压电陶瓷的种类

合集下载

压电陶瓷

压电陶瓷
经软性取代改性后的PZT瓷性能有如下变化: 矫顽场强EC 减小↓,机械品质因数Qm减小↓;介电常数ε增加↑,介电损耗tanδ 增加↑,机电耦合系数KP增加↑, 抗老化性增加↑ ,绝缘电阻率ρ增加↑。
铅基压电陶瓷
• 硬性取代改性(低价取代) 所谓“硬性取代改性”是指加入这些添加物后能使矫顽场强EC 增加↑,极化变难, 因而在电场或应力作用下,材料性质变“硬”。(烧成后的瓷体成黑色) (a) K+,Na+等取代A位Pb2+离子; (b) Fe2+、Co2+、Mn2+(或Fe3+、Co3+、Mn3+)、Ni2+、Mg2+、Al3+、 Cr3+等 取代B位的Zr4+、Ti4+离子。
• 1947年,美国日本先后利用BaTiO3压电陶瓷制作超声换能器、高频换能器、 压力传感器、滤波器等应用研究。
• 1955年,美国B.Jaffe等人发现了比BaTiO3压电性更优越的PZT压电陶瓷,促 使压电器件的应用研究又大大地向前推进了一大步。
压电原理
压电陶瓷的晶胞结构随温度的变化有所变化。
工作温区窄(Tc=120℃) 工作温区宽(Tc=490℃)
易极化
难极化
热稳定性差
热稳定性好
ε=1900
ε=190
Kp =0.354 d33=191(10-12C/N) g33=11.4(10-3V·m/N)
工艺性好
Kp =0.095 d33=56(10-12C/N) g33=33(10-3V·m/N)
表征参数
频率系数N 对某一压电振子,其谐振频率和振子振动方向长度的乘积为一个常数,即 频率常数。
其中:
N=f0L

压电陶瓷分类及应用

压电陶瓷分类及应用

压电陶瓷分类及应用
压电陶瓷是一种具有压电效应的陶瓷材料。

压电效应是指在外加机械应力或电场作用下,压电陶瓷会发生尺寸变化或极化现象,从而产生电荷分布。

根据压电陶瓷材料的组成和性质,可以将其分为几种不同的分类。

一、根据压电性能可将压电陶瓷分为高压电效应陶瓷和低压电效应陶瓷。

高压电效应陶瓷具有较高的压电系数和较大的震荡频率,适用于高频和高精度的应用,如声子滤波器、超声波发生器、压电换能器等。

低压电效应陶瓷的压电系数较低,主要用于压电传感器、压电陶瓷振动器、电子器件的稳定和控制等应用。

二、根据晶体结构的不同,压电陶瓷可以分为三类:酸性压电陶瓷、硼酸盐压电陶瓷和锆钛酸钾压电陶瓷。

酸性压电陶瓷是指以三方晶系的负电性轴为基础,具有良好的机械和电性能。

硼酸盐压电陶瓷主要以硼酸盐基质为主,具有较高的压电系数和介电常数。

锆钛酸钾压电陶瓷是一类常用的压电陶瓷材料,具有较高的压电系数和压电耦合因子,在声波传感器和应用中得到广泛应用。

三、根据应用领域的不同,压电陶瓷可以分为多种类型。

在声学领域,压电陶瓷广泛应用于扬声器、电麦克风、声波发生器、声子滤波器等装置中。

在控制领域,压电陶瓷用于压电陶瓷驱动器、压电陶瓷换向器、压电陶瓷伺服控制系统等。

在传感领域,压电陶瓷被应用于压力传感器、加速度传感器、应力传感器等。

在医疗领域,压电陶瓷用于超声波显像设备、超声刀、超声治疗仪等医疗器械中。

压电陶瓷材料以其优越的压电性能和物理特性,在电子、声学、控制等领域中具有广泛的应用前景。

随着科学技术的发展,压电陶瓷材料的研究和应用将更加深入和广泛。

无铅压电陶瓷分类

无铅压电陶瓷分类

无铅压电陶瓷分类
以下是 6 条相关内容:
1. 哇塞,无铅压电陶瓷的分类可多啦!就像水果有不同种类一样,无铅压电陶瓷也有好多呢!比如钛酸钡陶瓷,那可是相当厉害的呀,应用在好多地方呢,像一些传感器里就有它的身影呢!你说神奇不神奇?
2. 嘿,你晓得不,无铅压电陶瓷分类里有个锆钛酸钡陶瓷哟!它就像是一个小小的能量精灵,在电子设备里发挥着大作用呢。

就好像是舞台上的主角,闪闪发光,可重要啦!你不想了解一下它具体能干啥吗?
3. 哎呀呀,无铅压电陶瓷还有铌酸钾钠陶瓷呢!它就如同一个默默奉献的小卫士,在各种仪器里坚守岗位。

你看啊,那些需要精细控制的地方都有它,这难道不酷吗?
4. 哇哦,有一种无铅压电陶瓷叫铋层状结构陶瓷呢!这名字是不是听起来就很特别呀。

它就好像是一把神奇的钥匙,能打开很多高科技领域的大门呢,你难道不好奇它是怎么做到的吗?
5. 哈哈,无铅压电陶瓷的分类中还有钨青铜结构陶瓷呢!它像是一个神秘的宝藏,等待着人们去发掘它的更多潜力。

好多研究人员都在探索它呢,你难道不想成为其中一员吗?
6. 哟呵,无铅压电陶瓷的分类还包括钙钛矿结构陶瓷呀!它就如同星星一样闪耀,在不同的领域散发着自己的光芒。

你想想,要是没有它,我们的生活会少了多少便利呀!
我的观点结论就是:无铅压电陶瓷的这些分类都各具特色和用途,真是太神奇啦!它们都在为我们的科技生活添砖加瓦呢!。

压电材料有哪些种类

压电材料有哪些种类

压电材料有哪些种类
压电材料是一类特殊的功能材料,具有压电效应,即在外加电场的作用下产生
机械形变,或者在外加力的作用下产生电荷。

压电材料广泛应用于传感器、换能器、声波滤波器、压电陶瓷谐振器等领域。

根据其结构和性能的不同,压电材料可以分为多种类型。

首先,压电陶瓷是一种常见的压电材料,具有优良的压电性能和机械性能。


电陶瓷可分为硬质和软质两种类型。

硬质压电陶瓷具有高的压电常数和机械强度,适用于高频压电换能器和滤波器等领域;而软质压电陶瓷具有高的电机械耦合系数和良好的压电性能,适用于压电传感器和换能器等领域。

其次,压电聚合物是近年来发展起来的一种新型压电材料,具有轻质、柔韧、
易加工成型的特点。

压电聚合物可以通过拉伸、压缩或弯曲等方式产生电荷,广泛应用于生物医学、柔性传感器、柔性能量收集器等领域。

此外,压电复合材料是由压电陶瓷与聚合物基体复合而成的一种新型材料,具
有较好的压电性能和机械性能。

压电复合材料兼具了压电陶瓷和聚合物的优点,适用于柔性传感器、能量收集器、智能结构等领域。

最后,压电单晶是一种高端的压电材料,具有优异的压电性能和温度稳定性。

压电单晶广泛应用于高频压电换能器、声波传感器、微机电系统等领域。

综上所述,压电材料种类繁多,包括压电陶瓷、压电聚合物、压电复合材料和
压电单晶等。

不同种类的压电材料具有各自独特的特点和应用领域,为现代科技的发展提供了重要支撑。

在未来,随着新材料技术的不断发展,压电材料将会有更广泛的应用前景。

半导体(压电陶瓷)

半导体(压电陶瓷)

压电陶瓷材料在我们的生活中随处可见的物质,材料的发展深深的影响着人们的生活质量,同时也是我们人类社会进步和文明的重要标志。

随着社会的进步和发展,电子陶瓷材料在信息技术中占有非常重要的作用,常常被用来制作一些重要的电子元器件如:传感器、电容器、超声换能器。

因此,高性能的电子陶瓷材料是信息技术发展和研究的重要方向。

压电陶瓷是一种具有压电性能的多晶体,是信息功能陶瓷的重要组成部分。

其具有机电耦合系数高(压电振子在振动过程中,将机械能转变为电能,或将电能转变为机械能的效率)、价格便宜、易于批量生产等优点,已被广泛应用于社会生产的各个领域,尤其是在超声领域及电子科学技术领域中,压电陶瓷材料已逐渐处于绝对的支配地位,如医学及工业超声检测、水声探测、压电换能器、超声马达、显示器件、电控多色滤波器等。

1.压电陶瓷性能1.1压电性压电陶瓷最大的特性是具有正压电性和逆压电性。

正压电性是指某些电介质在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,从而导致电介质两端表面内出现符号相反的束缚电荷。

反之,当给具有压电性的电介质加上外电场时,电介质内部正负电荷中心不但发生相对位移而被极化,同时由于此位移而导致电介质发生形变,这种效应称之为逆压电性。

1.2介电性能材料在电场作用下,表现出对静电能的储蓄和损耗的性质,通常用介电常数(ε r )和介质损耗(tanδ)来表示。

当在两平板之间插入一种介质(材料)时,电容C将增加,此时电容 C与真空介质时该电容器的电容量 C0的比即为相对介电常数k:k=C/C= (εA/d)/(ε0A/d)=ε/ε(ε—真空介电常数:8.854×10-12F/m)当一个正弦交变电场V=Vexpiωt施加于一介电体上时,电荷随时间而变化而产生了电流Ic, Ic在无损耗时比 V 超前90°。

但实际是有损耗的。

有损耗时,总电流超前电压不再是90°而是90°-δ。

压电陶瓷基本知识培训材料

压电陶瓷基本知识培训材料

压电陶瓷的生产工艺
1
制备成型
2
将混合粉末通过成型工艺进行成型,如
注塑成型或压片成型。
3
后续处理
4
进行。
原料准备
选择合适的原料,并进行粉末混合和筛 分。
烧结处理
将成型的陶瓷坯体进行高温烧结处理, 使其达到高强度和致密度。
压电陶瓷的维护保养
1 避免过大的外力冲击 2 定期清洁和检查
避免陶瓷受到过大的外力 冲击,导致晶体结构破坏。
定期清洁表面和检查陶瓷 的完整性和工作状态,及 时进行维修和更换。
3 保持适当的工作环境
保持陶瓷的工作环境适当, 避免受到湿气、油脂和化 学物质等的影响。
压电陶瓷的种类
铅锆酸钛陶瓷 (PZT)
PZT 是最常用的压电陶瓷材料,具有良好 的压电性能和稳定性。
硬陶瓷
硬陶瓷具有优异的耐高温性能和磨损性能, 常用于特殊环境下的应用。
有机压电陶瓷
有机压电陶瓷材料是一种新型的压电材料,具有较高的柔韧性和成型性,适用于特殊工艺需 求。
压电陶瓷的应用领域
传感器
压电陶瓷可以用于制造压力、 温度和加速度传感器,广泛应 用于汽车、医疗和工业领域。
压电陶瓷基本知识培训材料
压电陶瓷是什么?
压电陶瓷是一种具有压电效应的材料,能够在施加或撤离电场时发生形变, 反之亦然。它可以将机械能转化为电能,也可将电能转化为机械能。
压电效应的原理
压电效应的原理是基于压电材料的晶体结构,当施加外力或电场时,晶体中 的正负离子发生位移,导致晶体整体产生形变和电荷分布的变化。
换能器
压电陶瓷可用作声波和超声波 的发生器和接收器,应用于声 纳、超声波清洗和医学成像等 领域。
振荡器

压电陶瓷材料的分类

压电陶瓷材料的分类

压电陶瓷材料的分类1、按主要组成晶体结构分类:现已实用化的压电陶瓷材料主要分为:(1)钙钛结构矿perovskite structure具有钙钛矿结构的铁电,压电陶瓷属于ABO3型氧八面体,其中A为一价或二价金属离子,而B为四价或五价金属。

半径较大的A正离子,半径较小的B正离子和氧离子分别位于晶胞格子的顶角,体心和面心。

如图所示。

这种结构也可看成是一组BO6八面体按简立方图样排列而成,各氧八面体由公有的氧离子联结,A正离子占据氧八面体之间的空隙,钙钛矿原胞是立方的,也可畸变成具有三角和四方对称性。

钛酸钡,钛酸铅,锆钛酸铅和KxNa1-xNbO3等铁电压电陶瓷具有钙钛矿结构。

(2)钨青铜结构tungsten-bronze structure具有钨青铜结构的铁电,压电陶瓷也属于ABO3型氧八面体铁电体,一个四方晶胞包含10个BO6八面体,它们由其顶角按一定方式联结而成。

偏铌酸铅和铌酸锶钡等铁电压电陶瓷具有钨青铜结构。

(3)铋层状结构bismuth layer structure铋层状结构可以看成是由其氧八面体类钙钛矿层与{Bi2O12}层交替叠成的。

其中类钙钛矿层可以是一层{如Bi2WO6},二层{如PbBi2Nb3O9},三层{如Bi4Ti8O12}以至五层。

在类钙钛矿层中,其正离子可被许多离子取代。

(4)焦绿石结构pyrochlore structure焦绿石结构是由共同顶角的{NbO6或TaO6}氧八面体组成,而较大的Cd2+{或Pb2+}离子位于氧八面体之间的间隙中。

这种结构的铁电体仅出现在Cd2Nb2O2, Pb2Nb2O2和Cd2Ta2O7等有限几种化合物中*本公司产品压电陶瓷材料主要为钙钛矿结构。

2、按主要组成组元分类:(1)单元系陶瓷unit system ceramics实用的单元系其结晶构造几乎都是BaTiO3为代表的钙钛矿结构和PbNbO6等的钙青铜结构:属于钙钛矿结构的单元系材料有①BaTiO3、②PbTiO3、③PbZrO3、④居里点高的BiNaTi2O6(Tc=320℃),BiKTiO6(380℃),Pb2FeNb6(112℃)和Pb3ZnNb2O3(140℃)等压电陶瓷。

压电陶瓷简介

压电陶瓷简介
居里温度Tc:
使压电材料的压电效应消失的温度。
压电材料的主要特性
转换性能:要求具有较大的压电常数。
机械性能:机械强度高、刚度大。 电性能:高电阻率和大介电常数。
环境适应性:温度和湿度稳定性要好,要求具
有较高的居里点,获得较宽的工作温度范围。 时间稳定性:要求压电性能不随时间变化。
表示压电材料机械能(声能)与电能之间的转换效率。

E贮 机械品质因子Qm : Qm E损
压电晶片在谐振时贮存的机械能E贮与在一个周期内损耗的能 量E损之比称为机械品质因子Qm。
压电材料的主要性能参数
cL (常数) 频率常数Nt: N t tf 0 2
压电晶片的厚度与固有频率的乘积是一个常数, 这个常数叫做频率常数。
奥迪威公司压电蜂鸣片
电声元件
开放式超声波传感器
超声波雾化片
奥迪威其它压电产品
超声波马达
C-171微型旋转陶瓷电机
超声波压电陶瓷电机
液晶电视用模组
压电陶ห้องสมุดไป่ตู้点火器
谢谢
压电陶瓷历史
1916年 朗之万(Langevin)用压电石英晶体作成水
下发射和接收 换能器,这是最早的压电换能器, 并用于探测水下的物体。 1918 年 卡迪(Cady)研究了罗息盐晶体在机械 谐振频率特有的电性能,导致罗息盐电声组件问 世。 1921年 相继研制成功石英谐振器和滤波器,开创 了压电效应在稳频、计时和电子技术方面 的应用。
压电材料应用
压电陶瓷按照应用分类共分为七大类: 压电振荡器及材料 压电声电组件:蜂鸣器、送话器、受话器、压电喇叭 压电超音波换能器:超音波清洗、超音波雾化、超音波美容、 超音波探测 信息处理组件:滤波器、谐振器、检波器、监频器、表面声波、 延迟线 动力装置:点火器、超音波切割、超音波粘接、压电马达、压 电变压器 压电传感器:速度、加速度计、角速度计、微位移器 光电组件:光调节器、光调节阀、光电显示、光信息储存、影 象储存和显示 目前市场容量最大的组件是频率组件,主要包括滤波器和谐振器。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压电陶瓷的种类
1 铁电陶瓷ferroelecteic ceramics
具有重铁电性的陶瓷称为铁电陶瓷。

从晶体结构来看,铁电陶瓷的晶体的主晶相具有钙钛矿结构,钨青铜结构,铋层状结构和焦绿石结构等。

2 反铁电陶瓷antiferroelectric ceramics
具有反铁电性的陶瓷称为反铁电陶瓷。

3 压电陶瓷piezoelectric ceramics
具有压电效应的陶瓷称为压电陶瓷,由于末经过极化处理的铁电陶瓷的自发极化随机取向,故没有压电性。

极化处理使其自发极化沿极化方向择优取向。

在撤去电场后,陶瓷体仍保留着一定的总体剩余极化,故使陶瓷体有了压电性,成为压电陶瓷。

在高温的高温度梯度场中定向析晶的非铁电极性玻璃陶瓷也具有压电性。

4 钛酸钡陶瓷barium titanate ceramics
钛酸钡陶瓷是一种具有典型钙钛矿结构的铁电陶瓷。

它通常是以碳酸钡和二氧化钛为主要原料,预先合成后再在高温下烧结而成的。

5 钛酸铅陶瓷lead titanate ceramics
钛酸铅陶瓷是具有钙钛矿性结构的铁电陶瓷。

它通常是由四氧化三铅{或氧化铅}和二氧化钛以及少量添加物预先合成后再在高温下烧结而成的。

6 二元系陶瓷binary system ceramies
二元系压电陶瓷是俩种化学通式ABO3型结构的化学物所形成的固溶体,其中A 代表二价的正离子Pb2+,Ba2+,Mg2+,Ca2+,Sr2+,等或一价正离子K+,Na+等,B代表四价的正离子Zr4+,Ti4+或五价的Nb5+等。

最常见的二元系压电陶瓷是PbZrxTi{1-x}O3。

通过调节两种ABO3型结构的克分子比,以及用取代元素和添加物改性的方法,可以获得各种不同用途的材料。

7 锆钛酸铅陶瓷Lead zirconate ceramic
锆钛酸铅陶瓷通常简称为PZT陶瓷,这种压电陶瓷目前受到广泛应用。

它是PbZrO3和PbTiO3的固溶体,具有钙钛矿型结构,当锆钛比为53/47左右{即共晶相界附近}时,具有最强的压电性能。

8 三元系陶瓷ternary system ceramics
三元系陶瓷通常是在具有钙钛矿性结构的锆钛酸铅{PbZrO3-PbTiO3}中二元系再增加第三种{化学通式为ABO3型}化合物而形成的三元系固溶体。

所增加的第三种成分,它们的共同特点是在掺入PbZrO3-PbTiO3之中形成固溶体后不改变整个晶格的钙钛矿型结构。

9 铌酸盐系陶瓷niobate system piezoelectric ceramics
铌酸盐系压电陶瓷是具有氧八面体结构的铁电陶瓷,各种铌酸盐陶瓷分别具有钙钛矿型{如KnbO3},钨青铜型{如便铌酸铅PbNb2O6}和焦绿石型{如Cd2Nb2O7}等结构。

它们的居里温度高,介电常数小和声速大,尤其偏铌酸铅的机械品质因数QM 很低,适用于超声检测。

10 电光{透明铁电}陶瓷electeo-optic{transparent ferroelectric}ceramics
通常指掺鑭{La}的锆钛酸铅{PZT}陶瓷等,简称PLZT,另外还有掺铋的锆钛酸铅等,它们都有电光效应。

在铁电陶瓷中,电畴状态的变化伴随着光学性质的改变,通过外加电场对透明陶瓷电畴状态的控制,可有电控双折射{细晶陶瓷}和电控光散射{粗晶陶瓷}等特性。

11 铁电陶瓷薄膜ferroelectric ceramic thin films
铁电陶瓷薄膜是具有铁电性的多晶膜,可具有压电和热释电性以及线性或二次电光效应和非线性光学效应等特性。

可用它制造热释电探测器以及随机读取存储器等,并便于器件的小型化以及与微电子和光电子学集成。

目前制备铁电陶瓷薄膜的主要方法有分子束外延,磁控溅射,化学气相沉积和溶胶-凝胶{SolGel}等方法。

薄膜基片和晶化温度对薄膜晶粒的取向度有重要影响。

12 压电复合材料piezoelectric composites
压电复合材料一般是由压电陶瓷和高分子聚合物{或其它材料}复合而成的。

通过改变复合材料中各组元所占的体积或重量百分比,各组元自身在三维空间里相互的联结方法,各组元的内部结构及其其在空间配置上的对称性可大幅度地调整复合材料的某些物理性质。

因此可根据实际需要设计压电复合材料,制造性能最佳的压电换能器。

例如锆钛酸铅压电陶瓷和高分子聚合物的1-3复合材料,其等静压压电应变常数dh{=d33+2d31}比锆钛酸铅压电陶瓷的dh值大的多,而且其电容率也有较大的下降。

相关文档
最新文档