统计分析与SPSS的应用考试
《统计分析与SPSS的应用》课后练习答案

《统计分析与SPSS的应用》课后练习答案在学习《统计分析与 SPSS 的应用》这门课程后,通过课后练习能够帮助我们更好地掌握所学知识,并将其应用到实际的数据分析中。
以下是针对部分课后练习的答案及解析。
一、选择题1、在 SPSS 中,用于描述数据集中变量分布特征的统计量是()A 均值B 标准差C 中位数D 众数答案:ABCD解析:均值、标准差、中位数和众数都是描述数据分布特征的常用统计量。
均值反映了数据的集中趋势;标准差反映了数据的离散程度;中位数是将数据排序后位于中间位置的数值;众数则是数据集中出现次数最多的数值。
2、进行独立样本 t 检验时,需要满足的前提条件是()A 样本来自正态分布总体B 两样本方差相等C 两样本相互独立D 以上都是答案:D解析:独立样本 t 检验要求样本来自正态分布总体、两样本方差相等以及两样本相互独立。
只有在这些条件满足的情况下,t 检验的结果才是可靠的。
3、以下哪种方法适用于多组数据的比较()A 单因素方差分析B 配对样本 t 检验C 相关分析D 回归分析答案:A解析:单因素方差分析用于比较三个或三个以上组别的数据是否存在显著差异。
配对样本 t 检验适用于配对数据的比较;相关分析用于研究变量之间的线性关系;回归分析用于建立变量之间的预测模型。
二、简答题1、请简述 SPSS 中数据录入的基本步骤。
答:SPSS 中数据录入的基本步骤如下:(1)打开 SPSS 软件,选择“新建数据文件”。
(2)在变量视图中定义变量的名称、类型、宽度、小数位数等属性。
(3)切换到数据视图,按照定义好的变量逐行录入数据。
(4)录入完成后,保存数据文件。
2、解释相关分析和回归分析的区别。
答:相关分析主要用于研究两个或多个变量之间的线性关系程度和方向,但它并不确定变量之间的因果关系。
相关分析的结果通常用相关系数来表示,如皮尔逊相关系数。
回归分析则不仅可以确定变量之间的关系,还可以建立数学模型来预测因变量的值。
《统计分析与SPSS的应用(第五版)》课后练习答案(第3章).doc

《统计分析与SPSS的应用(第五版)》课后练习答案第3章SPSS数据的预处理1、利用第2章第7题数据,采用SPSS数据筛选功能将数据分成两份文件。
其中,第一份数据文件存储常住地是“沿海或中心繁华城市”且本次存款金额在1000至5000之间的调查数据;第二份数据文件是按照简单随机抽样所选取的70%的样本数据。
第一份文件:选取数据数据——选择个案——如果条件满足——存款>=1000&存款<5000&常住地=沿海或中心繁华城市。
第二份文件:选取数据数据——选择个案——随机个案样本——输入70。
2、利用第2章第7题数据,将其按常住地(升序)、收入水平(升序)、存款金额(降序)进行多重排序。
排序数据——排序个案——把常住地、收入水平、存款金额作为排序依据分别设置排列顺序。
3、利用第2章第9题的完整数据,对每个学生计算得优课程数和得良课程数,并按得优课程数的降序排序。
计算转换——对个案内的值计数输入目标变量及目标标签,把所有课程选取到数字变量,定义值——设分数的区间,之后再排序。
4、利用第2章第9题的完整数据,计算每个学生课程的平均分以及标准差。
同时,计算男生和女生各科成绩的平均分。
方法一:利用描述性统计,数据——转置学号放在名称变量,全部课程放在变量框中,确定后,完成转置。
分析——描述统计——描述,将所有学生变量全选到变量框中,点击选项——勾选均值、标准差。
先拆分数据——拆分文件按性别拆分,分析——描述统计——描述,全部课程放在变量框中,选项——均值。
方法二:利用变量计算,转换——计算变量分别输入目标变量名称及标签——均值用函数mean完成平均分的计算,标准差用函数SD完成标准差的计算。
数据——分类汇总——性别作为分组变量、全部课程作为变量摘要、(创建只包含汇总变量的新数据集并命名)——确定5、利用第2章第7题数据,大致浏览存款金额的数据分布状况,并选择恰当的组限和组距进行组距分组。
《统计分析和SPSS的应用(第五版)》课后练习答案解析(第6章)

《统计分析和SPSS的应用(第五版)》课后练习答案解析(第6章)《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第6章SPSS的方差分析1、入户推销有五种方法。
某大公司想比较这五种方法有无显著的效果差异,设计了一项实验。
从应聘人员中尚无推销经验的人员中随机挑选一部分人,并随机地将他们分为五个组,每组用一种推销方法培训。
一段时期后得到他们在一个月内的推销额,如下表所示:第一组20.0 16.8 17.9 21.2 23.9 26.8 22.4第二组24.9 21.3 22.6 30.2 29.9 22.5 20.7第三组16.0 20.1 17.3 20.9 22.0 26.8 20.8第四组17.5 18.2 20.2 17.7 19.1 18.4 16.5第五组25.2 26.2 26.9 29.3 30.4 29.7 28.21)请利用单因素方差分析方法分析这五种推销方式是否存在显著差异。
2)绘制各组的均值对比图,并利用LSD方法进行多重比较检验。
(1)分析→比较均值→单因素ANOV A→因变量:销售额;因子:组别→确定。
ANOVA销售额平方和df 均方 F 显著性组之间405.534 4 101.384 11.276 .000组内269.737 30 8.991总计675.271 34概率P-值接近于0,应拒绝原假设,认为5种推销方法有显著差异。
(2)均值图:在上面步骤基础上,点选项→均值图;事后多重比较→LSD多重比较因变量: 销售额 LSD(L)(I) 组别 (J) 组别平均差(I-J) 标准错误显著性95% 置信区间下限值上限第一组第二组 -3.30000*1.60279 .048 -6.5733 -.0267 第三组 .72857 1.60279 .653 -2.5448 4.0019 第四组3.05714 1.60279 .066 -.2162 6.3305 第五组-6.70000* 1.60279 .000 -9.9733 -3.4267 第二组第一组 3.30000* 1.60279 .048 .0267 6.5733 第三组 4.02857* 1.60279 .018 .7552 7.3019 第四组 6.35714* 1.60279 .000 3.0838 9.6305 第五组-3.40000* 1.60279 .042 -6.6733 -.1267 第三组第一组 -.72857 1.60279 .653 -4.0019 2.5448 第二组 -4.02857* 1.60279 .018 -7.3019 -.7552 第四组 2.32857 1.60279 .157 -.9448 5.6019 第五组-7.42857* 1.60279 .000 -10.7019 -4.1552 第四组第一组-3.057141.60279.066-6.3305.2162第二组-6.35714* 1.60279 .000 -9.6305 -3.0838第三组-2.32857 1.60279 .157 -5.6019 .9448第五组-9.75714* 1.60279 .000 -13.0305 -6.4838第五组第一组6.70000* 1.60279 .000 3.4267 9.9733 第二组3.40000* 1.60279 .042 .1267 6.6733第三组7.42857* 1.60279 .000 4.1552 10.7019第四组9.75714* 1.60279 .000 6.4838 13.0305*. 均值差的显著性水平为 0.05。
《统计分析和SPSS的应用(第五版)》课后练习答案解析(第7章)

《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第7章SPSS的非参数检验1、为分析不同年龄段人群对某商品满意程度的异同,进行随机调查收集到以下数据:满意程度年龄段青年中年老年很不满意126 297 156不满意306 498 349满意88 61 75很满意27 17 44请选择恰当的非参数检验方法,以恰当形式组织上述数据,分析不同年龄段人群对该商品满意程度的分布状况是否一致。
卡方检验步骤:(1)数据→加权个案→对“人数”加权→确定(2)分析→描述统计→交叉表格→行:满意度;列:年龄→Statistics→如图选择→确定满意程度 * 年龄交叉表计数年龄总计青年中年老年满意程度很不满意126 297 156 579 不满意306 498 349 1153满意88 61 75 224很满意27 17 44 88 总计547 873 624 2044卡方检验值自由度渐近显著性(双向)皮尔逊卡方66.990a 6 .000似然比(L) 68.150 6 .000线性关联.008 1 .930McNemar-Bowker 检验. . .b有效个案数2044a. 0 个单元格 (0.0%) 具有的预期计数少于 5。
最小预期计数为 23.55。
b. 仅为 PxP 表格计算(其中 P 必须大于 1)。
因概率P值小于显著性水平(0.05),拒绝原假设,不同年龄度对该商品满意程度不一致。
2、利用第2章第7题数据,选择恰当的非参数检验方法,分析本次存款金额的总体分布与正态分布是否存在显著差异。
分析→非参数检验→旧对话框→1-样本-K—S…→选择相关项:本次存款金额[A5] →确定结果如下:单样本 Kolmogorov-Smirnov 检验本次存款金额数字282正态参数a,b平均值4738.09标准偏差10945.569最极端差分绝对.333正.292负-.333检验统计.333渐近显著性(双尾).000ca. 检验分布是正态分布。
《统计分析和SPSS的应用(第五版)》课后练习答案解析(第8章)

《统计分析和SPSS的应⽤(第五版)》课后练习答案解析(第8章)《统计分析与SPSS的应⽤(第五版)》(薛薇)课后练习答案第8章SPSS的相关分析1、对15家商业企业进⾏客户满意度调查,同时聘请相关专家对这15家企业的综合竞争⼒进⾏评分,结果如下表。
编号客户满意度得分综合竞争⼒得分编号客户满意度得分综合竞争⼒得分1 90 70 9 10 602 100 80 10 20 303 150 150 11 80 1004 130 140 12 70 1105 120 90 13 30 106 110 120 14 50 407 40 20 15 60 508 140 130请问,这些数据能否说明企业的客户满意度与其综合竞争⼒存在较强的正相关,为什么?能。
步骤:(1)图形→旧对话框→散点/点状→简单分布→进⾏相应设置→确定;(2)再双击图形→元素→总计拟合线→拟合线→线性→确定(3)分析→相关→双变量→进⾏相关项设置→确定相关性客户满意度得分综合竞争⼒得分客户满意度得分Pearson 相关性 1 .864**显著性(双尾).000N 16 15 综合竞争⼒得分Pearson 相关性.864** 1显著性(双尾).000N 15 15 **. 在置信度(双测)为 0.01 时,相关性是显著的。
两者的简单相关系数为0.864,说明存在正的强相关性。
2、为研究⾹烟消耗量与肺癌死亡率的关系,收集下表数据。
(说明:1930年左右⼏乎极少的妇⼥吸烟;采⽤1950年的肺癌死亡率是考虑到吸烟的效果需要⼀段时间才可显现)。
国家1930年⼈均⾹烟消耗量1950年每百万男⼦中死于肺癌的⼈数澳⼤利亚480 180加拿⼤500 150丹麦380 170芬兰1100 350英国1100 460荷兰490 240冰岛230 60挪威250 90瑞典300 110瑞⼠510 250美国1300 200绘制上述数据的散点图,并计算相关系数,说明⾹烟消耗量与肺癌死亡率之间是否存在显著的相关关系。
《统计分析和SPSS的应用(第五版)》课后练习答案(第5章)

《统计分析和SPSS的应用(第五版)》(薛薇)课后练习答案第5章SPSS的参数检验1、某公司经理宣称他的雇员英语水平很高,如果按照英语六级考试的话,一般平均得分为75分。
现从雇员中随机选出11人参加考试,得分如下: 80, 81, 72, 60, 78, 65, 56, 79, 77,87, 76 请问该经理的宣称是否可信。
原假设:样本均值等于总体均值即u=u0=75步骤:生成spss数据→分析→比较均值→单样本t检验→相关设置→输出结果(Analyze->compare means->one-samples T test;)采用单样本T检验(原假设H0:u=u0=75,总体均值与检验值之间不存在显著差异);单个样本统计量N 均值标准差均值的标准误成绩11 73.73 9.551 2.880单个样本检验检验值 = 75t df Sig.(双侧) 均值差值差分的 95% 置信区间下限上限成绩-.442 10 .668 -1.273 -7.69 5.14分析:指定检验值:在test后的框中输入检验值(填75),最后ok!分析:N=11人的平均值(mean)为73.7,标准差(std.deviation)为9.55,均值标准误差(std error mean)为2.87.t统计量观测值为-4.22,t统计量观测值的双尾概率p-值(sig.(2-tailed))为0.668,六七列是总体均值与原假设值差的95%的置信区间,为(-7.68,5.14),由此采用双尾检验比较a和p。
T统计量观测值的双尾概率p-值(sig.(2-tailed))为0.668>a=0.05所以不能拒绝原假设;且总体均值的95%的置信区间为(67.31,80.14),所以均值在67.31~80.14内,75包括在置信区间内,所以经理的话是可信的。
2、在某年级随机抽取35名大学生,调查他们每周的上网时间情况,得到的数据如下(单位:小时):(1)请利用SPSS对上表数据进行描述统计,并绘制相关的图形。
北语2024春季《SPSS统计分析与应用》完美答案文档

北语2024春季《SPSS统计分析与应用》
完美答案文档
介绍
本文档旨在提供北语2024春季学期《SPSS统计分析与应用》课程的完美答案。
以下是该课程的相关内容。
课程概述
《SPSS统计分析与应用》是一门针对统计软件SPSS的应用课程。
通过研究本课程,学生将掌握SPSS软件的基本操作和常用统计分析方法,以及如何应用这些方法来解决实际问题。
课程目标
- 熟练掌握SPSS软件的基本操作
- 理解常用的统计分析方法,如描述统计、t检验、方差分析等- 学会如何应用SPSS软件进行数据处理和分析
- 掌握数据可视化和报告撰写的基本技巧
课程内容
1. SPSS软件介绍和安装
2. 数据输入和清洗
3. 描述统计分析
4. t检验
5. 方差分析
6. 相关分析
7. 回归分析
8. 数据可视化和报告撰写
研究建议
- 认真听课并参与课堂讨论
- 理解每个统计分析方法的原理和应用场景
- 多进行实践操作,熟练掌握SPSS软件的使用
- 阅读相关的统计学和研究方法的教材和参考书籍- 与同学进行讨论和互助,共同解决问题
考试准备
- 复课堂讲授的知识点和案例分析
- 完成课后题和作业
- 制作复笔记和思维导图
- 参考相关的统计学教材和参考书籍
- 进行模拟考试和答题练
结语
通过研究《SPSS统计分析与应用》,你将能够灵活应用SPSS 软件进行数据处理和统计分析,为你未来的研究和工作提供有力支持。
祝你在本课程中取得优异的成绩!。
《统计分析与SPSS的应用(第五版)》课后练习答案.doc(1)

《统计分析与SPSS的应⽤(第五版)》课后练习答案.doc(1)《统计分析与SPSS的应⽤(第五版)》课后练习答案第⼀章练习题答案1、SPSS的中⽂全名是:社会科学统计软件包(后改名为:统计产品与服务解决⽅案)英⽂全名是:Statistical Package for the Social Science.(Statistical Product and Service Solutions)2、SPSS的两个主要窗⼝是数据编辑器窗⼝和结果查看器窗⼝。
数据编辑器窗⼝的主要功能是定义SPSS数据的结构、录⼊编辑和管理待分析的数据;结果查看器窗⼝的主要功能是现实管理SPSS统计分析结果、报表及图形。
3、SPSS的数据集:SPSS运⾏时可同时打开多个数据编辑器窗⼝。
每个数据编辑器窗⼝分别显⽰不同的数据集合(简称数据集)。
活动数据集:其中只有⼀个数据集为当前数据集。
SPSS只对某时刻的当前数据集中的数据进⾏分析。
4、SPSS的三种基本运⾏⽅式:完全窗⼝菜单⽅式、程序运⾏⽅式、混合运⾏⽅式。
完全窗⼝菜单⽅式:是指在使⽤SPSS的过程中,所有的分析操作都通过菜单、按钮、输⼊对话框等⽅式来完成,是⼀种最常见和最普遍的使⽤⽅式,最⼤优点是简洁和直观。
程序运⾏⽅式:是指在使⽤SPSS的过程中,统计分析⼈员根据⾃⼰的需要,⼿⼯编写SPSS命令程序,然后将编写好的程序⼀次性提交给计算机执⾏。
该⽅式适⽤于⼤规模的统计分析⼯作。
混合运⾏⽅式:是前两者的综合。
5、.sav是数据编辑器窗⼝中的SPSS数据⽂件的扩展名.spv是结果查看器窗⼝中的SPSS分析结果⽂件的扩展名.sps是语法窗⼝中的SPSS程序6、SPSS的数据加⼯和管理功能主要集中在编辑、数据等菜单中;统计分析和绘图功能主要集中在分析、图形等菜单中。
7、概率抽样(probability sampling):也称随机抽样,是指按⼀定的概率以随机原则抽取样本,抽取样本时每个单位都有⼀定的机会被抽中,每个单位被抽中的概率是已知的,或是可以计算出来的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《统计分析软件》试(题)卷班级姓名学号题号一二三四五六总成绩成绩说明:1.本试卷分析结果写在每个题目下面(即所留空白处);2.考试时间为100分钟;3.每个试题20分。
一、(20分)已经给出某个班的学生基本情况及其学习成绩的两个SPSS数据文件,学生成绩一.sav;学生成绩二.sav。
要求:(1)将所给的两个SPSS数据文件“学生成绩一.sav”与“学生成绩二.sav”合并,并保存为“成绩.sav.”(2)对所建立的数据文件“成绩.sav”进行以下处理:1)按照性别求出男、女数学成绩的各种统计量(包括平均成绩、标准差等)。
2)计算每个学生的总成绩、并按照总成绩的大小进行排序3)把数学成绩分成优、良、中三个等级,规则为优(X≥85),良(75≤X≤84),中(X≤74),并对优良中的人数进行统计。
1.Descriptive Statistics性别N Minimum Maximum Mean Std. Deviation男数学 4 77.00 85.00 82.2500 3.77492Valid N (listwise) 4女数学16 67.00 90.00 78.5000 7.09930Valid N (listwise) 16男生数学的均值为82.25高于女生的均值78.5。
女生的的标准差7.09930高于男生的标准差3.77492。
2.3.优共有4人,良具有12人中有4人。
二、(20分)为了解笔记本电脑的市场情况,针对笔记本电脑的3种品牌,进行了满意度调查,随机访问了30位消费者,让他们选出自己满意的品牌,调查结果见下表,其中变量“职业”的取值中,1表示文秘人员,2表示管理人员,3表示工程师,4表示其他人;3个品牌变量的取值中,1表示选择,0表示未选数据见Excel数据文件“调查.exe”。
根据所给数据完成以下问题(1)将所给数据的Excel文件导入到SPSS中,要求SPSS数据文件写出数据结构(包括变量名,变量类型,变量值标签等)命,并保存为:“调查. Sav”。
(2)试利用多选项分析,利用频数分析来分析消费者对不同品牌电脑的满意度状况;分析不同职业消费者对笔记本品牌满意度状况。
分析:<1>(1)(2)(3)(4)(5)(6)(7)最后保存的文件“调查.sav”格式及内容如下:<2> 先对数据进行频数分析(1)(2)(3)三、(20分)入户推销有五种方法。
某大公司想比较这五种方法有无显著的效果差异,设计了一项实验。
从尚无推销经验的应聘人员中随机挑选一部分,并随机地将他们分为五个组,每组用一种推销方法培训。
一段时期后得到他们在一个月内的推销额,如下表所示(SPSS数据见“入户推销.sav”):1.利用单因素方差分析方法分析这五种推销方式是否存在显著差异。
2.绘制各组的均值对比图,并利用LSD方法进行多重比较检验,说明那组推销方式最好?1.如上图是推销方式对销售额的单因素方差分析结果。
可以看到:观测变量销售额的离差平方总和为676.415;如果只考虑推销方式单个因素的影响,则销售额总变差中,不同推销方式可解释的变差为406.627,抽样误差引起的变差为269.789,它们的方差分别为101.657和8.993,相除所得的F统计量的观测值为11.304,对应的概率P 值小于显著性水平a,因此拒绝原假设,认为不同销售方式对销售额产生了显著影响。
2.图a图b如图b可知,可看出。
采用了LSD方法中的标准误差,可看出第五组方法最好。
四、(20分)利用“入户推销.sav”数据完成以下问题:(1)按照性别建立推销员频率分布表及销售额的直方图;(2)利用交叉列联表分析不同性别推销人员参与销售方式状况;(3)利用参数检验来分析不同性别推销人员的销售额是否有显著性差异?1.Statistics性别性别销售额男N Valid 19 19Missing 0 0女N Valid 16 16Missing 0 017.30 1 5.3 5.3 15.817.50 1 5.3 5.3 21.118.20 1 5.3 5.3 26.320.00 1 5.3 5.3 31.620.10 1 5.3 5.3 36.820.20 1 5.3 5.3 42.120.80 1 5.3 5.3 47.421.20 1 5.3 5.3 52.622.50 1 5.3 5.3 57.922.60 1 5.3 5.3 63.223.90 1 5.3 5.3 68.425.20 1 5.3 5.3 73.726.90 1 5.3 5.3 78.928.30 1 5.3 5.3 84.229.30 1 5.3 5.3 89.529.90 1 5.3 5.3 94.730.20 1 5.3 5.3 100.0Total 19 100.0 100.0女Valid 16.50 1 6.3 6.3 6.317.70 1 6.3 6.3 12.517.90 1 6.3 6.3 18.818.40 1 6.3 6.3 25.019.10 1 6.3 6.3 31.320.70 1 6.3 6.3 37.520.90 1 6.3 6.3 43.821.30 1 6.3 6.3 50.022.00 1 6.3 6.3 56.322.40 1 6.3 6.3 62.524.90 1 6.3 6.3 68.826.20 1 6.3 6.3 75.026.80 2 12.5 12.5 87.529.70 1 6.3 6.3 93.8Total 16 100.0 100.02.CasesValid Missing TotalN Percent N Percent N Percent 推销方式* 性别35 100.0% 0 .0% 35 100.0%推销方式* 性别Crosstabulation性别男女Total推销方式第一组Count 4 3 7Expected Count 3.8 3.2 7.0% within 推销方式57.1% 42.9% 100.0%% within 性别21.1% 18.8% 20.0%% of Total 11.4% 8.6% 20.0%Residual .2 -.2Std. Residual .1 -.1第二组Count 4 3 7Expected Count 3.8 3.2 7.0% within 推销方式57.1% 42.9% 100.0%% within 性别21.1% 18.8% 20.0%% of Total 11.4% 8.6% 20.0%Residual .2 -.2Std. Residual .1 -.1第三组Count 4 3 7Expected Count 3.8 3.2 7.0% within 推销方式57.1% 42.9% 100.0%% within 性别21.1% 18.8% 20.0%% of Total 11.4% 8.6% 20.0%Residual .2 -.2Std. Residual .1 -.1第四组Count 3 4 7Expected Count 3.8 3.2 7.0% within 推销方式42.9% 57.1% 100.0%% within 性别15.8% 25.0% 20.0%% of Total 8.6% 11.4% 20.0%Residual -.8 .8Std. Residual -.4 .4第五组Count 4 3 7Expected Count 3.8 3.2 7.0% within 推销方式57.1% 42.9% 100.0%% within 性别21.1% 18.8% 20.0%% of Total 11.4% 8.6% 20.0%Residual .2 -.2Std. Residual .1 -.1Total Count 19 16 35Expected Count 19.0 16.0 35.0% within 推销方式54.3% 45.7% 100.0%% within 性别100.0% 100.0% 100.0%% of Total 54.3% 45.7% 100.0%首先,在所调查的35人当中,有19个为男,16个为女,分别占总样本的54.3%和45.7%,可见男生占多数。
推销方式第一组、第二组、第三组、第四组、第五组样本量分别为7、7、7、7、7,占总样本的20%、20%、20%、20%、20%。
其次,对不同推销方式进行分析,在第一组中,男生和女生的人数分别为4和3,五、(20分)已知我国2003年部分地区城镇居民人均可支配收入和人均消费性支出如下表所示:(单位:元)(1)绘制城镇居民人均可支配收入与人均消费性支出的相关图(散点图);(2)利用相关系数分析城镇居民人均可支配收入与人均消费性支出之间的关系?(3)如果有相关关系,建立一元线性回归模型,解释输出结果。
12.Correlations人均可支配收入(X) 人均消费性支出(Y)人均可支配收入(X) Pearson Correlation 1 .991**Sig. (2-tailed) .000N 13 13人均消费性支出(Y)Pearson Correlation .991** 1Sig. (2-tailed) .000N 13 13**. Correlation is significant at the 0.01 level (2-tailed).人均消费性支出与人均可支配收入的简单相关性系数为0.992,说明两者之间存在正的强相关性,其相关系数检验的概率P-值近似为0.因此,当显著性水平a为0.05或0.01时,应拒绝相关系数的原假设,认为总体不是零相关。
Anova b模型平方和df 均方 F Sig.方程为y=8875.085-0.239x为一元线性回归的模型及其输出结果。