RTK求解参数(三参、四参、七参)
RTK求解参数(三参、四参、七参)讲解复习过程

站参数,使基准站发射差分信号。 • 3、连接移动站,设置移动站,使得移动站接收到基准站的差分数据,并达到
窄带固定解。 • 4、移动站到测区已知点上测量出窄带固定解状态下的已知点原始坐标。 • 5、根据已知点的原始坐标和当地坐标求解出两个坐标系之间的转换参数。 • 6、打开坐标转换参数,则RTK测出的原始坐标会自动转换成当地坐标。 • 7、到另外你至少一个已知点检查所得到的当地坐标是否正确。 • 8、在当地坐标系下进行测量,放样等操作,得到当地坐标系下的坐标数据。 • 9、将坐标数据在手簿中进行坐标格式转换,得到想要的坐标数据格式。 • 10、将数据经过ActiveSync软件传输到电脑中,进行后续成图操作。
• 平面坐标转换
– 多应用于 – 北京54,国家80 – 与当地自定义 – 坐标系之间的转换
– 四个参数 – X0平移 – Y0平移 – θ 坐标轴旋转 – K 尺度
不同(椭球)坐标系的转换流程
空间直角坐标(X,Y,Z)
椭球转换
大地坐标(B,L,H) 投影反算 平面直角坐标(x,y,h) 平面转换 当地平面坐标(x,y)
• 参数计算是RTK作业中很重要的一个环节,下面就RTK在使用不同的 转换方法时的作业步骤做详细说明。
一:平面四参数+高程拟合(用户常用方法)
• 1、架设基准站 • 基准站可架设在已知点或未知点上(注:如果需要使用求解好的转换
参数,则基准站位置最好和上次位置要一致,打开上次新建好的项目, 在设置基准站,只需要修改基准站的天线高,确定基准站发射差分信 号,则移动站可直接进行工作,不用重新求解转换参数) • 基准站架设点必须满足以下要求: • a、高度角在15度以上开阔,无大型遮挡物; • b、无电磁波干扰(200米内没有微波站、雷达站、手机信号站等, 50米内无高压线); • c、在用电台作业时,位置比较高,基准站到移动站之间最好无大型 遮挡物,否则差分传播距离迅速缩短; • d、至少两个已知坐标点 (已知点可以是任意坐标系下的坐标,最好 为三个或三个以上,可以检校已知点的正确性); • e、不管基站架设在未知点上还是已知点上,坐标系统也不管是国家 坐标还是地方施工坐标,此方法都适用。
RTK求解参数(三参、四参、七参)详解

• 投影讲解 四参数+高程拟合
二、三参数转换
• (1)、架设基准站 • 基准站(基准站架设在已知点上,如果基准站架设在未知点上,手簿 软件使用方法和四参数类似,只是在计算参数时选择计算三参数)。 • 架设点必须满足以下要求: • a、高度角在15度以上开阔,无大型遮挡物; • b、无电磁波干扰(200米内没有微波站、雷达站、手机信号站等, 50米内无高压线); • c、位置比较高,用电台作业时,基准站到移动站之间最好无大型遮 挡物,否则差分传播距离迅速缩短; • d、只需一个已知坐标点 (已知点可以是国家坐标系下的坐标,或坐 标系和WGS-84坐标系之间的旋转很小); • e、此方法都适用于客户对坐标精度要求不是很高的情况,随着移动 站离基准站距离的增加,精度越来越低,一般3KM精度能在5CM以内。
RTK求解参数
罗禹
参数的概念
1、由于GPS所采用的坐标系为WGS-84坐标系,而 在我们国家,实际的工作中所使用的都是BJ-54,国 家-80、或地方坐标系, 因此存在WGS-84和当地坐标系统之间的转换问题。 2、参数转换一般分两种形式: 平面坐标系之间的转换:四参数、校正参数 椭球体之间的转换: 三参数,七参数
• 投影讲解 七参数
四、一步法转换
• 使用要求:至少三个已知坐标点(已知点可以是国家坐标系下的坐标 或自定义坐标系下的坐标,最好三个以上已知点,可以检验已知点的 正确性)。 • 用一步法转换、七参数转换、四参数转换、三参数转换(基准站架设 在未知点)时,仪器和手簿软件操作步骤类似,只是要求的已知点数 据和使用范围不一致。
谢谢
• 一般的:
• • • • 三参数:要求已知一个国家坐标点,精度随传输距离增加而减少 四参数:要求两个任意坐标点,精度在小范围内可靠 七参数:三个国家坐标点,精度高,对已知点要求严格 一步法:三个任意坐标点,在残差不大的情况下,精度可靠
RTK求解参数(三参、四参、七参)讲解

1、架设基准站、设置好GPS主机工作模式 2、打开手簿软件、连接基准站、新建项目、设置坐标系统参数、设置好基准 站参数,使基准站发射差分信号。 3、连接移动站,设置移动站,使得移动站接收到基准站的差分数据,并达到 窄带固定解。 4、移动站到测区已知点上测量出窄带固定解状态下的已知点原始坐标。 5、根据已知点的原始坐标和当地坐标求解出两个坐标系之间的转换参数。 6、打开坐标转换参数,则RTK测出的原始坐标会自动转换成当地坐标。 7、到另外你至少一个已知点检查所得到的当地坐标是否正确。 8、在当地坐标系下进行测量,放样等操作,得到当地坐标系下的坐标数据。 9、将坐标数据在手簿中进行坐标格式转换,得到想要的坐标数据格式。 10、将数据经过ActiveSync软件传输到电脑中,进行后续成图操作。
空间直角坐标(X,Y,Z)
大地坐标(B,L,H) 投影正算 平面直角坐标(x,y,h) 平面转换 当地平面坐标(x,y)
RTK简易操作流程
• 以下只是软件的简易操作流程,详细使用步骤请参照接下来的详细说明。此 流程只是我们提供给的一种解决方案,在熟练使用本软件后,可以不依照此 步骤操作。在作业过程中,通常的使用方法为:
• 投影讲解 三参数
三、七参数转换
一:平面四参数+高程拟合(用户常用方法)
• 1、架设基准站 • 基准站可架设在已知点或未知点上(注:如果需要使用求解好的转换 参数,则基准站位置最好和上次位置要一致,打开上次新建好的项目, 在设置基准站,只需要修改基准站的天线高,确定基准站发射差分信 号,则移动站可直接进行工作,不用重新求解转换参数) • 基准站架设点必须满足以下要求: • a、高度角在15度以上开阔,无大型遮挡物; • b、无电磁波干扰(200米内没有微波站、雷达站、手机信号站等, 50米内无高压线); • c、在用电台作业时,位置比较高,基准站到移动站之间最好无大型 遮挡物,否则差分传播距离迅速缩短; • d、至少两个已知坐标点 (已知点可以是任意坐标系下的坐标,最好 为三个或三个以上,可以检校已知点的正确性); • e、不管基站架设在未知点上还是已知点上,坐标系统也不管是国家 坐标还是地方施工坐标,此方法都适用。
2.RTK求解参数(三参、四参、七参)

一:平面四参数+高程拟合(用户常用方法)
• 1、架设基准站 • 基准站可架设在已知点或未知点上(注:如果需要使用求解好的转换 参数,则基准站位置最好和上次位置要一致,打开上次新建好的项目, 在设置基准站,只需要修改基准站的天线高,确定基准站发射差分信 号,则移动站可直接进行工作,不用重新求解转换参数) • 基准站架设点必须满足以下要求: • a、高度角在15度以上开阔,无大型遮挡物; • b、无电磁波干扰(200米内没有微波站、雷达站、手机信号站等, 50米内无高压线); • c、在用电台作业时,位置比较高,基准站到移动站之间最好无大型 遮挡物,否则差分传播距离迅速缩短; • d、至少两个已知坐标点 (已知点可以是任意坐标系下的坐标,最好 为三个或三个以上,可以检校已知点的正确性); • e、不管基站架设在未知点上还是已知点上,坐标系统也不管是国家 坐标还是地方施工坐标,此方法都适用。
• 2、假设已建好一个项目,参数计算完以后, 正常工作了一段时间,由于客观原因,第 二次作业不想把基准站架设在和第一次同 样的位置,此时,可以用到点校正功能, 只需要将基准站任意架设,打开第一次使 用的项目,到一个已知点上校正坐标即可。 校正方法和第一种情况相同。
• 一般的:
• • • • 三参数:要求已知一个国家坐标点,精度随传输距离增加而减少 四参数:要求两个任意坐标点,精度在小范围内可靠 七参数:三个国家坐标点,精度高,对已知点要求严格 一步法:三个任意坐标点,在残差不大的情况下,精度可靠
五、校正参数
• 用于计算两坐标系统之间的平面、高程平移参数。通常 在以下两种情况,可以使用校正参数
– – – –
– – – – –
多应用于 北京54,国家80 与当地自定义 坐标系之间的转换
最新南方RTK测量如何求七参数

南方R T K测量如何求七参数南方RTK测量如何求七参数通常最大距离小于10公里的测区,使用四参数就可以了,很多论文的实验结论都证明了对于小范围的测区,使用四参数坐标转换的结果优于七参数坐标转换的结果。
1.参数求解的过程基本相同,就是在测区中心位置架设好基准站,然后使用流动站新建工程,设置基本的投影的参数,如西安80坐标系,高斯投影,中央子午线,Y坐标常数500km等,2.直接使用流动站到三个及以上已知高等级控制点测量固定解状态下的坐标。
3. 求解参数:依次输入已知控制点的成果坐标,并指定之前RTK 测量获得对应控制点的坐标,保存参数后应用。
4.检核:使用应用参数后的RTK流动站,测量一个已知的控制点,并检查观测坐标值与成果坐标的互差。
南方灵锐S82RTK操作步骤及使用技巧分享首次分享者:郜亚辉已被分享1次评论(0) 复制链接分享转载举报一.基准站部分1)基准站安装1.在基准站架设点上安置脚架,安装上基座,再将基准站主机用连接头安置于基座之上,对中整平(如架在未知点上,则大致整平即可)。
注意:基准站架设点可以架在已知点或未知点上,这两种架法都可以使用,但在校正参数时操作步骤有所差异。
2. 安置发射天线和电台,将发射天线用连接头安置在另一脚架上,将电台挂在脚架的一侧,用发射天线电缆接在电台上,再用电源电缆将主机、电台和蓄电池接好,注意电源的正负极必须连接正确(红正黑负),否则保险丝将被烧断。
注意:主机和电台上的接口都是唯一的,在接线时必须红点对红点,拔出连线接头时一定要捏紧线头部位,不可直接握住连线强行拨出。
2)主机操作1.打开主机主机上只有一个操作按钮(电源键),轻按电源键打开主机,主机开始自动初始化和搜索卫星,当卫星数和卫星质量达到要求后(大约1分钟),主机上的DL指示灯开始5秒钟快闪2次,表明基准站开始正常工作。
2.打开电台在打开主机后,就可以打开电台。
轻按电台上的“ON/OFF”按钮打开电台,当主机上的DL指示灯开始5秒钟快闪2次时,同时电台上的TX指示灯会开始每秒钟闪1次。
RTK求解参数三参四参七参

03
CATALOGUE
四参RTK求解参数
四参RTK定义
四参RTK(实时动态差分定位)是一 种实时、高精度、高效率的定位技术 ,通过实时处理来自卫星导航系统的 信号,获取高精度位置、速度和时间 信息。
四参RTK基于载波相位观测值,通过 差分技术消除卫星和接收机之间的公 共误差,实现厘米级甚至毫米级的定 位精度。
要点二
实时性
基于实时动态定位技术,能够快速获取高精度位置信息, 提高作业效率。
七参RTK优缺点
• 可靠性:不易受到常规静态定位技术中由于信号被遮挡或 干扰而引起的定位问题。
七参RTK优缺点
依赖通信链路
实时传输差分修正值需要稳定的通信链路支持,否则会 影响定位精度。
初始化时间
在某些情况下,移动站接收机可能需要较长时间进行初 始定位。
RTK系统采用差分定位技术,将基准站接收机观测到的误差 信息实时传输给移动站接收机,以消除卫星轨道误差、信号 传播误差等影响,提高定位精度。
RTK应用领域
测量
农业
RTK技术广泛应用于地形测量、地籍测量、 工程测量等领域,能够实现高精度、快速 、实时的测量作业。
RTK技术可用于农机自动驾驶、农田信息采 集、农业资源调查等领域,提高农业生产 效率和智能化水平。
数据处理阶段
对获取的定位数据进行后处理,以提高定位精度和可靠性 。
三参RTK优缺点
优点
实时性强,能够快速获取高精度定位结果;不需要已知控制点支持,降低了作业成本; 适用于各种地形和天气条件,具有较好的稳定性和可靠性。
缺点
对接收机数量和型号要求较高,需要两台或更多台接收机同时工作;对信号遮挡和多路 径效应比较敏感,会影响定位精度和可靠性;数据处理较为复杂,需要专业人员操作和
三参数与七参数的区别
参数问题一直是测量方面最大的问题,我简单的解释一下,首先说七参,就是两个空间坐标系之间的旋转,平移和缩放,这三步就会产生必须的七个参数,平移有三个变量Dx,Dy,DZ;旋转有三个变量,再加上一个尺度缩放,这样就可以把一个空间坐标系转变成需要的目标坐标系了,这就是七参的作用。
如果说你要转换的坐标系XYZ三个方向上是重合的,那么我们仅通过平移就可以实现目标,平移只需要三个参数,并且现在的坐标比例大多数都是一致的,缩放比默认为一,这样就产生了三参数,三参就是七参的特例,旋转为零,尺度缩放为一。
四参是应用在两个平面之间转换的,还没有形成统一的标准,说的有点乱,如果还是不明白可以给我留言。
希望有帮助。
1.2 四参数操作:设置→求转换参数(控制点坐标库)四参数是同一个椭球内不同坐标系之间进行转换的参数。
在工程之星软件中的四参数指的是在投影设置下选定的椭球内 GPS 坐标系和施工测量坐标系之间的转换参数。
工程之星提供的四参数的计算方式有两种,一种是利用“工具/参数计算/计算四参数”来计算,另一种是用“控制点坐标库”计算。
需要特别注意的是参予计算的控制点原则上至少要用两个或两个以上的点,控制点等级的高低和分布直接决定了四参数的控制范围。
经验上四参数理想的控制范围一般都在 5-7 公里以内。
四参数的四个基本项分别是:X 平移、Y 平移、旋转角和比例。
从参数来看,这里没有高程改正,所以建议采用“控制点坐标库”来求取参数,而根据已知点个数的不同所求取的参数也会不同,具体有以下几种。
1.2.1 四参数+校正参数:所需已知点个数:2个1.2.2 四参数+高程拟合GPS 的高程系统为大地高(椭球高),而测量中常用的高程为正常高。
所以 GPS 测得的高程需要改正才能使用,高程拟合参数就是完成这种拟和的参数。
计算高程拟和参数时,参予计算的公共控制点数目不同时计算拟和所采用的模型也不一样,达到的效果自然也不一样。
高程拟后有三种拟合方式:a.高程加权平均:所需已知点个数:3个b.高程平面拟合:所需已知点个数:4 ~ 6个c.高程曲面拟合:所需已知点个数:7个以上二、七参数操作:工具→参数计算→计算七参数所需已知点个数:3个或3个以上七参数的应用范围较大(一般大于 50 平方公里),计算时用户需要知道三个已知点的地方坐标和 WGS-84 坐标,即 WGS-84 坐标转换到地方坐标的七个转换参数。
RTK基站设置、7参数、测点、放线等操作教程,值得收藏!
RTK基站设置、7参数、测点、放线等操作教程,值得收藏!GNSS 介绍1、GNSS的现状及未来GNSS(Global Navigation Satellite System)是全球导航卫星系统的英文缩写,它是所有全球导航卫星系统及其增强系统的集合名词,是利用全球的所有导航卫星所建立的覆盖全球的全天侯无线电导航系统。
目前可供利用的全球卫星导航系统有美国的GPS和俄罗斯的GLONASS以及未来欧洲的Galileo。
2. GNSS的应用行业3. 卫星定位技术的发展传统的RTK技术—电台、GPRS/CDMA网络RTK技术—天宝的VRS、Leica的主辅站技术传统RTK以及仪器的操作1. 传统RTK的含义常规的GPS测量方法,如静态、快速静态、动态测量都需要事后进行解算才能获得厘米级的精度,而RTK是能够在野外实时得到厘米级定位精度的测量方法,它采用了载波相位动态实时差分(Real - time kinematic)方法,是GPS应用的重大里程碑,它的出现为工程放样、地形测图,各种控制测量带来了新曙光,极大地提高了外业作业效率。
2. 传统RTK的工作原理RTK的工作原理是将一台接收机置于基准站上,另一台或几台接收机置于载体(称为流动站)上,基准站和流动站同时接收同一时间、同一GPS卫星发射的信号,基准站所获得的观测值与已知位置信息进行比较,得到GPS差分改正值。
然后将这个改正值通过无线电数据链电台及时传递给共视卫星的流动站精化其GPS观测值,从而得到经差分改正后流动站较准确的实时位置。
3. 传统RTK的数据链数据链通讯:1)电台模式:UHF(Ultra High Frequency)超高频率,频率300MHz-300KMHz(波长属微波:波长1M-1MM,空间波,小容量微波中继通信)——410-430MHz /450-470MHzVHF(Very High Frequency)甚高频(3MHz~30MHz属短波:波长100M-10M,空间波)——220-240MHz2)网络模式:GPRS(General Packet Radio Service)中文是通用分组无线业务,是在现有的GSM系统上发展出来的一种新的分组数据承载业务;CDMA为码分多址数字无线技术4. 接收机及信号灯介绍1)接收机外观2)指示灯及按键说明:备注:接收机开机默认RTK 模式,如需切换到静态模式,按住切换键不放,直到数据采集灯熄灭时松开,切换为静态模式。
rtk测量中有关参数的选择和应用
RESOURCES/WESTERN RESOURCES2019年第六期遥感测绘1.引言GPS-RTK (Real Time Kinematic )是一种利用GPS 载波相位观测值进行实时动态相对定位的技术。
由于该技术不受通视限制、全天候、精度高、速度快而深受广大测量工作者的青睐。
随着高精度的区域(似)大地水准面的建立,GPS 测量中的高程信息也得到了广泛的应用,以替代传统的精度要求不高的水准测量和三角高程测量工作。
但是由于GPS 测量采用的坐标系为WGS-84坐标系,其测量值为地心坐标系下的大地坐标(大地经度、大地纬度,椭球高),而我国各地控制点资料成果多为参心坐标系下的高斯投影坐标加正常高,因此在进行RTK 测量前,做好转换参数的设置是一件极其重要的工作。
2.坐标转换原理由于GPS 采用的是WGS-84坐标系统,而在我国大多使用北京54坐标和西安80坐标,这三种坐标系所采用椭球及椭球参数是不同的;同一坐标系统下可以定义多种不同形式的坐标系:经纬度和椭球高(BLH ),空间直角坐标(XYZ ),平面坐标和水准高程(xyh/NEU )。
椭球高是一个几何量,而水准高是一个物理量。
坐标转换的严密性问题:在同一个椭球里的纯几何转换都是严密的(BLH<->XYZ ),而在不同的基准之间的转换是不严密的,要进行坐标转换就需要求解转换参数。
例如,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,因为前者是一个地心坐标系,后者是一个参心坐标系。
高程转换是由几何高向物理高转换。
因此在每个地方必须用椭球进行局部拟合,一般用7参数模型进行局部拟合。
按照坐标参照系的转换原理可分为三维转换和平面加高程分别转换两种模式。
2.1三维转换模式三维转换模式是在空间直角坐标系下进行的,大多采用布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转,Y 旋转,Z 旋转,尺度变化K。
要求得七参数在一个地区需要3个以上的已知点(7个参数至少7个方程可解,所以需要三个点列出9个方程),七参数模型的实质是用一个局部椭球去拟合地方坐标系的形态;所以转换后获得的地方椭球高就是水准高。
三参数、四参数、七参数等坐标系转换参数求解
一、引言在地图制图、地理信息系统、导航定位等领域,常常需要进行不同坐标系之间的转换,以实现不同数据之间的对接和整合。
而在坐标系转换中,三参数、四参数、七参数等方法是常用的参数化转换模型。
本文将从理论和实践两个层面,对这些坐标系转换参数的求解进行探讨。
二、三参数坐标系转换参数求解三参数坐标系转换是指通过平移、旋转和尺度变换来实现两个坐标系之间的转换。
求解三参数的过程可以分为以下几个步骤:1. 收集数据:首先需要获取两个坐标系之间的对应点对,这些点对可以是地面控制点、地理标志物等。
2. 建立转换模型:利用对应点对,建立三参数转换模型,通常表示为:ΔX = ΔX0 + aΔX1 - bΔY1ΔY = ΔY0 + bΔX1 + aΔY1ΔZ = ΔZ0 + c(ΔX + ΔY)3. 求解参数:通过最小二乘法等数学方法,求解出a、b、c三个参数的值,从而得到三参数转换模型。
4. 参数验证:对求解出的参数进行验证和调整,以确保转换模型的精度和稳定性。
三、四参数坐标系转换参数求解四参数坐标系转换相比于三参数,增加了一个尺度参数,其求解过程类似于三参数,不同之处在于模型的建立和参数的求解方式:1. 模型建立:四参数转换模型可以表示为:ΔX = ΔX0 + aΔX1 - bΔY1 + mΔZ1ΔY = ΔY0 + bΔX1 + aΔY1 + nΔZ1ΔZ = ΔZ0 + c(ΔX + ΔY)2. 参数求解:通过对应点对,利用最小二乘法等数学方法,求解出a、b、c和m、n四个参数的值。
3. 参数验证:同样需要对求解出的四个参数进行验证和调整,保证转换模型的准确性和可靠性。
四、七参数坐标系转换参数求解七参数坐标系转换是在四参数的基础上,增加了三个旋转参数,其求解过程相对复杂,主要包括以下步骤:1. 建立转换模型:七参数转换模型可以表示为:ΔX = ΔX0 + (1 + l)ΔX1 - mΔY1 + nΔZ1 + TxΔY = ΔY0 + mΔX1 + (1 + l)ΔY1 - nΔZ1 + TyΔZ = ΔZ0 - nΔX1 + mΔY1 + (1 + l)ΔZ1 + Tz2. 参数求解:通过对应点对,运用复杂的数学方法,求解出l、m、n和Tx、Ty、Tz六个参数的值。