7参数、5参数、4参数
常用的七参数转换法和四参数转换法以及涉及到的基本测量学知识

常⽤的七参数转换法和四参数转换法以及涉及到的基本测量学知识原⽂:1.背景在了解这两种转换⽅法时,我们有必要先了解⼀些与此相关的基本知识。
我们有三种常⽤的⽅式来表⽰空间坐标,分别是:经纬度和⾼层、平⾯坐标和⾼层以及空间直⾓坐标。
2.经纬度坐标系(⼤地坐标系)这⾥我⾸先要强调:天⽂坐标表⽰的经纬度和⼤地坐标系表⽰的经纬度是不同的。
所以,同⼀个经纬度数值,在BJ54和WGS84下表⽰的是不同的位置,⽽以下我说的经纬度均指⼤地坐标系下的经纬度。
⼤地坐标系是⼤地测量中以参考椭球⾯为基准⾯建⽴起来的坐标系。
下⾯我跟⼤家⼤致谈谈其中涉及到的两个重要概念。
2.1⼤地⽔准⾯和⼤地球体地球表⾯本⾝是⼀个起伏不平、⼗分不规则的表⾯,这些⾼低不平的表⾯⽆法⽤数学公式表达,也⽆法进⾏运算,所以在量测和制图时,我们必须找⼀个规则的曲⾯来代替地球的⾃然表⾯。
当海洋静⽌时,它的⾃由⽔⾯必定与该⾯上各点的重⼒⽅向(铅垂直⽅向)成正交,我们把这个⾯叫做⽔准⾯。
但是,地球上的⽔准⾯有⽆数个,我们把其中与静⽌的平均海⽔⾯相重合的⽔准⾯设想成⼀个可以将地球进⾏包裹的闭合曲⾯,这个⽔准⾯就是⼤地⽔准⾯。
⽽被⼤地⽔准⾯包裹所形成的球体即为⼤地球体。
2.2地球椭球体由于地球体内部质量分布的不均匀,引起重⼒⽅向的变化,这个处处与重⼒⽅向成正交的⼤地⽔准⾯边成为了⼀个⼗分不规则的也不能⽤数学来表⽰的曲⾯。
不过虽然⼤地⽔准⾯的形状⼗分的不规则,但它已经是⼀个很接近于绕⾃转轴(短轴)旋转的椭球体了。
所以在测量和制图中就⽤旋转椭球来代替⼤地球体,这个旋转球体通常称地球椭球体,简称椭球体。
2.3常⽤⼤地坐标系不同坐标系,其椭球体的长半径,短半径和扁率是不同的。
⽐如我们常⽤的四种坐标系所对应的椭球体,它们的椭球体参数就各不相同:BJ54坐标系:属参⼼坐标系,长轴6378245m,短轴6356863,扁率1/298.3。
XIAN80坐标系:属参⼼坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101。
七参数四参数转化

七参数四参数转化七参数和四参数是地图投影参数的两种主要形式。
七参数转化为四参数意味着从包含更多参数的转换模型向包含更少参数的模型转换。
下面将详细介绍七参数和四参数的概念以及它们之间的转换方法。
1.七参数转换模型:七参数是指地图投影转换过程中需要考虑的七个参数,它们分别是平移X、平移Y、平移Z、旋转角度α、β、γ和尺度因子k。
这些参数用来描述两个坐标系之间的平移、旋转和尺度变换关系。
七参数转换模型的数学表达形式为:X' = X + tx + (-rz * Y) + (ry * Z) + dxY' = Y + rz * X + (-tx * Z) + dyZ' = Z + (-ry * X) + (tx * Y) + dz其中,(X', Y', Z')为转换坐标系中的坐标,在这个坐标系中,X轴指向东方,Y轴指向北方,Z轴指向上方。
而(X, Y, Z)为原始坐标系中的坐标,原始坐标系的坐标轴方向可能与转换坐标系不一致。
tx、ty、tz 为平移参数,表示坐标系之间的平移关系。
rx、ry、rz为旋转参数,表示坐标系之间的旋转关系。
dx、dy、dz为尺度参数,表示坐标系之间的尺度变换关系。
2.四参数转换模型:四参数是指地图投影转换过程中只需考虑的四个参数,它们分别是平移dx、dy、旋转角度θ和尺度因子m。
这些参数也用于描述两个坐标系之间的平移、旋转和尺度变换关系。
四参数转换模型的数学表达形式为:X' = m * (X * cosθ - Y * sinθ) + dxY' = m * (X * sinθ + Y * cosθ) + dy其中,(X', Y')为转换坐标系中的坐标,在这个坐标系中,X轴指向东方,Y轴指向北方。
而(X, Y)为原始坐标系中的坐标,原始坐标系的坐标轴方向可能与转换坐标系不一致。
dx、dy为平移参数,表示坐标系之间的平移关系。
七参数四参数转化

七参数四参数转化七参数和四参数是用来描述地球上任意两个坐标系之间的转换关系的参数模型。
七参数包括三个平移参数、三个旋转参数和一个尺度参数,而四参数则只包括三个平移参数和一个尺度参数。
七参数和四参数转化的目的是将一个坐标系中的坐标点转换到另一个坐标系中。
七参数转化可以通过四参数转化实现,只需将三个旋转参数置零即可。
而四参数转化无法通过七参数转化实现,因为缺少了旋转参数,因此只能适用于坐标系之间没有发生旋转的情况。
七参数转化的计算主要包括以下步骤:1.确定至少三个在不同坐标系下已知的控制点,记录它们在两个坐标系下的坐标。
2.根据所选的转换模型,建立转换方程组。
四参数模型的转换方程组包含三个平移参数和一个尺度参数,七参数模型的转换方程组还包含三个旋转参数。
3.根据转换方程组,利用已知控制点在两个坐标系下的坐标,求解出转换关系的参数。
四参数转化的计算相对简单,只需要进行平移和尺度的转换。
计算步骤如下:1.确定至少两个在两个坐标系下已知的控制点,记录它们在两个坐标系下的坐标。
2.假设两个坐标系之间的转换方程为:X' = s * X + dxY' = s * Y + dy其中,X和Y是原坐标系下的坐标,X'和Y'是目标坐标系下的坐标,s是尺度参数,dx和dy是平移参数。
3. 利用已知的两个控制点,可以得到两个以上的方程组,进行求解即可得到平移参数dx、dy和尺度参数s。
需要注意的是,七参数和四参数转化是近似转化,转换结果可能会有一定的误差存在。
因此,在进行坐标转化时应该尽量选择准确可靠的控制点,并使用合适的转换模型,以提高计算结果的精度。
总之,七参数和四参数转化是地理信息领域中常用的坐标转换方法,主要用于将不同坐标系下的坐标点进行转换。
通过确定关键的控制点,并利用已知的坐标点以及转换模型的方程,可以计算出转换关系的参数,实现坐标的转化。
七参数 四参数 高程拟合 适用范围

七参数四参数高程拟合适用范围在地理测量学领域,七参数和四参数的概念是常见且重要的。
这两种参数与高程拟合相关,主要用于地球表面的测量和建模。
本文将介绍七参数和四参数的定义、计算方法以及各自的适用范围。
一、七参数七参数是指用于地球表面精确测量的参数集合。
它由三个旋转参数(即绕X、Y和Z轴的旋转角度)、三个平移参数(即沿X、Y和Z 轴的平移距离)以及一个尺度因子参数组成。
这些参数可以用来将地球表面上的点从一个坐标系统转换到另一个坐标系统。
七参数的计算通常需要通过相关算法和数学模型来完成。
其中旋转参数和平移参数可以通过大地测量技术和测角仪等设备进行测量,而尺度因子参数可以通过大地水准测量和高程基准面来确定。
通过这些参数,可以对地球表面上的点进行准确的坐标转换和测量。
七参数适用范围广泛,主要用于大尺度地形测量、航空摄影测量、遥感影像处理等领域。
它能够解决地球表面局部变形、形变监测和地壳运动等问题,具有重要的实际应用价值。
二、四参数四参数是指用于地球表面近似测量的参数集合。
它由两个旋转参数(即绕Z轴的旋转角度和绕X轴的斜率角度)和两个平移参数(即沿X和Y轴的平移距离)组成。
四参数可以用来进行粗略的坐标转换和测量,尤其适用于地球表面小范围的测量和建模。
四参数的计算相对简单,通常可以通过简化的数学模型和算法来完成。
这些参数可以通过全球导航卫星系统(GNSS)和全球定位系统(GPS)等技术进行测量,也可以通过辅助设备和软件进行计算和调整。
四参数适用范围相对狭窄,主要用于地图制图、城市规划、地理信息系统(GIS)等领域。
它能够满足一般性的坐标转换和测量需求,具有简便、快速和经济的特点。
三、高程拟合高程拟合是指根据一定的模型和算法,对地球表面上的高程数据进行拟合和估算的过程。
在地理测量学中,高程拟合通常与坐标转换和大地水准测量紧密相关。
高程拟合的常用模型包括二次曲线拟合、三次样条插值和贝塞尔曲线拟合等。
这些模型基于地球表面的几何性质和地域特征,通过最小二乘法和拟合优度等统计指标,对高程数据进行曲线拟合和插值处理,从而得到地形表面的高程模型。
七参数、四参数的坐标转换与应用

坐标转换的应用浙江省地质调查院 浙江 萧山 王雪春 fidream@王解先1,2,施一民31 同济大学测量系,上海(200092)2 现代工程测量国家测绘局重点实验室,上海(200092)摘要:GPS定位技术已经被广泛应用,但由于GPS观测量是基于以地球质心为原点的空间直角坐标系,而对于采用 5 4北京坐标或者其他地方坐标而言,就需要解决如何将WGS84坐标转换为 5 4北京坐标或者其他地方坐标的转换问题。
关键词:换带计算,坐标转换,七参数,四参数,Coord前言我们在测绘,地质工作中,常常会遇到不同坐标系统间,坐标转换的问题。
目前国内常见的转换有以下3种:1,大地坐标(BLH)对平面直角坐标(XYZ)的转换;2,北京54对西安80及WGS84坐标系的相互转换;3,北京54对地方坐标的转换。
常用的方法有三参数法、四参数法和七参数法。
本文结合坐标转换软件COORD对上述三种情况和转换方法做详细的描述!1,大地坐标(BLH)对平面直角坐标(XYZ)的转换该类型的转换常用于坐标换带计算!对于这种转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。
椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。
对于中央子午线的确定有两种方法,一是根据带号与中央子午线经度的公式(3度带 L=3n, 6度带L=6n-3)计算。
在3度带中是取平面直角坐标系中Y坐标的前两位乘以3,即可得到对应的中央子午线的经度。
如x=3321006m ,y=40425785m,则中央子午线的经度L=40*3=120度。
同样在6度带中有坐标x=3312029 y= 20689300则计算中央子午线的经度L=20*6-3 =117度。
另一种方法是根据大地坐标经度,如已知该点的经度为119.1254因其处于3度带的40带(118.5~121.5度)则中央子午线为120度。
高斯-克吕格投影分带各中央子午线与带号的对应关系如图:确定参数之后,可以用软件进行转换,以下以坐标转换软件COORD GM说明如何将一组6度带的XYZ坐标转化为当前坐标系统下的(BLH)及3度带的(XYZ)坐标。
坐标转换七参数和四参数

坐标转换七参数和四参数哎呀,今天咱们聊聊坐标转换,七参数和四参数这些小东西。
听起来有点复杂,但其实就像做饭,配料多了也能变出美味的菜来。
先说说四参数,顾名思义,就是四个参数。
简单说,四参数主要是用来描述平面坐标系统之间的转换,简单易懂,不像那数学书里那么死板。
你可以把它想象成换了一个口味的披萨,底儿是一样的,配料换了几样,味道就完全不同了。
四参数包括平移、旋转,还有尺度变化,就像把你家附近的路换成了另一种风格,周围的建筑可能长得不一样,但你还是能找到回家的路。
再来说说七参数,这可就有点意思了。
七参数的转换主要应用在更复杂的空间里,比如说地理坐标的转换。
这可比四参数复杂多了,像是煮一锅大杂烩,里头的材料五花八门,想要和谐共处可不是那么简单。
七参数除了包含四参数的那些家伙,还加上了三个额外的角度,听上去就像是加了几道菜,整个丰盛了不少。
这几个参数帮助我们在三维空间中完成更精细的调整。
想象一下,走在大街上,看到的每一栋楼、每一条街,都是通过这些参数精确定位的。
你瞧,坐标转换就像在地图上划了一道神奇的线,帮你找到最短的路。
做坐标转换就像解一道谜题,参数越多,谜底就越复杂。
但一旦你摸清了这套规则,恭喜你,基本上就可以轻松驾驭各种坐标系统了。
就好比你掌握了几种不同的方言,随时都能和不同地方的朋友畅聊。
听起来是不是觉得有点意思?每一个参数都在默默地为你服务,像个看不见的助手,真的是太酷了。
说到这里,很多小伙伴可能会觉得这不就是数学吗?不,我想说,坐标转换其实也可以很有趣。
想象一下,咱们在地图上标记自己的位置,突然发现自己在一个新地方,心里那种既紧张又兴奋的感觉,就像打开了一扇新世界的大门。
转换坐标的过程,就像是在探索未知的旅程,虽然有时候会迷路,但每一次迷路都是一次成长的机会。
这就像人生,曲折而精彩,没错吧。
四参数和七参数之间的选择,跟你在超市挑水果似的。
想要更简单快捷的,就选四参数;要是想要更加精准复杂的,那七参数就是你的不二之选。
7参数、5参数、4参数

参数问题一直是测量方面最大的问题,我简单的解释一下,首先说七参,就是两个空间坐标系之间的旋转,平移和缩放,这三步就会产生必须的七个参数,平移有三个变量Dx,Dy,DZ;旋转有三个变量,再加上一个尺度缩放,这样就可以把一个空间坐标系转变成需要的目标坐标系了,这就是七参的作用。
如果说你要转换的坐标系XYZ三个方向上是重合的,那么我们仅通过平移就可以实现目标,平移只需要三个参数,并且现在的坐标比例大多数都是一致的,缩放比默认为一,这样就产生了三参数,三参就是七参的特例,旋转为零,尺度缩放为一。
四参是应用在两个平面之间转换的,还没有形成统一的标准,说的有点乱,如果还是不明白可以给我留言。
希望有帮助。
七参数是由一个坐标系统向另一个坐标系统转换所用参数,三个旋转参数RX、RY、RZ,三个平移参数DX、DY、DZ,一个尺度比参数K。
在GPS应用中使用同一空间直角坐标系,因此XYZ三个方向上重合且坐标比例一致,因此仅用三个平移参数DX、DY、DZ便可进行坐标转换,也称为三参数,另外,WGS84所用椭球与北京54、西安80所用椭球不一致,因此额外多出两个参数DA、DF,DA为两种坐标系统椭球长半轴差值,DF为两种坐标系统椭球扁率的差值,因此,在使用GPS将WGS84经纬度坐标转为北京54或西安80坐标时,实际使用DA、DF、DX、DY、DZ,也称为五参数。
1.2 四参数操作:设置→求转换参数(控制点坐标库)四参数是同一个椭球内不同坐标系之间进行转换的参数。
在工程之星软件中的四参数指的是在投影设置下选定的椭球内 GPS 坐标系和施工测量坐标系之间的转换参数。
工程之星提供的四参数的计算方式有两种,一种是利用“工具/参数计算/计算四参数”来计算,另一种是用“控制点坐标库”计算。
需要特别注意的是参予计算的控制点原则上至少要用两个或两个以上的点,控制点等级的高低和分布直接决定了四参数的控制范围。
经验上四参数理想的控制范围一般都在 5-7 公里以内。
关于四参数和七参数的几点认识

关于四参数和七参数的几点认识四参数和七参数是常见的大地测量中的参数化模型。
其中四参数模型是指将坐标转换为平移和比例尺的线性变换模型,而七参数模型是在四参数模型的基础上增加了三个旋转参数。
以下是对四参数和七参数的几点认识。
首先,四参数模型是最简单的参数化模型之一,也是最常用的模型之一、它通过平移和比例尺的线性变换来表示坐标转换。
其中平移参数表示了两个坐标系统之间的原点之间的偏移,比例尺参数表示了两个坐标系之间的比例尺关系。
四参数模型能够处理一些简单的坐标转换问题,例如在同一区域进行坐标转换或者进行小范围的变形分析。
其次,七参数模型是在四参数模型的基础上增加了三个旋转参数。
这些旋转参数用于表示两个坐标系之间的旋转关系。
七参数模型相对于四参数模型具有更强的灵活性和适用性。
它能够处理更复杂的坐标转换问题,例如在大范围区域进行坐标转换或者进行形变分析。
七参数模型能够更准确地描述坐标系之间的形变关系。
另外,四参数和七参数模型都是线性的参数化模型。
这意味着在这些模型中,参数之间的关系是线性的,可以通过最小二乘法来进行参数估计。
通过已知的控制点坐标和目标点坐标,可以通过最小二乘法估计出最优的参数解。
这些参数解可以用于实际的坐标转换或者形变分析中。
此外,对于四参数和七参数的估计,通常需要有足够数量和良好分布的控制点。
控制点是已知其在不同坐标系下的坐标的点,可以通过实地观测或者其他测量手段得到。
控制点的数量和分布对于参数估计的精度和可靠性至关重要。
通常来说,控制点的数量越多,分布越均匀,参数估计的精度越高。
最后,四参数和七参数模型是大地测量中常用的模型之一,广泛应用于各种工程项目和科学研究中。
它们可以用于坐标转换、形变分析、地图投影等各种应用场景。
在实际应用中,需要根据具体的需求和问题选择适合的参数化模型,并且合理设置控制点以获得准确的参数估计和结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数问题一直是测量方面最大的问题,我简单的解释一下,首先说七参,就是两个空间坐标系之间的旋转,平移和缩放,这三步就会产生必须的七个参数,平移有三个变量Dx,Dy,DZ;旋转有三个变量,再加上一个尺度缩放,这样就可以把一个空间坐标系转变成需要的目标坐标系了,这就是七参的作用。
如果说你要转换的坐标系XYZ三个方向上是重合的,那么我们仅通过平移就可以实现目标,平移只需要三个参数,并且现在的坐标比例大多数都是一致的,缩放比默认为一,这样就产生了三参数,三参就是七参的特例,旋转为零,尺度缩放为一。
四参是应用在两个平面之间转换的,还没有形成统一的标准,说的有点乱,如果还是不明白可以给我留言。
希望有帮助。
七参数是由一个坐标系统向另一个坐标系统转换所用参数,三个旋转参数RX、RY、RZ,三个平移参数DX、DY、DZ,一个尺度比参数K。
在GPS应用中使用同一空间直角坐标系,因此XYZ三个方向上重合且坐标比例一致,因此仅用三个平移参数DX、DY、DZ便可进行坐标转换,也称为三参数,另外,WGS84所用椭球与北京54、西安80所用椭球不一致,因此额外多出两个参数DA、DF,DA为两种坐标系统椭球长半轴差值,DF为两种坐标系统椭球扁率的差值,因此,在使用GPS将WGS84经纬度坐标转为北京54或西安80坐标时,实际使用DA、DF、DX、DY、DZ,也称为五参数。
1.2 四参数
操作:设置→求转换参数(控制点坐标库)
四参数是同一个椭球内不同坐标系之间进行转换的参数。
在工程之星软件中的四参数指的是在投影设置下选定的椭球内 GPS 坐标系和施工测量坐标系之间的转换参数。
工程之星提供的四参数的计算方式有两种,一种是利用“工具/参数计算/计算四参数”来计算,另一种是用“控制点坐标库”计算。
需要特别注意的是参予计算的控制点原则上至少要用两个或两个以上的点,控制点等级的高低和分布直接决定了四参数的控制范围。
经验上四参数理想的控制范围一般都在 5-7 公里以内。
四参数的四个基本项分别是:X 平移、Y 平移、旋转角和比例。
从参数来看,
这里没有高程改正,所以建议采用“控制点坐标库”来求取参数,而根据已知点个数的不同所求取的参数也会不同,具体有以下几种。
1.2.1 四参数+校正参数:所需已知点个数:2个 1.2.2 四参数+高程拟合
GPS 的高程系统为大地高(椭球高),而测量中常用的高程为正常高。
所以 GPS 测得的高程需要改正才能使用,高程拟合参数就是完成这种拟和的参数。
计算高程拟和参数时,参予计算的公共控制点数目不同时计算拟和所采用的模型也不一样,达到的效果自然也不一样。
高程拟后有三种拟合方式:
a.高程加权平均:所需已知点个数:3个
b.高程平面拟合:所需已知点个数:4 ~ 6个
c.高程曲面拟合:所需已知点个数:7个以上二、七参数
操作:工具→参数计算→计算七参数所需已知点个数:3个或3个以上
七参数的应用范围较大(一般大于 50 平方公里),计算时用户需要知道三个已知点的地方坐标和 WGS-84 坐标,即 WGS-84 坐标转换到地方坐标的七个转换参数。
注意:三个点组成的区域最好能覆盖整个测区,这样的效果较好。
七参数的格式是,X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比)。
七参数的控制范围和精度虽然增加了,但七个转换参数都有参考限值,X、Y、Z 轴旋转一般都必须是秒级的(工程之星中限值为小于10秒);X、Y、Z 轴平移一般小于 1000。
若求出的七参数不在这个限值以内,一般是不能使用的。
这一限制还是比较苛刻的,因此在具体使用七参数还是四参数时要根据具体的施工情况而定。
三、总结
使用四参数方法进行 RTK的测量可在小范围(20-30 平方公里)内使测量点的平面坐标及高程的精度与已知的控制网之间配合很好,只要采集两点或两点以上的地方坐标点就可以了,但是在大范围(比如几十几百平方公里)进行测量的时候,往往转换参数不能在部分范围起到提高平面和高程精度的作用,这时候就要使用七参数方法,具体方法在下面介绍。
首先需要做控制测量和水准测量,在区域中的已知坐标的控制点上做静态控制,然后再进行网平差之前,在测区中选定一个控制点 A做为静态网平差的 WGS84 参考站。
使用一台静态仪器在该点固定进行 24 小时以上的单点定位测量(这一步在测区范围相对较小,精度要求相对低的情况下可以省略),然后再导入到软件里将该点单点定位坐标平均值记录下来,作为该点的 WGS84 坐标,由于做了长时间观测,其绝对精度应该在 2米左右,然后对控制网进行三维平差,需要将 A点的 WGS84 坐标作为已知坐标,算出其他点位的三维坐标,但至少三组以上,输入完毕后计算出。