最短路径问题课件

合集下载

《勾股定理的应用-最短路径问题》课件

《勾股定理的应用-最短路径问题》课件
举一反三
解:经分析,有三种路径均最短。如图所示在Rt△AOB中,AB²=2²+1²=5答:最短路程为cm.
1、若蚂蚁是沿一个长、宽、高分别为5、3、4的长方体的顶点A外表面爬到顶点B呢?爬行路径唯一吗?最短路径是多长?
拓展思考
拓展思考
2、若已知无盖圆柱体高为12 cm,底面半径为3cm,π取3,圆柱下底面点A一只蚂蚁绕圆柱侧面2圈爬到点B处,问蚂蚁爬行的最短路程是多少?
2、已知无盖圆柱体高为12cm,底面周长为12cm,圆柱下底面点A有一只蚂蚁,它想吃点A对面圆柱外侧点B处的食物,蚂蚁爬行的最短路程是多少?
6
A
A`
B
小试牛刀
解:如图,在圆柱的侧面展开图中AA`=6,A`B=12-4=8∴在RT△AA`B中AB²=6²+8²∴AB=10答:最短路程为10cm.
3、若已知无盖圆柱体高为12cm,底面周长为20cm,圆柱下底面的点A有一只蚂蚁,它想吃到与点A相对的圆柱内壁点B处的食物,蚂蚁爬行的最短路程是多少?
第一章 勾股定理
3. 勾股定理的应用
--最短路径问题
两点之间,线段最短.
1、在一个平面内,如果一只蚂蚁要从A点爬到B点,怎么爬路径最短?
情境引入
A
B

2、在一个无盖圆柱下底面的点A有一只蚂蚁,它想吃到与点A相对的点B处的食物,蚂蚁怎么爬路程最短?
情境引入

合作探究
1、小组讨论
小组为单位讨论蚂蚁爬行最短路线。并在本组的圆柱上用不同颜色的彩色笔画出蚂蚁爬行的路径。时间:两分钟
∴AB²=___________
πr
合作探究
1、已知无盖圆柱体高为12cm,底面半径为3cm,π取3,圆柱下底面的点A有一只蚂蚁,它想吃到与点A相对的点B处的食物,蚂蚁爬行的最短路程是多少?

最短路径问题 课件

最短路径问题 课件
课题学习 最短路径问题
知识点1:两点在直线异侧时的最短路径问题 【例1】 如图1-13-30-1,在直线l上找一点P,使得 PA+PB的和最小.
解:答图13-30-1,点P即为所求.
知识点2:两点在直线同侧时的最短路径问题 【例2】 如图1-13-30-3,已知直线l和l外两点A,B, 点A,B在l同侧,求作一点P,使点P在直线l上,并且 使PA+PB最短.
解:如答图13-30-6,作点A的对称点A′, 连接A′B,与直线l相交于点C,连接AC, 点C即为所求.
6. 如图1-13-30-9,正方形网格中每个小正方形边 长都是1.在直线l上找一点P,使PB+PC的值最小.
略.
7. 如图1-13-30-10,在平面直角坐标系中,点 A(4,4),B(2,-4).在y轴上求作一点P,使 PA+PB的值最小.(不写作法,保留作图痕迹)
略.
8. 如图1-13-30-11,∠XOY内有一点P,请在射线OX上 找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.
解:如答图13-30-7,作点P关于OX对称的点 P1,关于OY对称的点P2,连接P1P2,交OX, OY于点M,N,则M,N两点即为所求.
9. 如图1-13-30-12,在△ABC中,AB=AC,AD是BC边 上的高,P是AB边上的一点,请在高AD上找一点E, 使得△PEB的周长最短.
解:作图略, 作点A关于直线l的对称点A′, 连接A′B与直线l交于点P, 则P点即为所求.
4. 如图1-13-30-7,直线l旁有两点A,B,在直线上 找一点CA,B两点的距离相等.
解:如答图13-30-5,点C,点D即为所求.
5. 如图1-13-30-8,l为某河流的南岸线,一天傍晚 某牧童在A处放牛,欲将牛牵到河边饮水后再回到家 B处,牧童想以最短的路程回家.请你在找中画出牛 饮水C的位置.

人教版数学八年级上册13.4 课题学习 最短路径问题课件(共27张PPT)

人教版数学八年级上册13.4  课题学习 最短路径问题课件(共27张PPT)

A∙ 请小组讨论证明这个结论吧!
A′
M′ a M
b
N′
N
∙B
13.4 最短路径问题
证明
证明:在直线b上另外任意取一点N′,过点N′作N′M′⊥a,垂足为M′,
连接AM′,A′N′,N′B.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′. 即A′N+NB+MN<A′N′+BN′+M′N′. ∴AM+NB+MN<AM′+BN′+M′N′, 即AM+NB+MN的值最小.
13.4 最短路径问题
解:∵点B 和 点C 关于直线 AD 对称, ∴BF = CF . 求BF + EF 最小值,只需 CF + EF 最小. 连接EC,线段 CE 的长即为 BF + EF 的最 小值. ∵D、E 是等边△ABC 中 BC、AB 的中点, ∴CE = AD = 5. ∴BF+EF的最小值为5.
路程最短? C
A
D
A1
A C
C1 D1 E
E1 B B1
C1 B
解:如图,作 AA1⊥CD,且 AA1 = 河宽,作 BB1⊥CE,且 BB1 = 河宽, 连接 A1B1,与内河岸相交于 E1,D1. 过 E1,D1作河岸的垂线段 EE1 、 DD1,即为桥.
13.4 最短路径问题
13.4 最短路径问题
学习目标 1. 利用轴对称、平移等变化解决简单的最短路径问题. 重点
2. 体会图形的变化在解决最值问题中的作用,感受由实际问题转化为
数学问题的思想. 难点

最短路径问题 ppt课件

最短路径问题 ppt课件

12
图论及其应用 作业 用Dijkstra算法求出下图中从顶点a到其它所有 顶点的最短路径及及长度。
13
图论及其应用
有向图中求最短路径的Dijkstra算法
设Sj是带权有向图G中自顶点1到顶点j的最短有向路的长度 步骤1:置P={1},T={2,3,…,n}且S1=0,Sj=w1j, j=2,3,…,n 。 步骤2:在T中寻找一点k,使得Sk=min{Sj},置P=P{k}, T=T- {k}。若T=,终止;否则,转向步骤3。 步骤3:对T中每一点j,置Sj=min {Sj ,Sk+ wkj},然后转向步 骤2。 算法经过n-1 次循环结束。
6
1-6-8-B
6-8-B
13
10
5
图论及其应用
指定点到其它所有点的最短路径
解决这一问题最著名的方法是 Dijkstra算法,这个算法是由荷 兰计算机科学教授Edsger W.Dijkstra在1959年提出的。 他在1972年获得美国计算机协 会授予的图灵奖,这是计算机 科学中最具声望的奖项之一。
最终,起点上方的最短路线及权值即为起点到终点的最 短路线及长度。
3
图论及其应用
例 使用回溯法求下图中结点1到结点10的最短路径
2-6-9-10 600
1-4-6-9-10 650
4-6-9-10 500
6-9-10
300
9-10
100 5-8-10
400
8-10
150
3-5-8-10 600
7-8-10 275
定义2 已知矩阵A=(aij)m n ,B =(bij)mn,规定C=AB=(dij)mn,
其中dij=min(aij, bij)

13.4 课题学习 最短路径问题 课件(共15张PPT)人教版初中数学八年级上册

13.4 课题学习 最短路径问题   课件(共15张PPT)人教版初中数学八年级上册

迁移应用
3.如图,点P是∠AOB内任意一点,点M和点N分别是射线OB和射线OA 上的动点,当△PMN的周长为最小时,画出点M,N的位置.
B P'
M P
O
N
A
P''
解:如图所示,点 M,N 即为所求
B
M
P
O
A N
课后延伸
1.课本P93,第15题 2.收集最短路径的其他模型
人教版八年级数学第十三章《轴对称》
课题学习—最短路径问题
情境引入
古从军行 唐·李颀
经验唤醒
如图所示,请规划从A地到B地最近的路线?为什么 这条路线最近?
A
B
AB即为最短路线,因为两点之间,线段最短
探究一
问题情境1
图形
将军从烽火台到河边饮马 在这个情境中我们 再回到营地,饮马点在什么位 分别把烽火台,营 置,可使将军所走的路径最短? 地,河流抽象成哪
种几何图形?
A. 点 B.线
A
l B
最短路径作法
直线异侧 “两定点”
连定点 得最短
A
l P
B
两点之间 线段最短
探究二
问题情境2
将军从烽火台到河边 饮马再回到营地,饮马点 在什么位置,可使将军所 走的路径最短?
图形
我们可以把情境 2抽象成怎样的几何 图形?
最短路径作法
直线同侧“两定点”
作对称 化折为直得最短
∴AM1+M1N1+BN1=AA1+A1N1+BN1 在△A1N1B中
因为A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN. ∴AM +MN+BN为最短路径.

《最短路径问题》课件

《最短路径问题》课件

参考文献
• 算法导论 • 计算机算法设计与分析 • 图解算法
《最短路径问题》PPT课 件
# 最短路径问题PPT课件
介绍最短路径问题的定义和概念,以及为什么最短路径问题在实际生活中很 重要。 同时,探讨最短路径问题的基本性质。
最短路径的求解
1
暴力算法
枚举所有路径并找到最短路径,但随着
Dijkstra算法
2
节点增多,复杂度呈指数级上升。
介绍算法的原理和步骤,通过不断更新
距离表找到最短路径。
3
Floyd算法
介绍算法的原理和步骤,通过动态规划 计算最短路径。
最短路径问题的应用
铁路、公路、航空、航 海
路线规划在交通行业中的重 要性和应用。
互联网中的路由算法
讲解互联网通信中使用的最 短路径算法。
生命科学领域的基因测 序和蛋白质分析
如何利用最短路径问题的变种
任意两点之间的最短路径问题
探讨在图中找到任意两点之间的最短路径。
带负权边的最短路径问题
介绍具有负权边的图中求解最短路径问题的方法。
一般图的最短路径问题
分析在一般图中求解最短路径的挑战和方法。
更多变种问题的介绍
介绍其他类型的最短路径问题及其应用。
总结
总结最短路径问题的基本概念,分析各种算法的优缺点及适用范围。 同时,展望最短路径问题的未来发展方向。

课件_人教版数学八年级上册1 最短路径问题优秀精美PPT课件

课件_人教版数学八年级上册1 最短路径问题优秀精美PPT课件

A
B
于点C. 则点C 即为所求.
C
l
你能用所学的知识证明AC +CB最短吗?
B'
证明:如图,在直线l 上任取一点C′(与点C 不
重合),连接AC′,C′B,C′B′.
由轴对称的性质知,
CB =CB′,C′B=C′B′.
∴ AC +C B= AC +C B′= AB′,
AC′+C′B= AC′+C′B′.
A
在△AB′C′中,
·
AB′<AC′+C′B′, ∴ AC +CB<AC′+C′B.
C′ C
B
·
l
即 AC +CB 最短.
B′
问 回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?
利用了轴对称的有关知识, 把两点在直线同侧问题转化为 两点在直线异侧问题。从而用 “两点之间,线段最短”
2.连接AE交河对岸与点M,
则点M为建桥的位置,MN为所建的桥。
证明:由平移的性质,得 BN∥EM 且BN=EM,
MN=CD,BD∥CE, BD=CE,
所以A到B地的路程为:AM+MN+BN=AM+MN+EM=AE+MN,
若桥的位置建在CD处,连接AC.CD.DB.CE, 则A到B地的路程为: AC+CD+DB=AC+CD+CE=AC+CE+MN,
13.4课题学习 最短路径问题 根据:两点之间线段最短.
AC+CD+DB=AC+CD+CE=AC+CE+MN,
∴ AC +CB<AC′+C′B.

新人教版八年级数学上册《最短路径问题》精品课件(共15张PPT)

新人教版八年级数学上册《最短路径问题》精品课件(共15张PPT)
13.4 课题学习 最短路径问题
1.学会轴对称变换知识的应用,提高解决实际问题 的能力.
2.通过独立思考,合作探究,学会求最值问题. 3.感受数学在实际生活中的巨大作用,享受成功学 习的乐趣.
重点:应用轴对称解决实际问题. 难点:如何应用轴对称解决实际问题.
阅读课本P85-87页内容,了解本节主要内容.
探究二:造桥选址问题中的最短路径问题
3.如图,A和B两地在一条河的两岸,现要在河上造 一座桥MN,桥造在何处可使从A到B的路径AMNB最短? (假设两岸是平行的直线,桥要与河垂直)
A
C
例:如图所示,点A是货运总部,想在公路m上建一
个分部B,在公路n上建一个分部C,要使AB+BC+CA最小,
应如何建?
l CC A’
解(:1)作AB的中垂线交l于点C,如图. (2)如图.
A1 B
C
解:如图所示,B、C为两个加A油2 站的位置.
本课时学习了生活中的最短路径可以转化 为数学中最值问题.
垂线段线段ຫໍສະໝຸດ 如图,牧马人从A地出发,到一条笔直的河边l饮马, 然后到B地,牧马人到河边的什么地方饮马,可使所走 的路径最短?
探究一:在直线上找一点,使它到直线外两点距离和最小
1.点A、B分别是直线l异侧的两个点,如何在l上找 到一个点,使得这个点到点A、点B的距离的和最短.
2.由上面情景导入,当A、B两点在直线l的同侧时, 又如何求解.
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据:两点之间线段最短.
引入新知
引言: 前面我们研究过一些关于“两点的所有连线中,线 段最短”、“连接直线外一点与直线上各点的所有线段 中,垂线段最短”等的问题,我们称它们为最短路径问 题.现实生活中经常涉及到选择最短路径的问题,本节 将利用数学知识探究数学史中著名的“将军饮马问题”.
探索新知
问题1 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题:
-最短路径问题课件
如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?
两点之间,线段最短
C
① ②
D
E

A
B
F
(Ⅰ)两点在一条直线异侧 已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。
连接AB,线段AB与直线L的交点P ,就是所求。 P
思考??? 为什么这样做就能得到最短距离呢?
若直线l 上任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小.
A · C′
C
B ·
l
B′
探索新知
追问2 回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?
A · C′
C
B ·
l
B′

M
1. 如图,A.B两地在一条河的两岸,现要在河上建一座桥MN, 桥造在何处才能使从A到B的路径AMNB最短?(假设河的两
A· M
C
N D E B
(Ⅲ)一点在两相交直线内部 已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,
使三角形周长最小.
分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 D B C E
(Ⅲ)一点在两相交直线内部
已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形, 使三角形周长最小.
(3)现在的问题是怎样找出使两条线段长度之和为最 短的直线l上的点.设C 为直线上的一个动点,上 面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图).
A C
B l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
A · C′
C
B ·
l
B′
探索新知
问题3 你能用所学的知识证明AC +BC最短吗?
证明:在△AB′C′中, AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′. 即 AC +BC 最短.
A · C′
C
B ·
l
B′
探索新知
追问1 证明AC +BC 最短时,为什么要在直线l 上 任取一点C′(与点C 不重合),证明AC +BC <AC′ +BC′?这里的“C′”的作用是什么?
追问1 对于问题2,如何 将点B“移”到l 的另一侧B′ 处,满足直线l 上的任意一点 C,都保持CB 与CB′的长度 相等?
B · A ·
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
追问2 你能利用轴对称的 有关知识,找到上问中符合条 件的点B′吗?

B ·
l
探索新知
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,
B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;
探索新知
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
分别作点A关于OM,ON的对称点A′,A″;连接A′,A″, 分别交OM,ON于点B、点C,则点B、点C即为所求
谢谢
B · A ·
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
作法: (1)作点B 关于直线l 的对称
点B′; (2)连接AB′,与直线l 相交
于点C. 则点C 即为所求.
A ·
C
B ·
l
B′
探索新知 问题3 你能用所学的知识证明AC +BC最短吗?
A ·
CB ·l NhomakorabeaB′
探索新知
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不 重合),连接AC′,BC′,B′C′.
由轴对称的性质知, BC =B′C,BC′=B′C′. ∴ AC +BC
= AC +B′C = AB′, AC′+BC′
= AC′+B′C′.
岸是平行的直线,桥要与河垂直)
N E
B
作法:1.将点B沿垂直与河岸的方向平移一个河宽到E, 2.连接AE交河对岸与点M,
则点M为建桥的位置,MN为所建的桥。 证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE, 所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD处,连接AC.CD.DB.CE, 则AB两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN, 即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD处,AB两地的路程最短。
从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短?
B A
l
探索新知
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马 问题”.
你能将这个问题抽象为数学问题吗?
B A
l
探索新知
追问1 这是一个实际问题,你打算首先做什么? 将A,B 两地抽象为两个点,将河l 抽象为一条直 线.
相关文档
最新文档