电力电子 PWM控制技术
PWM控制的基本原理及相关概念

PWM控制的基本原理及相关概念PWM(Pulse Width Modulation)即脉宽调制,是一种常用的控制技术,广泛应用于电力电子、自动控制和通信等领域。
它通过调整脉冲信号的脉宽来实现对电路、设备或系统的精确控制。
PWM控制的基本原理是利用高电平和低电平的脉冲信号的占空比(即高电平时间与周期时间的比值)来控制输出信号的幅度、频率和相位等参数。
脉冲信号的高电平部分被称为脉宽,低电平部分称为空闲时间,整个脉冲周期的时间为周期。
脉冲信号的频率是指单位时间内脉冲信号的周期数。
PWM控制可以通过改变脉冲信号的占空比来调节输出信号的平均值,从而实现对电路或设备的控制。
占空比越大,输出信号平均值越大,反之则越小。
通过周期性的高低电平的切换,PWM能够提供多种输出级别,具有高效、精确度高等优点。
在PWM控制中,常用的术语包括周期(T)、频率(F)、占空比(Duty Cycle)、调制周期(Modulation Period)等概念。
周期是指脉冲信号一个完整的周期所需要的时间,频率是指单位时间内脉冲信号的周期数。
占空比是指高电平时间与周期时间的比值,通常使用百分比表示。
调制周期是指脉冲信号的一个周期中所包含的波形个数。
例如,当频率为10kHz的PWM信号的调制周期为32,表示每个脉冲周期内有32个波形。
PWM控制的优点之一是其宽广范围的应用。
它可以控制电机的转速、大功率的电磁阀、LED的亮度、音频放大器的音量等。
PWM还可以实现数字-模拟转换(DAC)功能,将数字信号转换为模拟信号输出。
此外,PWM信号的幅度、频率和相位可以通过改变调制器的控制参数来实现,具有很高的灵活性。
PWM控制的实现方式有多种,常用的方法包括基于定时器的PWM控制、比较器型PWM控制、电流型PWM控制等。
其中,基于定时器的PWM控制是最常见的方法。
它通过定时器的计数和比较功能产生PWM信号,可以根据需求来设定周期、占空比等参数,从而实现对输出信号的控制。
电力电子技术中的PWM控制器故障排除与维修方法

电力电子技术中的PWM控制器故障排除与维修方法PWM(脉宽调制)控制器是电力电子技术中常用的一种控制装置,广泛应用于变频器、电机驱动器、直流电源和逆变器等电力设备中。
然而,在实际应用中,PWM控制器也可能出现故障,影响设备的正常运行。
本文将针对PWM控制器的故障排除与维修方法进行探讨。
一、故障排除方法1. 确认故障现象在开始故障排除之前,我们首先需要确认故障现象,例如设备出现异常电流、无输出或者无法启动等问题。
对于PWM控制器的故障排除,首先要观察其输出波形是否正常,判断故障点所在。
2. 检查电路连接PWM控制器的故障有时候可能是由于电路连接不良引起的,因此需要仔细检查电路的连接情况。
检查电源线、信号线、地线等连接是否牢固,是否有松动或者接触不良的情况。
3. 检查电源供应在PWM控制器的正常工作中,电源供应起着至关重要的作用。
因此,我们需要检查电源输入是否正常,包括电压、电流和频率等参数。
另外,还需要检查电源线是否受到干扰或者噪声的影响,如果有的话需要采取相应的屏蔽措施。
4. 检查控制信号PWM控制器通过接收控制信号来调节输出波形的占空比,因此在故障排除过程中需要检查控制信号是否正确。
可以通过示波器或者逻辑分析仪等工具对控制信号进行监测,确保其频率和占空比等参数符合要求。
5. 检查保护电路PWM控制器通常设有过载保护、过流保护、过温保护等功能,以保证设备的安全运行。
在故障排除时,需要检查这些保护电路是否正常工作,是否触发了保护动作。
二、维修方法1. 更换故障元件当确认了PWM控制器的故障点后,可以根据具体情况选择更换故障元件。
例如,如果PWM控制器的驱动芯片损坏了,可以尝试更换新的驱动芯片;如果PWM控制器的电源模块损坏了,可以更换相应的电源模块。
2. 修复电路板如果PWM控制器的故障是由于电路板的损坏引起的,可以尝试修复电路板。
修复电路板的具体方法有很多,可以根据具体情况选择合适的修复方式,例如焊接、替换元件等。
PWM 控制技术

图15 SPWM 的谐波分析
5.7 异步调制和同步调制
异步调制 载波和信号波不保持同步的调制方式称为异步调制 。 保持载波频率fc固定不变,因而当调制波频率fr变化时,载波比N是变化的。 在信号波的半个周期内,PWM的脉冲个数不固定,相位也不固定,正负半 周期的脉冲可能不对称,半周期内前后1/4周期的脉冲也可能不对称。 同步调制 载波比N等于常数,并在变频时使载波和信号波保持同步的方式称为同步 调制。 三相SPWM逆变电路中,通常公用一个三角载波,且取载波比N为3的整数 倍,以使三相输出波形严格对称,为了保证双极性调制时每相波形的正、 负半波对称,N应取奇数。 信号波一个周期内输出的脉冲数是固定的,脉冲相位也是固定的。 分段同步调制 将异步调制和同步调制结合起来,成为分段同步调制方式。 在不同的频率段采用异步,在同一频段采用同步,结合了异步和同步的优 点。
V1m =
Vdc ×m 2
FFT window: 2 of 6 cycles of selected signal 100 50 0 -50 -100
0.07
0.075
0.08 0.085 Time (s)
0.09
0.095
0.07
0.075
0.08 0.085 Time (s)
0.09
0.095
Fundamental (60Hz) = 158.7 , THD= 137.34%
图3 SPWM的原理
5.3 SPWM 控制方法
计算法:实时在线计算困难 调制法(三角波交点法) 把希望输出的波形作为调制波, 等腰三角形作为载波,通过对载 波的调制得到希望输出的PWM波 形。 1)单极性调制:三角波载波在半个 周期内只在1个方向变化,所得 的PWM波形也只能在单极性范围 内变化。 优点:电压电流波动小,开关器 件的电压、电流应力小 缺点:生成困难 2)双极性调制:三角波载波在半个 周期内在正负2个方向变化,所 得的PWM波形也在2个方向变化。 缺点:电压电流波动较大,器件 缺点 电压、电流应力较大 优点:生成容易 优点
《电力电子技术》(第六七八章)习题答案

第6章 PWM 控制技术1.试说明PWM 控制的基本原理。
答:PWM 控制就是对脉冲的宽度进行调制的技术。
即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
在采样控制理论中有一条重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,冲量即窄脉冲的面积。
效果基本相同是指环节的输出响应波形基本相同。
上述原理称为面积等效原理以正弦PWM 控制为例。
把正弦半波分成N 等份,就可把其看成是N 个彼此相连的脉冲列所组成的波形。
这些脉冲宽度相等,都等于π/N ,但幅值不等且脉冲顶部不是水平直线而是曲线,各脉冲幅值按正弦规律变化。
如果把上述脉冲列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就得到PWM 波形。
各PWM 脉冲的幅值相等而宽度是按正弦规律变化的。
根据面积等效原理,PWM 波形和正弦半波是等效的。
对于正弦波的负半周,也可以用同样的方法得到PWM 波形。
可见,所得到的PWM 波形和期望得到的正弦波等效。
2.设图6-3中半周期的脉冲数是5,脉冲幅值是相应正弦波幅值的两倍,试按面积等效原理计算脉冲宽度。
解:将各脉冲的宽度用i(i =1, 2, 3, 4, 5)表示,根据面积等效原理可得1=m5m 2d sin U t t U ⎰πωω=502cos πωt - =0.09549(rad)=0.3040(ms)2=m525m 2d sin U t t U ωϖππ⎰=5252cos ππωt -=0.2500(rad)=0.7958(ms)3=m5352m 2d sin U t t U ωϖππ⎰=53522cos ππωt -=0.3090(rad)=0.9836(ms)4=m5453m 2d sin U t t U ωϖππ⎰=2=0.2500(rad)=0.7958(ms)5=m54m2d sin U tt Uωϖππ⎰=1=0.0955(rad)=0.3040(ms)3. 单极性和双极性PWM 调制有什么区别?三相桥式PWM 型逆变电路中,输出相电压(输出端相对于直流电源中点的电压)和线电压SPWM 波形各有几种电平?答:三角波载波在信号波正半周期或负半周期里只有单一的极性,所得的PWM 波形在半个周期中也只在单极性范围内变化,称为单极性PWM 控制方式。
电力电子技术中的PWM控制器故障排除方法

电力电子技术中的PWM控制器故障排除方法在电力电子技术中,PWM(脉宽调制)控制器是一种常用的电路设备,用于调节电路中的直流电压。
然而,由于各种原因,PWM控制器可能会出现故障,导致设备不正常工作。
本文将介绍一些常见的PWM控制器故障排除方法,帮助读者快速识别和解决问题。
一、PWM控制器无法正常工作1.1 电源问题首先要检查PWM控制器的电源供应是否正常。
可以使用万用表测量电源电压,确保电压值在规定范围内。
1.2 输入信号问题PWM控制器的输入信号可能没有正确连接或者信号源出现故障。
检查输入信号连接是否良好,以及信号源是否正常。
1.3 输出问题若PWM控制器输出电压不稳定或者无法产生脉冲信号,可能是输出电容损坏或者输出负载过大。
尝试更换输出电容,或者降低负载电流。
二、PWM控制器温度过高一些PWM控制器在工作过程中可能会发热,但若温度过高可能会影响设备的性能和寿命。
这里介绍几种排除PWM控制器温度过高的方法:2.1 散热器问题检查PWM控制器散热器是否正常工作。
如果散热器表面有灰尘或者杂物,应及时清理。
并确保散热器与散热风扇之间的连接良好,风扇工作正常。
2.2 过载问题PWM控制器可能在过载情况下工作,导致温度升高。
确保PWM 控制器的输入和输出都在规定电流范围内,并检查负载电流是否超过PWM控制器的额定值。
三、PWM控制器信号失真PWM控制器信号失真可能会导致输出电压波形不正常,进而影响整个电力电子系统的正常运行。
下面是一些解决PWM控制器信号失真问题的方法:3.1 滤波问题检查PWM控制器输出端的滤波电容是否损坏,如有需要可以更换新的滤波电容。
此外,还应检查滤波电容的连接是否良好。
3.2 信号干扰PWM控制器的信号可能受到电磁干扰或者其他干扰源的影响,进而引起信号失真。
在布置电子设备时,应尽量避免与其他电磁源附近的布线接触。
四、PWM控制器保护功能失效PWM控制器通常拥有过流、过压、过温等保护功能,当电路中出现异常时会自动切断电源以避免损坏。
pwm整流原理

pwm整流原理PWM(脉宽调制)整流原理脉宽调制(PWM)是一种常用的电子控制技术,它通过改变电信号的脉冲宽度来实现电能的调节和控制。
PWM整流技术在电力电子领域有着广泛的应用,特别是在直流电源、变频器、逆变器等电力电子设备中。
PWM整流原理是将交流电信号转换为直流电信号的一种方法。
其基本原理是利用开关管(如晶闸管或功率MOS管)控制电流的导通和截止,通过改变开关管的导通时间比例,来控制输出电压和电流的大小。
PWM整流技术的优点之一是能够实现高效的能量转换。
由于开关管在导通状态下具有较低的电压降,因此能够减少能量的损耗。
而且,通过改变开关管的导通时间比例,可以实现对输出电压和电流的精确控制,提高系统的稳定性和精度。
PWM整流技术的另一个优点是能够实现电能的变换和传递。
在PWM整流系统中,输入的交流电经过整流和滤波处理后,被转换为稳定的直流电。
这种直流电可以进一步用于驱动各种电力电子设备,实现电能的变换和传递。
在PWM整流系统中,脉宽调制信号的频率和占空比是两个重要的参数。
频率决定了开关管的开关速度,而占空比则决定了开关管导通和截止的时间比例。
通过合理选择这两个参数,可以实现输出电压和电流的精确控制。
在实际应用中,PWM整流技术通常需要配合控制器或微处理器来实现。
控制器通过对输入信号进行采样和处理,得到脉宽调制信号的频率和占空比,并控制开关管的导通和截止。
这样,就可以实现对输出电压和电流的精确控制。
需要注意的是,PWM整流技术在实际应用中还存在一些问题和挑战。
例如,开关管的导通和截止会产生较大的电压和电流冲击,需要合理设计电路和采取保护措施。
此外,PWM整流系统的稳定性和可靠性也需要进行充分的测试和验证。
PWM整流技术是一种实现电能调节和控制的重要方法。
通过改变开关管的导通和截止时间比例,可以实现对输出电压和电流的精确控制。
同时,PWM整流技术还具有高效能量转换和电能变换传递的优点。
然而,在实际应用中需要充分考虑电路设计和保护措施,以确保系统的稳定性和可靠性。
简述pwm控制技术原理

简述pwm控制技术原理
脉宽调制(PWM)是一种常用的电子控制技术,通过调节信号的占空比来控制输出信号的平均功率。
PWM控制技术常用于电力电子、自动控制、通信等领域。
PWM控制技术的原理如下:
1. 基本原理:PWM控制技术基于周期性的高电平(ON)和低电平(OFF)信号。
在一个固定的时间周期内,通过改变高电平和低电平信号的持续时间比例(即占空比),可以实现对输出信号的平均功率的调节。
2. 信号生成:PWM控制技术需要产生一个周期性的方波信号作为控制信号。
可以使用定时器或计数器来生成这个周期性的信号,根据设定的频率来确定每个周期的时间长度。
3. 调节占空比:在每个周期内,通过改变高电平信号的持续时间来调节占空比。
占空比定义为高电平信号的持续时间与一个周期的总时间之比。
例如,一个占空比为50%的PWM信号表示高电平和低电平信号的时间相等。
4. 输出控制:PWM信号经过一个滤波器,将高频的方波信号转换为模拟信号。
根据PWM 信号的占空比,滤波器输出的模拟信号的平均值相应地调节。
通过控制占空比,可以实现对输出信号的电压、电流或功率进行精确的控制。
PWM控制技术的优点包括高效性、精确性和可靠性。
由于输出信号是由开关器件的开关状态决定的,因此可以快速响应和调节输出信号。
PWM技术广泛应用于电机控制、LED调光、电源变换器等领域,以实现精确的控制和节能的效果。
电力电子第6章 脉宽调(PWM)技术

O
u UN'
Ud
2
O
?
Ud 2
u VN'
Ud
2O
?
Ud 2
u WN'
Ud
2
O
u UV Ud
O -Ud u UN
O
?t ?t ?t ?t
?t
2Ud
Ud
3
3
?t
图6-8 三相桥式PWM逆变电路波形
死区时间的长短主要由开关器 件的关断时间决定。
工作时V1和V2通断互补, V3和V4通断也互补。
以uo正半周为例,V1通, V2断,V3和V4交替通断。
负载电流比电压滞后,在 电压正半周,电流有一段 区间为正,一段区间为负。
负载电流为正的区间,V1 和V4导通时,uo等于Ud 。
图6-4 单相桥式PWM逆变电路
6-14
6.2.1 计算法和调制法
图6-4 单相桥式PWM逆变电路
6-15
6.2.1 计算法和调制法
3)单极性PWM控制方式(单相桥逆变)
在ur和uc的交点时刻控制IGBT的通断。
ur正半周,V1保持通,
V2保持断。
u
uc ur
当 ur>uc 时 使 V4 通 ,
V3断,uo=Ud 。
O
wt
当 ur<uc 时 使 V4 断 ,
V3通,uo=0 。
uo
uof uo
Ud
O
wt
-Ud
图6-6 双极性PWM控制方式波形
6-17
u
uc
ur6.2.1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
■
3
理论基础
冲量相等而形状不同的窄脉冲加在具有惯性的环节上时 ,其效果基本相同
冲量指窄脉冲的面积 效果基本相同,是指环节的输出响应波形基本相同 低频段非常接近,仅在高频段略有差异
f (t)
O a)
f (t)
f (t)
tO
tO
b)
图6-1
f (t) (t)
tO c)
■
图6-1 形状不同而冲量 相同的各种窄脉冲
第6章 PWM控制技术
2020/1/29
1
引言
6.1 PWM控制的基本原理 6.2 PWM逆变电路及其控制方法
6.2.1 计算法和调制法 6.2.2 异步调制和同步调制 6.2.3 规则采样法 6.2.4 PWM逆变电路的谐波分析 6.2.5 提高直流电压利用率和减少开关次数 6.2.6 PWM逆变电路的多重化 6.3 PWM跟踪控制技术
调制信号波为正弦波时,得到的就是SPWM波 调制信号不是正弦波,而是其他所需波形时,也能得到等
效的PWM波
■
11
结合IGBT单相桥式电压型逆变电路对调制法进行说明 工作时V1和V2通断互补,V3和V4通断也互补
控制规律
uo正半周,V1通,V2断,V3和V4交替通断 负载电流比电压滞后,在电压正半周,电流有一段区间
第3、4章已涉及这方面内容 第3章:直流斩波电路采用 第4章有两处: 4.1节斩控式交流调压电路,4.4节矩阵式
变频电路
本章内容
PWM控制技术在逆变电路中应用最广,应用的逆变电路 绝大部分是PWM型,PWM控制技术正是有赖于在逆变电 路中的应用,才确定了它在电力电子技术中的重要地位
本章主要以逆变电路为控制对象来介绍PWM控制技术 也介绍PWM整流电路
可得-Ud和零两种电平
V1
Ud + V2
信号波 ur 载波 uc
调制 电路
V3 VD1
RL
uo
V4
VD2
VD3
VD4
图6-4 单相桥式 PWM逆变电路
图6-4
■
13
单极性PWM控制方式(单相桥逆变 )在ur和uc的交点时刻控制IGBT的u通 uc ur 断
ur正半周,V1保持通,V2保持断 O
单极性PWM控制方式波形
■
14
双极性PWM控制方式(单相桥逆变)
在 ur 的 半 个 周 期 内 , 三 角 波 载 波 有 正 有 负 , 所 得 PWM波也有正有负
在ur一周期内,输出PWM波只有±Ud两种电平 仍在调制信号ur和载波信号uc的交点控制器件的通断 ur正负半周,对各开关器件的控制规律相同 当ur >uc时,给V1和V4导通信号,给V2和V3关断信号 如io>0,V1和V4通,如io<0,VD1和VD4通, uo=Ud
t d)
4
一个实例
图6-2a的电路 电路输入:u(t),窄脉冲,如图6-1a、b、c、d所示 电路输出:i(t),图6-2b 面积等效原理
i(t) e(t)
a)
i(t)d aຫໍສະໝຸດ cbO b)
图6-2
图6-2 冲量相同的 t 各种窄脉冲的响应波形
■
5
用一系列等幅不等宽的脉冲来代替一个 u
为正,一段区间为负
负载电流为正的区间,V1和V4导通时,uo等于Ud V4关断时,负载电流通过V1和VD3续流,uo=0 i负o从载V电D1流和为V负D4的流区过间,,仍有Vu1和o=UVd4仍导通,io为负,实际上
■
12
V4关断V3开通后,io从V3和VD1续流,uo=0 uo总可得到Ud和零两种电平 uo负半周,让V2保持通,V1保持断,V3和V4交替通断,uo
■
8
目前中小功率的逆变电路几乎都采用PWM技术 逆变电路是PWM控制技术最为重要的应用场合 本节内容构成了本章的主体 PWM逆变电路也可分为电压型和电流型两种,目
前实用的PWM逆变电路几乎都是电压型电路
■
9
计算法
根 据 正 弦 波 频 率 、 幅 值 和 半 周 期 脉 冲 数 , 准 确 计 算 PWM波各脉冲宽度和间隔,据此控制逆变电路开关器 件的通断,就可得到所需PWM波形
7
PWM电流波
电 流 型 逆 变 电 路 进 行 PWM 控 制 , 得 到 的 就 是 PWM电流波
PWM波形可等效的各种波形
直流斩波电路:等效直流波形
SPWM波:等效正弦波形
还可以等效成其他所需波形,如等效所需非正弦 交流波形等,其基本原理和SPWM控制相同,也 基于等效面积原理
繁琐,当输出正弦波的频率、幅值或相位变化时,结 果都要变化
调制法 输出波形作调制信号,进行调制得到期望的PWM波 通常采用等腰三角波或锯齿波作为载波 等腰三角波应用最多,其任一点水平宽度和高度成线 性关系且左右对称
■
10
与任一平缓变化的调制信号波相交,在交点控制器件通断 ,就得宽度正比于信号波幅值的脉冲,符合PWM的要求
6.3.1 滞环比较方式 6.3.2 三角波比较方式 6.4 PWM整流电路及其控制方法 6.4.1 PWM整流电路的工作原理 6.4.2 PWM整流电路的控制方法 本章小结
PWM(Pulse Width Modulation)控制——脉冲宽度调制 技术,通过对一系列脉冲的宽度进行调制,来等效地获得 所需要波形(含形状和幅值)
■
6
等幅PWM波和不等幅PWM波 由直流电源产生的PWM波通常是等幅PWM波
如直流斩波电路及本章主要介绍的PWM逆变电路,6.4节的PWM 整流电路
输入电源是交流,得到不等幅PWM波
4.1节讲述的斩控式交流调压电路,4.4节的矩阵式变频电路
基于面积等效原理进行控制,本质是相同的
■
t
当ur>uc时使V4通,V3断,uo=Ud uo 当ur<uc时使V4断,V3通,uo=0 Ud
uo uof
ur负半周,V1保持断,V2保持通 O
t
当ur<uc时使V3通,V4断,uo=-U-dUd
当虚u线r>uuofc表时示使uVo3的断基,波V分4通量,uo=0图6-5
图6-5
正弦半波
a)
正弦半波N等分,可看成N个彼此相
连的脉冲序列,宽度相等,但幅值不 O
t
u
等
用矩形脉冲代替,等幅,不等宽,中b)
点重合,面积(冲量)相等
O
t
宽度按正弦规律变化
图6-3 用图6P-W3 M波 代替正弦半波
SPWM波形——脉冲宽度按正弦规律变化而和正弦波等
效的PWM波形
要改变等效输出正弦波幅值,按同一比例改变各脉冲 宽度即可