数字电子技术基础知识

合集下载

第13数字电子技术基础

第13数字电子技术基础

第三节 时序逻辑电路 一、 RS触发器
2 同步RS触发器 1.电路结构和逻辑符号 为使基本RS触发器能在时钟源的控制下工作,在基本RS 触发器输入端加两个两输入与非门作为引导门,如图所示。
第三节 时序逻辑电路 一、 RS触发器
2.逻辑功能
第三节 时序逻辑电路 一、 RS触发器
13.3 逻辑代数及逻辑函数化简
一、 逻辑代数基本公式
返回
13.3 逻辑代数及逻辑函数化简
一、 逻辑代数基本公式
3.逻辑代数的基本规则 (1)代入规则。在任何一个逻辑等式中,如果等式两边出现相同的变量, 如变量A,可以将所有含A的地方代之以同一个逻辑函数F,等式仍然成立, 这个规则就称为代入规则。 (2)反演规则。对逻辑等式F取非 (即求其反函数)称为反演。可以通过 反复使用摩根定律求得,也可以运用由摩根定律得到的反演规则一次写出。 (3)对偶规则。如果两个逻辑式相等,那么它们的对偶式也一定相等, 这就是对偶规则。
(4)数码显示器
三、
组合逻辑电路的种类
半导体数码管 半导体数码管是将7个发光二极管 排列成“日”字形状制成的
三、
组合逻辑电路的种类
数码显示译码器 数码显示译码器的原理图如图13-18(a)所示。输入的是8421BCD码,输出 的是相应a、b、c、d、e、f、g端的高、低电平。 若数码显示译码器驱动的是共阴数码管,如图13-18(b)所示。
第14章 组合逻辑电路和时序逻辑电路 第一节 集成门电路
一、TTL集成逻辑门电路 1、TTL集成逻辑门电路 TTL是三极管-三极管逻辑门电路的英文缩写,它具有 工作速度快、带负载能力强、工作稳定等到优点。 常用的TTL门电路有反相器、与非门、或非门、OC门、 三态门等。 2、其他类型TTL逻辑门 (1)、OC门 把集电极开路的与非门称为OC门。几个OC门电路并联 在一起,只要外接一个负载电阻即可,它能实现线与功能。 (2)、三态门(TSL门) 具有3种输出状态高电平、低电平、高电阻的门电路, 称为三态门电路。在高阻态下,输出端相当于开路。它能 实现信号的单向传输、双向传输的控制。

数字电子技术基础知识总结

数字电子技术基础知识总结

数字电子技术基础知识总结一、模拟电路与数字电路的定义及特点:模拟电路(电子电路)模拟信号处理模拟信号的电子电路。

“模拟”二字主要指电压(或电流)对于真实信号成比例的再现。

其主要特点是:1.函数的取值为无限多个;2.当图像信息和声音信息改变时, 信号的波形也改变, 即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。

3、初级模拟电路主要解决两个大的方面: 1放大、2信号源。

4.模拟信号具有连续性。

数字电路(进行算术运算和逻辑运算的电路)数字信号用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路, 或数字系统。

由于它具有逻辑运算和逻辑处理功能, 所以又称数字逻辑电路。

其主要特点是:1.同时具有算术运算和逻辑运算功能数字电路是以二进制逻辑代数为数学基础, 使用二进制数字信号, 既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等), 因此极其适合于运算、比较、存储、传输、控制、决策等应用。

2.实现简单, 系统可靠以二进制作为基础的数字逻辑电路, 可靠性较强。

电源电压的小的波动对其没有影响, 温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。

3.集成度高, 功能实现容易集成度高, 体积小, 功耗低是数字电路突出的优点之一。

电路的设计、维修、维护灵活方便, 随着集成电路技术的高速发展, 数字逻辑电路的集成度越来越高, 集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。

电路的设计组成只需采用一些标准的集成电路块单元连接而成。

对于非标准的特殊电路还可以使用可编程序逻辑阵列电路, 通过编程的方法实现任意的逻辑功能。

二、模拟电路与数字电路之间的区别模拟电路是处理模拟信号的电路;数字电路是处理数字信号的电路。

数字电子技术基础知识点

数字电子技术基础知识点

数字电子技术基础知识点数字电子技术是现代电子领域中的重要分支,广泛应用于计算机、通信、控制系统等领域。

掌握数字电子技术的基础知识点对于从事电子工程技术的人员来说是至关重要的。

本文将介绍数字电子技术的基础知识点,帮助读者更好地了解和掌握这一领域的基础概念。

一、二进制系统在数字电子技术中,二进制系统是最基本的数制系统。

二进制系统由0和1两个数字构成,是一种适合于电子系统处理的数制系统。

在二进制系统中,每位数字称为一个比特(bit),8个比特组成一个字节(byte)。

通过不同的排列组合,可以表示各种不同的数字和字符。

二、逻辑门逻辑门是数字电路的基本组成单元,用于实现逻辑运算。

常见的逻辑门包括与门、或门、非门等。

与门实现逻辑与运算,只有所有输入信号都为高电平时输出才为高电平;或门实现逻辑或运算,只要有一个输入信号为高电平输出就为高电平;非门实现逻辑非运算,对输入信号取反输出。

三、触发器触发器是数字电路中的存储元件,用于存储和延时信号。

常见的触发器包括RS触发器、D触发器、JK触发器等。

RS触发器由两个输入端和两个输出端组成,输入端用于控制信号的写入和清零,输出端用于输出存储的数据。

四、计数器计数器是一种特殊的触发器,用于实现计数功能。

计数器可以按照一定的规则递增或递减输出信号。

常见的计数器包括二进制计数器、BCD计数器等。

计数器在数字电子技术中被广泛应用于时序控制、频率测量等领域。

五、编码器和解码器编码器用于将输入信号编码为特定的代码,解码器用于将代码解码为特定的输出信号。

常见的编码器和解码器包括十进制编码器、十六进制编码器、BCD解码器等。

编码器和解码器在数字电子系统中扮演着重要的角色,用于数据传输和控制信号的处理。

六、存储器存储器是数字电子系统中的重要组成部分,用于存储程序和数据。

常见的存储器包括随机存储器(RAM)、只读存储器(ROM)、闪存等。

存储器按照数据访问速度和可擦写性能不同分为不同的类型,适用于不同的应用场景。

数电知识点总结

数电知识点总结

数电知识点总结数电(数位电子)是一门研究数字电子技术的学科,涉及到数字电路、数字信号处理、数字系统等多个方面的知识。

数字电子技术已经成为现代电子工程技术的基础,并且在通信、计算机、控制、显示、测量等领域都有广泛的应用。

本文将从数字电路、数字信号处理和数字系统三个方面对数电的知识点进行总结。

1. 数字电路数字电路是将数字信号作为输入、输出,通过逻辑门、存储器等数字元器件完成逻辑运算和信息处理的电路。

数字电路是实现数字逻辑功能的基本组成单元,包括组合逻辑电路和时序逻辑电路两种类型。

1.1 组合逻辑电路组合逻辑电路是由若干逻辑门进行组合而成的电路,其输出仅取决于当前输入的组合,不受到电路内过去的状态的影响。

组合逻辑电路主要包括门电路(与门、或门、非门等)、编码器、译码器、多路选择器、加法器、减法器等。

常用的集成逻辑门有 TTL、CMOS、ECL、IIL 四种族类。

常见的集成逻辑门有 TTL、 CMOS、 ECL、 IIL 四种。

1.2 时序逻辑电路时序逻辑电路是组合电路与触发器相结合,结构复杂。

时序逻辑电路主要包括触发器、寄存器、计数器、移位寄存器等。

在传统的 TTL 集成电路中,触发器主要有 RS 触发器、 JK触发器、 D 触发器和 T 触发器四种。

在 CMOS 集成电路中一般用 T 触发器,D 触发器和 JK 触发器等。

2. 数字信号处理数字信号处理(DSP)是利用数字计算机或数字信号处理器对连续时间的信号进行数字化处理,包括信号的采样、量化和编码、数字滤波、谱分析、数字频率合成等基本处理方法。

数字信号处理已广泛应用于通信、音频、视频、雷达、医学影像等领域。

2.1 信号采样和量化信号采样是将连续时间信号转换为离散时间信号的过程,采样频率必须高于信号频率的两倍才能保证信号的完全重构。

信号量化是将采样得到的连续幅度信号转换为一个有限数目的离散的幅度值的过程,量化误差会引入信号失真。

2.2 数字滤波数字滤波是利用数字计算机对数字信号进行特定频率成分的增益或者衰减的处理过程。

数字电子技术基础总结

数字电子技术基础总结
a、将函数变换成最小项表达式
01
如果要实现的逻辑函数中的变量个数与数据选择器的地址输入端的个数不同,不能用前述的简单办法。应分离出多余的变量,把它们加到适当的数据输入端。
d、处理数据输入D0~D7信号电平。逻辑表达式中有mi ,则相应Di =1,其他的数据输入端均为0。
02
解法一:
其中:S2=A,S1=B,S0=C
选取编码方案的原则应有利于所选触发器的驱动方程及电路输出方程的简化和电路的稳定
例 设计一个串行数据检测器。对它的要求是:连续输入3个或3个以上的1时输出为1,其它情况下输出为0. 解:设输入数据为输入变量,用X表示;检测结果为输出变量,用Y表示,其状态转换表为 其中S0为没有1输入的以前状态,S1为输入一个1以后的状态,S2为输入两个1以后的状态,S3为连续输入3个或3个以上1的状态。 由状态表可以看出,S2和S3为等价状态,可以合并成一个。
A B C D
L
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1
试分别用以下方法设计一个七进制计数器:
试分别用以下方法设计一个七进制计数器:
利用74290的异步清零功能;(2)利用74163的同步清零功能;(3)利用74161的同步置数功能。
74161
试分别用以下方法设计一个七进制计数器: 利用74290的异步清零功能;(2)利用74163的同步清零功能;(3)利用74161的同步置数功能。
第三章 组合逻辑电路的分析与设计 基本要求 1.正确理解以下基本概念:逻辑变量、逻辑函数、“与、或、非”基本逻辑关系、竞争冒险。 2.熟练掌握逻辑函数的几种常用的表示方法:真值表、逻辑表达式、逻辑图、卡诺图。并能熟练的相互转换。 3. 熟练掌握逻辑代数基本定律、基本运算规则,能够熟练用其对逻辑函数进行代数化简及表达式转换。 4. 熟练掌握卡诺图化简法。 5.熟练掌握组合逻辑电路的分析方法和设计方法。

数字电子技术基础全套

数字电子技术基础全套

0.500 ……… 0(顺序)
×2
1.000 ……… 1 低位
即 (59.625)D=(101011.101)B
1.3.2 十进制数转换为二进制、十六进制数
【例1-4】 将十进制数(427.34357)D转换成十六进制数。
解:
整数部分
16 | 427 余数 16 | 26 ………11 低位 16 | 1 ……… 10 (反序)
数字电子技术基础
第1章
数制与编码
1.1 模拟信号与数字信号
1.1.1 模拟信号与数字信号的概念
模拟(analog)信号
信号的幅度量值随着时间的延续 (变化)而发生连续变化。
用以传递、加工和处理模拟信号的电子电路被称为模拟电路。
数字(digital)信号
信号的幅度量值随着时间的延续(变化) 而发生不连续的,具有离散特性变化
n 1
ai10i im
(1-1)
ቤተ መጻሕፍቲ ባይዱ
1.2.2 二进制数表述方法
(N )2an 12n 1La 12 1a 020a 12 1Lam 2m
n 1
a i2i im
(1-2)
如将 (11010.101)2 写成权展开式为:
(11010.101)2124123022121020121022123
1.2.2 二进制数表述方法
1.2 数字系统中的数制
1.2.1 十进制数表述方法
1.在每个位置只能出现(十进制数)十个数码中的一个。
特点
2.低位到相邻高位的进位规则是“逢十进一”,故称为十进制。
3.同一数码在不同的位置(数位)表示的数值是不同的。
(N )10an 110n 1La 1101a0100a 110 1Lam 10m

数字电子技术基础知识

1 数字电子技术基础知识1.1 学习要求(1)了解数字电路的特点以及数制和编码的概念。

(2)掌握逻辑代数的基本运算法则、基本公式、基本定理和化简方法。

(3)能够熟练地运用真值表、逻辑表达式、波形图和逻辑图表示逻辑函数,并会利用卡诺图化简逻辑函数。

1.2 学习指导本章重点:(1)逻辑函数各种表示方法之间的相互转换。

(2)逻辑函数的化简及变换。

本章难点:(1)逻辑函数各种表示方法之间的相互转换。

(2)逻辑函数的化简及变换。

本章考点:(1)逻辑函数各种表示方法之间的相互转换。

(2)逻辑函数的化简及变换。

1.2.1 数字电路概述1.数字信号与数字电路在数值上和时间上均连续的信号称为模拟信号,对模拟信号进行传输、处理的电子线路称为模拟电路。

在数值上和时间上均不连续的信号称为数字信号,对数字信号进行传输、处理的电子线路称为数字电路。

数字电路的特点:(1)输入和输出信号均为脉冲信号,一般高电平用1表示,低电平用0表示。

(2)电子元件工作在开关状态,即要么饱和,要么截止。

(3)研究的目标是输入与输出之间的逻辑关系,而不是大小和相位关系。

(4)研究的工具是逻辑代数和二进制计数法。

2.数制及其转换(1)数制基数和权:一种数制所具有的数码个数称为该数制的基数,该数制的数中不同位置上数码的单位数值称为该数制的位权或权。

十进制:基数为10,采用的10个数码为0~9,进位规则为“逢十进一”,从个位起各位的权分别为100、101、102、…10n -1。

二进制:基数为2,只有0和1两个数码,进位规则为“逢二进一”,从个位起各位的权分别为20、21、22、…2n -1。

16进制:基数为16,采用的16个数码为0~9、A~F ,进位规则为“逢十六进一”,从个位起各位的权分别为160、161、162、…16n -1。

(2)数制之间的转换其他进制转换为十进制:采用多项式求和法,即将其他进制的数根据基数和权展开为多项式,求出该多项式的和,即得相应的十进制数。

数字电子技术基础知识

数字电子技术基础知识数字电子技术是指应用数字技术来控制电子设备的技术。

它是研究电路的基础技术,它包括数字逻辑电路,数字系统,微处理器和微电子学。

数字电子技术的发展主要有两种:一种是按照数字电路处理信号,另一种是根据微处理器处理信息。

数字电子技术应用于计算机、汽车、媒体,视听娱乐等多方面。

数字电子技术基础知识主要涉及基本电子学知识,数字电子电路、数字电路设计等相关知识,以及数字系统分析、控制系统的设计原理及应用、数字信号处理等内容。

1、基本电子学知识:包括半导体物理特性、半导体电子学基础、晶体管原理、晶体管参数之间的关系、缓冲器的类型及作用、电路的建模等。

2、数字电子电路:包括基本的数字电路组成,如Grated Logic Elements、半桥、全带等;特定的数字电路,如时序时钟、同步和异步计数器、位移编码器、状态空间变换等;以及数字电路的活性化,如速率调制、抖动抑制、比较器以及归一化等。

3、数字电路设计:是利用计算机建立、模拟和仿真由多个电路模块组成的数字电路,它涉及到仿真、校验、重新定义和优化等技术,开发的软件会在系统中进行不断的修改和实施。

4、数字系统分析:利用数字信号处理来解决系统中的模型分析问题,它涉及到系统模型分析、系统优化、系统故障诊断等问题,以达到系统分析和控制的目的。

5、控制系统的设计原理及应用:分析和设计建立的控制系统,如控制系统的建模、实时微处理器、线性系统的状态控制、步进控制、PID控制,以及artificial- intelligence控制等。

6、数字信号处理:利用数字信号处理技术,将不同信号格式的信号经过数字信号处理处理器,实现滤波、压缩、提取、监控等功能,以达到优化信号处理效果。

数字电子技术基础

数字电子技术基础数字电子技术基础数字电子技术是指使用数字电子技术进行数字信号的处理和转换的技术的总称,是现代电子技术中的一项基础技术。

它是利用数字电子技术的基本原理和基本方法,设计、制造、操作和应用数字电路和数字系统的技术,包括数字电路设计、数字信号处理、数字通信和组合逻辑电路等内容。

数字电子技术在计算机、通信、控制、测量、影像等领域发挥着重要作用。

1. 数字电子技术基础概述数字电子技术是指用离散的符号代表连续的声、光、电等信息的技术。

它的产生和发展是在人们对模拟电子技术进行了深入的研究之后,参考生物神经网络的原理,发现采用离散的二进制数码或多进制数码能够代替复杂的模拟系统,并用数字电路来实现这些数码的处理。

数字电子技术在应用方面的主要优点是:信号处理精度高,可靠性强,设计灵活、方便,可扩展性强,同时也具有良好的适应性和交互性。

2. 数字信号处理数字信号处理(DSP,Digital Signal Processing)是指使用数字技术进行信号的数字化、处理、转换、储存、传输和显示的技术。

它具有信号处理精度高、处理速度快、抗干扰能力强、具有灵活性和可靠性等特点。

数字信号处理的原理和方法包括线性系统的分析、非线性系统的分析、数字信号的代数转换、数字滤波器、功率谱分析和数字处理器等。

数字信号处理在通信、图像、音频、视频、雷达、医学、地震等领域都有广泛的应用。

3. 数字通信数字通信是指用数字信号进行交换和传输信息的技术。

数字通信在传输质量、传输效率和传输容量方面都有明显的优势。

数字通信的主要技术包括调制解调器、通道编码、信道等效和信号检测等。

4. 组合逻辑电路组合逻辑电路是由输入线、输出线和一些逻辑门组成,它的输出是根据输入信号和逻辑门的状态所产生的输出。

组合逻辑电路常用的逻辑门包括与门、或门、非门、异或门等。

组合逻辑电路也常用于大规模数字集成电路和可编程逻辑器件中。

5. 计算机计算机是数字电子技术的典型代表,它将数字信号处理的原理和方法应用到计算机结构、系统软件和应用软件等方面。

数字电子技术基础

下一页 返回
1.2 数制
[9998.67]10 9 103 9 102 9 101 8100 6 101 7 102 ❖ 其中,103 ,102 ,101 ,100 ,10-1,10-2称为十进制各位的“权”。 ❖ 任意一个十进制数D均可展开为
[N]D di 10i
❖ 其中,di是第i位的系数,它可以是0~9这十个数码中的任何一个。若整 数部分的位数是n,小数部分的位数是m,则i包含从(n~1)到0的所有正 整数和从-1到-m的所有负整数。
上一页 返回
8.2 数/模转换器(DAC)
❖ 8.2.1 D/A转换器的基本工作原理
❖ D/A转换器用于将输入的二进制数字量转换为与该数字量成 比例的电压或电流。A/D转换的原理有多种,但功能相同, 下面以倒T型电阻网络D/A换器为例,介绍其工作原理。
❖ 8.2.2倒T型电阻网络DAC
❖ 倒T型电阻网络D/A换器的组成框图如图8-2所示。图中,数 据锁存器用来暂时存放输入的数字量,这些数字量控制模拟 电子开关,将参考电压源UREF按位切换到电阻译码网络中 变成加权电流,然后经运放求和,输出相应的模拟电压,完 成D/A转换过程。
上一页 下一页 返回
1.2 数制
❖ 1.2.2 二进制数
❖ 在数字电路中广泛应用的是二进制。在二进制数中,只有0和1两个数码, 所以计数的基数是2,低位和相邻高位间的进位关系是“逢二进一”, 即1+1 =10,同一数码在不同位置上表示的数值不同例如
[1110.11]2 1 23 1 22 1 21 0 20 1 21 1 22 [14.75]10
下一页 返回
8.1 概 述
❖ 用计算机对生产过程进行实时控制,其控制过程原理方框图 如图8-1所示。由A/D转换器把由传感器采集来的模拟信号转 换成为数字信号,送计算机处理,当计算机处理完数据后, 把结果或控制信号输出,由D/A转换器转换成模拟信号,送 执行元件,对控制对象进行控制。可见,ADC和DAC是数字 系统和模拟系统相互联系的桥梁,是数字系统的重要组成部 分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. 根据逻辑函数 表达式画出逻辑 电路图。
第三章 组合逻辑模块及其应用
基本要求 1.熟练掌握译码器、编码器、数据选择器、数值比 较器的逻辑功能及常用中规模集成电路的应用。 2.熟练掌握半加器、全加器的逻辑功能,设计方法。 3.正确理解以下基本概念:
编码、译码、组合逻辑电路、时序逻辑电路。
用译码器实现逻辑函数的步骤
L
解:将逻辑函数转换成最小项表达式, &
再转换成与非—与非形式。
L ABC ABC ABC ABC
=m3+m5+m6+m7
= m3 m5 m6 m7
用一片74138加一个与非门
Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 74138
G1 G2AG2B A2 A1 A0
就可实现该逻辑函数。
D1
D3
A
D2
D4
B
C
R
R
+VCC (a) +VCC
RC
Rb
3
L3
A
1
2T1
Rb
3
B
1
2T2
(c)
L1 A
R1
1
2
3
T1
D
1
(b)
+VCC
RC
3
L2
2T2
+VCC
RC
L4
Rb
33
Rb
A
1
T21 2T2
1
B
(d)
+VCC RP
A
&
B
C
&
D
L1 A
B
L1 AB CD
VCC
&
=1
L2 AB
A B
基本逻辑关系小结
逻辑

A
B

A
B

A
与非
A
B
或非
A
B
异或
A
B
符号
&Y
≥1 Y
1
Y
&Y
≥1 Y =1 Y
表示式
Y=AB Y=A+B YA Y AB Y AB Y= AB
组合逻辑电路分析方法
根据已知逻辑电路,经分析确定电路的的逻辑功能。
组合逻辑电路的分析步骤: 1、 由逻辑图写出各输出端的逻辑表达式; 2、 化简和变换逻辑表达式; 3、 列出真值表; 4、 根据真值表或逻辑表达式,经分析最后确定其功能。
1.写出逻辑函数的最小项和的形式; 2.将逻辑函数的最小项和的表达式变换成与非
与非式; 3.画出接线图。 4.如果函数为4变量函数,用3/8线译码器实现,
则需先用两片3/8线译码器扩展成4/16线译码 器,在此基础上进行以上步骤。
例1 试用译码器和门电路实现逻辑函数:
L AB BC AC
O
β=50
2
Rb1
1
5V 15kΩ 51RkΩb2
+VCC ( +15V) 2RkCΩ
V
3
O
β=50
2
-3V (d)
-3V (e)
基本定律和恒等式
第二章 逻辑门电路
基本要求 1. 正确理解以下基本概念: 推拉式输出、线与、高阻态。 2. 熟练掌握各种门电路的逻辑功能。 3. 熟悉各种门电路的结构、工作原理、主要参数 及应用中注意的问题。
总结
:
组合逻辑电路
门电路构成
简 化
1.特点,分析,设计,
逻 辑
2.常用功能器件:定义,功能,集成芯片应用
代 编码器,译码器,数据选择器,数据分配器,比较器,加法器

时序逻辑电路
触发器电路构成
1.特点,分析,设计, 2.常用功能器件:定义,功能,集成芯片应用
计数器,寄存器
第一章 数字电路基础
基本要求 1. 正确理解以下基本概念:正逻辑、负逻辑、数制 与码制、二极管与三极管的开关作用和开关特性、逻 辑变量、逻辑函数、“与、或、非”基本逻辑关系。 2. 熟练掌握三极管三种工作状态的特点及判别方法。 3. 熟练掌握逻辑函数的几种表示方法(真值表、表 达式、逻辑图),并会相互转换。
2.建立真值表
按设计要求可得真值表
A B F绿 F黄 F红
00100 01010 10010 11001
3. 根据真值表求得输出逻辑函数的表达式
F绿 AB F黄 AB AB A B F红 AB
4. 化简上述逻辑函数表达式,并转换成适当的形式。由于上 述逻辑函数的表达式都是最简了,所以不用再化简。
设计一个故障指示电路,具体要求为: (1)两台电动机同时工作时,绿灯亮; (2)一台电动机发生故障时,黄灯亮; (3)两台电动机同时发生故障时,红灯亮。
解 1.设定A、B分别表示两台 电动机这两个逻辑变量,F 绿、F黄、F红分别表示绿灯、
黄灯、红灯;且用0表示电 动机正常工作,1表示电动 机发生故障;1表示灯亮,0 表示灯灭。
Rb
1
6V 53kΩ
+VCC ( +12V)
RC 1kΩ
V
3
O
β=50
2
Rb 30kΩ
1
+VCC ( +5V) RC 3kΩ

3
O
β=50
2
Rb
1
0V 20kΩ
+VCC( +12V) R1kCΩ
3
VO
β=50
2
(a)
(b)
(c)
Rb1
1
15kΩ
51RkbΩ2
+VCC ( +12V) 1RkCΩ
V
3
(1) (54)D =(0101,0100)8421 =(1011,0100)2421
(2) (87.15)D =(1000,0111.0001,0101)8421 =(1110,1101.0001,1011)2421
(3) (239.03)D =(0010,0011,1001.0000,0011)8421 =(0010,0011,1111.0000,0011)2421
& ≥1
C
L3
L2
L3 AB C
电路如图所示,试用表格方式列出各门电路的名称,输 出逻辑表达式以及当ABCD=1001时,各输出函数的值。
△ △
EN EN
L1
=1
A B C D
L2
L3
R +5V
≥1
&
&
&
L4
&
&
第三章 组合逻辑电路的分析与设计
基本要求 1.正确理解以下基本概念:逻辑变量、逻辑函数、 “与、或、非”基本逻辑关系、竞争冒险。 2.熟练掌握逻辑函数的几种常用的表示方法:真值 表、逻辑表达式、逻辑图、卡诺图。并能熟练的相 互转换。 3. 熟练掌握逻辑代数基本定律、基本运算规则,能 够熟练用其对逻辑函数进行代数化简及表达式转换。 4. 熟练掌握卡诺图化简法。 5.熟练掌握组合逻辑电路的分析方法和设计方法。
1 00 AB C
利用8选1数据选择器组成函数产生器的一般步骤
要实现的逻辑函数中的变量个数与数据选择器的地址输入端 的个数相同,将变量与数据选择器的地址输入端一一对应即可。
a、将函数变换成最小项表达式 b、使器件处于使能状态 c、地址信号S2、 S1 、 S0 作为函数的输入变量 d、处理数据输入D0~D7信号电平。逻辑表达式中有
组合逻辑电路的设计
根据实际逻辑问题,求出所要求逻辑功能的最简单逻辑电路。 一、组合逻辑电路的设计步骤
1、逻辑抽象(约定):根据实际逻辑问题的因果关系确 定输入、输出变量,并定义逻辑状态的含义; 2、根据逻辑描述列出真值表; 3、由真值表写出逻辑表达式; 4、根据器件的类型,简化和变换逻辑表达式 5、 画出逻辑图。
相关文档
最新文档