行灵活等特点,能够满足高铁列车对电能的需求。
2. 高速发电机组供电方式高速发电机组供电方式是另一种常见的高铁供电方式。
该方式通过安装发电机组,将其输出的交流电能转化为高铁列车所需的直流电能。
高速发电机组供电方式具有供电灵活、自主性高等特点,在一些特殊情况下可以提供紧急供电。
3. 非接触式供电方式非接触式供电方式是近年来新兴的一种供电方式。
该方式利用高铁列车与供电线圈之间的电磁感应原理,实现对列车的供电。
非接触式供电方式具有接触线减少、供电范围广等优势,但对高铁列车的技术要求较高。
二、高铁供电系统的组成部分1. 变电设备变电设备是高铁供电系统的核心组成部分,包括变电所和变电站。
变电所通过变压器将市电的交流电能转化为适合高铁列车的直流电能,变电站则将电能输送到列车所在的轨道供电。
2. 列车供电设备列车供电设备包括高速发电机组和供电线圈等组成部分。
高速发电机组负责将变电所输出的交流电能转化为高铁列车所需的直流电能,供电线圈则通过电磁感应原理提供非接触式供电。
3. 接触网和集电装置接触网和集电装置是高铁列车供电的关键部分。
接触网负责将电能传输到列车运行所在的轨道上,集电装置则负责将接触网传输的电能导入列车内部供电系统。
三、高铁供电模式的优势和不足1. 优势高铁供电模式具有以下优势:- 供电可靠:采用变电所供电方式或高速发电机组供电方式,能够保障高铁列车正常运行。
- 运行灵活:供电系统可以根据列车实际运行情况进行调整,确保电能的及时供应。
- 维护方便:供电系统的组成部分相对独立,维护和修复工作较为便利。