SPSS统计分析-第7章回归分析-完整版
合集下载
第7章 相关分析与回归分析(含SPSS)

四、偏相关分析
(一) 偏相关分析和偏相关系数 偏相关分析也称净相关分析,它在控制其他变量 的线性影响的条件下分析两变量间的线性相关性, 所采用的工具是偏相关系数(净相关系数)。
偏相关分析的主要用途是根据观测资料应用偏相 关分析计算偏相关系数,可以判断哪些解释变量对 被解释变量的影响较大,而选择作为必须考虑的解 释变量。这样在计算多元回归分析时,只要保留起 主要作用的解释变量,用较少的解释变量描述被解 释变量的平均变动量。
(7.7)
偏相关系数的取值范围及大小含义与相关系数相 同。
2、对样本来自的两总体是否存在显著的偏相关 进行推断。
(1)提出原假设:两总体的偏相关系数与零无显 著差异。
(2)选择检验统计量。偏相关系数的检验统计量 为 t 统计量。 (3)计算检验统计量的观测值和相伴概率 p 。
(4)给定显著性水平 ,并作出决策。如果相 伴概率值小于或等于给定的显著性水平,则拒绝 原假设;如果相伴概率值大于给定的显著性水平, 则不能拒绝原假设。
(二)偏相关系数在SPSS中的实现
1、建立或打开数据文件后,进入Analyze→ Correlate →Partial主对话框,如图7-6所示。
图7-6 偏相关分析主对话框
2、选择分析变量送入Valiables框,选择控制变
量进入Controlling for框。
3、在Test of Significance 栏中选择输出偏相
图7-7 偏相关分析的选项对话框
(1)Statistics 统计量选择项,有两个选项: ①
Means and standard deviations 复选项,要求
SPSSZero-order correlations 复选项,要求显示零阶
最新SPSS-回归分析

数据要求:因变量应具有二分特点。自变量可以是分类变量和定距变量。如果自变 量是分类变量应为二分变量或被重新编码为指示变量。指示变量有两种编码方式。
回归系数:几率和概率的区别。几率=发生的概率/不发生的概率。如从52张桥牌 中抽出一张A的几率为(4/52)/(48/52)=1/12,而其概率值为4/52=1/13 根据回归系数表,可以写出回归模型公式中的z。然后根据回归模型公式 Prob(event) 进行预测。
y 以例01数1x据 为1 例,,可代 以表 用家 下庭 面收 的入 模的 型哑 来元 = 描1述时 :, = 01x2, 代 表 家 庭 收 入 的 哑 元 = 2时 , = 01x3, 代 表 家 庭 收 入 的 哑 元 = 3时 。
自变量中有定性变量的回归
现哑都在元估只的计要 各,估只个计能参够数0,在1有,1,和约2,束1,3条本2件身, 下只3即才有可能相。够对得意到义估,计无。法三个 约束条件可以有很多选择,一种默认的条件是把一个参 数可以设估为计0,出比来如了。3=0,这样和它有相对意义的1和2就 对0.6于88例, -11,1.0对66,0,-4.16,79,1,0。2这, 时3的的拟估合计直分线别有为三2条8.,70对8, 三种家庭收入各ary Logistic)实例
实例P255 Data11-02 :乳腺癌患者的数据进行分析, 变量为:年龄age,患病时间time,肿瘤扩散等级 pathscat(3种), 肿瘤大小pathsize, 肿瘤史histgrad (3种)和癌变部位的淋巴结是否含有癌细胞ln_yesno, 建立一个模型,对癌变部位的淋巴结是否含有癌细胞 ln_yesno的情况进行预测。
SPSS-回归分析
回归分析的概念
寻求有关联(相关)的变量之间的关系 主要内容:
回归系数:几率和概率的区别。几率=发生的概率/不发生的概率。如从52张桥牌 中抽出一张A的几率为(4/52)/(48/52)=1/12,而其概率值为4/52=1/13 根据回归系数表,可以写出回归模型公式中的z。然后根据回归模型公式 Prob(event) 进行预测。
y 以例01数1x据 为1 例,,可代 以表 用家 下庭 面收 的入 模的 型哑 来元 = 描1述时 :, = 01x2, 代 表 家 庭 收 入 的 哑 元 = 2时 , = 01x3, 代 表 家 庭 收 入 的 哑 元 = 3时 。
自变量中有定性变量的回归
现哑都在元估只的计要 各,估只个计能参够数0,在1有,1,和约2,束1,3条本2件身, 下只3即才有可能相。够对得意到义估,计无。法三个 约束条件可以有很多选择,一种默认的条件是把一个参 数可以设估为计0,出比来如了。3=0,这样和它有相对意义的1和2就 对0.6于88例, -11,1.0对66,0,-4.16,79,1,0。2这, 时3的的拟估合计直分线别有为三2条8.,70对8, 三种家庭收入各ary Logistic)实例
实例P255 Data11-02 :乳腺癌患者的数据进行分析, 变量为:年龄age,患病时间time,肿瘤扩散等级 pathscat(3种), 肿瘤大小pathsize, 肿瘤史histgrad (3种)和癌变部位的淋巴结是否含有癌细胞ln_yesno, 建立一个模型,对癌变部位的淋巴结是否含有癌细胞 ln_yesno的情况进行预测。
SPSS-回归分析
回归分析的概念
寻求有关联(相关)的变量之间的关系 主要内容:
软件SPSS的回归分析功能-PPT课件

“残差”复选框组:
“模型拟合度”复选框:
“R方变化”复选框:
• 模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检 验:R,R2和调整的R2, 标准误及方差分析表。 • 显示模型拟合过程中R2、F值和p值的改变情况。 • 提供一些变量描述,如有效例数、均数、标准差等,同时还给出一个自 变量间的相关矩阵。
【选项】按钮
• 注意:选项按钮只需要在选择方法为逐步回归后,才需要打开
• “步进方法标准”单选钮组:设置纳入和排除标准,可按P值或F 值来设置。 • “在等式中包含常量”复选框:用于决定是否在模型中包括常数 项,默认选中。 • “缺失值”单选钮组:用于选择对缺失值的处理方式,可以是不 分析任一选入的变量有缺失值的记录(按列表排除个案)而无论 该缺失变量最终是否进入模型;不分析具体进入某变量时有缺失 值的记录(按对排除个案);将缺失值用该变量的均数代替(使 用均值替代)。
“描述性”复选框:
“部分相关和偏相关性”复选框:
• 显示自变量间的相关、部分相关和偏相关系数。
“共线性诊断”复选框:
• 给出一些用于共线性诊断的统计量,如特征根(Eigenvalues)、方差 膨胀因子(VIF)等。
以上各项在默认情况下只有“估计”和“模型拟合度”复选框被选中。
【绘制】按钮
step4:线性回归结果
【Anova】 (analysisofvariance方差分析)
• 此表是所用模型的检验结果,一个标准的方差分析表。 • Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著 性概率即P值。当sig. <= 0.05的时候,说明回归关系具有统计学意义。 如果sig. > 0.05,说明二者之间用当前模型进行回归没有统计学意义, 应该换一个模型来进行回归。 • 由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我 们用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验 的结果。 • 由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价 与系数的检验,在多元回归中这两者是不同的。
《SPSS回归分析》ppt课件

.
-3.666
.002
从表中可知因变量与自变量的三次回归模型为: y=-166.430+0.029x-5.364E-7x2+5.022E-12x3
9.2 曲线估计
➢拟合效果图
从图形上看出其拟合效果非常好。
8.3 曲线估计
说明:
曲线估计是一个自变量与因变量的非线性回归过程,但 只能处理比较简单的模型。如果有多个自变量与因变量呈非 线性关系时,就需要用其他非线性模型对因变量进行拟合, SPSS 19中提供了“非线性”过程,由于涉及的模型很多,且 非线性回归分析中参数的估计通常是通过迭代方法获得的, 而且对初始值的设置也有较高的要求,如果初始值选择不合 适,即使指定的模型函数非常准确,也会导致迭代过程不收 敛,或者只得到一个局部最优值而不能得到整体最优值。
8.1 回归分析概述
(3)回归分析的一般步骤
第1步 确定回归方程中的因变量和自变量。 第2步 确定回归模型。 第3步 建立回归方程。 第4步 对回归方程进行各种检验。
➢拟合优度检验 ➢回归方程的显著性检验 ➢回归系数的显著性检验
第5步 利用回归方程进行预测。
主要内容
8.1 回归分析概述 8.2 线性回归分析 8.3 曲线估计 8.4 二元Logistic回归分析
8.3 曲线估计
(2) 统计原理
在曲线估计中,有很多的数学模型,选用哪一种形式的回 归方程才能最好地表示出一种曲线的关系往往不是一个简单的 问题,可以用数学方程来表示的各种曲线的数目几乎是没有限 量的。在可能的方程之间,以吻合度而论,也许存在着许多吻 合得同样好的曲线方程。因此,在对曲线的形式的选择上,对 采取什么形式需要有一定的理论,这些理论是由问题本质决定 的。
《SPSS数据分析教程》 ——回归分析..共43页

《SPSS数据分析教程》 ——回归分 析..
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
第7讲.SPSS的回归分析

^
^
^
随机误差项,残差项。需要满足以下几 个假设条件: 正态性假设 无偏性假设(期望等于零) 同方差假设:自变量所对应的残差方差 都相同,也就是说,残差与因变量、自 变量之间相互独立。 独立性假设:残差项之间互相独立。
一元线性回归分析
整体分析与设计的内容
Hale Waihona Puke 一、方法原理3.一元线性回归方程的统计检验 求出回归模型的参数之后,一般不能立即将结果付诸于实际问题的分析 和预测,通常要进行各种统计检验,如拟合优度检验(常用R2)、回归 方程和回归系数的显著性检验以及残差分析等。
可见:0 =-15.420;1 =14.424,则可得回归方程为: 箱销售量=-15.420+14.424 广告支出
检验回归系数是否显著为 0. 此时,显然是拒绝零假设的, 即系数显著不为0。
一元线性回归分析
整体分析与设计的内容
三、输出分析
3、几个图形
多元线性回归分析
整体分析与设计的内容
多元线性回归分析
整体分析与设计的内容
三、案例分析
某公司老板希望了解公司投放的电视广告费用和报纸广告费用对公司 收入的影响,因此收集了以往8周的数据进行分析。 其二元回归分析模型如下:
每周营业总收入 f (电视广告费用,报纸广告费用)
通过比较电视广告和报 纸广告变量的系数大小 来研究这两种广告形式 对收入的影响程度高低。 但是,收入和广告费用 是否呈线性关系,需要 提前做个判断。(可采 用散点图的方式)
大略呈线性关系
一元线性回归分析
整体分析与设计的内容
三、输出分析
2、输出结果 1)自变量进入方式
强迫引入法
2)模型汇总
SPSS(第7章回归分析)

2013-8-5 16
表7—23 回归模型的一般性统计量表 Model 1 2 R .831a .985b R square .690 .970 Adjusted Square .662 .965 Std.Error of the Estimate 8.671 2.808
a.Predictors(Constant),x4 b.Predictors(Constant),x4,x1 c.Dependent Variable:Y
表中第一列:列出了回归方程模型的编号;第二列表示回归方程的 复相关系数;第三列为回归方程的复相关系数的平方;第四列表示调 整了的复相关系数的平方。第五列为预测值的标准差。 从表中可看出,随着自变量个数的增加,复相关系数及其平方相 应增加,这表明回归效果是越来越好。还可看出,预测值的标准差越 来越来小,这也正表明回归方程越来越符合观测情况。
Total 2670.523 a.Predictors(Constant),x4 b.Predictors(Constant),x4,x1 c.Dependent Variable:Y
表中第一列为回归方程模型的编号;第二列列出了回归的平方和; 第三列为回归的自由度;第四列为均值平方;第五列为F值;第六列为 统计量大于F值的概率。 从表中可看出,当只有变量x4进入回归方程时,自变量与因变量 之间完全无线性关系的概率为0.001 ;当x1也进入方程之后,自变量 与因变量之间完全无线性关系的概率为0.000,这表明拒绝假设;所有 的回归因子的系数为0。
输出相关残差的durbinwatson统计量残差和预测值的统计量输出满足选择条件的观测量诊断表设置奇异值的判断条件输出所有有关测量的残差值选择回归系输出有关回归系数及其相关测量输出回归系数的95的置信区间输出协方差和相关矩图73statistics对话框201566图74plots对话框x轴和y轴中有一个是源变量标准化的预测值标准化的残差删除的残差修正后的预测值
表7—23 回归模型的一般性统计量表 Model 1 2 R .831a .985b R square .690 .970 Adjusted Square .662 .965 Std.Error of the Estimate 8.671 2.808
a.Predictors(Constant),x4 b.Predictors(Constant),x4,x1 c.Dependent Variable:Y
表中第一列:列出了回归方程模型的编号;第二列表示回归方程的 复相关系数;第三列为回归方程的复相关系数的平方;第四列表示调 整了的复相关系数的平方。第五列为预测值的标准差。 从表中可看出,随着自变量个数的增加,复相关系数及其平方相 应增加,这表明回归效果是越来越好。还可看出,预测值的标准差越 来越来小,这也正表明回归方程越来越符合观测情况。
Total 2670.523 a.Predictors(Constant),x4 b.Predictors(Constant),x4,x1 c.Dependent Variable:Y
表中第一列为回归方程模型的编号;第二列列出了回归的平方和; 第三列为回归的自由度;第四列为均值平方;第五列为F值;第六列为 统计量大于F值的概率。 从表中可看出,当只有变量x4进入回归方程时,自变量与因变量 之间完全无线性关系的概率为0.001 ;当x1也进入方程之后,自变量 与因变量之间完全无线性关系的概率为0.000,这表明拒绝假设;所有 的回归因子的系数为0。
输出相关残差的durbinwatson统计量残差和预测值的统计量输出满足选择条件的观测量诊断表设置奇异值的判断条件输出所有有关测量的残差值选择回归系输出有关回归系数及其相关测量输出回归系数的95的置信区间输出协方差和相关矩图73statistics对话框201566图74plots对话框x轴和y轴中有一个是源变量标准化的预测值标准化的残差删除的残差修正后的预测值
统计分析与方法-第七章 回归分析2-异方差与自相关

1.000 . 15 .443 .098 15 .721** .002 15
**. Correlation is significant at the 0.01 level (2-tailed).
因此选取注册资本构造权函数
最优权数的幂指数确定
Source variable.. 注册资本 Dependent variable.. 销销收收 Log-likelihood Function = -125.581891 POWER value = -2.000 Log-likelihood Function = -122.148284 POWER value = -1.500 Log-likelihood Function = -118.756247 POWER value = -1.000 Log-likelihood Function = -115.440464 POWER value = -.500 Log-likelihood Function = -112.257523 POWER value = .000 Log-likelihood Function = -109.297553 POWER value = .500 Log-likelihood Function = -106.695645 POWER value = 1.000 Log-likelihood Function = -104.627066 POWER value = 1.500 Log-likelihood Function = -103.261903 POWER value = 2.000 Log-likelihood Function = -102.682848 POWER value = 2.500 Log-likelihood Function = -102.833168 POWER value = 3.000 The Value of POWER Maximizing Log-likelihood Function = 2.500