射频功率放大器的主要技术指标

合集下载

几种常见的射频电路类型及主要指标

几种常见的射频电路类型及主要指标

几种常见的射频电路类型及主要指标1 低噪声放大器(LNA)LNA是一种特殊的放大器,主要用于射频接收机前端,将天线接收的信号以小的噪声和大的增益进行放大,对提高接收信号质量,降低噪声干扰,提高接收灵敏度有着极其重要的意义,它的性能好坏关系到整个通信系统的质量。

低噪声放大器的主要指标有:噪声系数(NF)、增益(Gain)、输入输出阻抗匹配程度(S11、S22、输入输出回波损耗或输入输出VSWR)、线性性能(三阶交调点和1dB压缩点)、反向隔离(S12)等。

由于LNA位于邻近天线的最前端,它的性能好坏会直接影响接收机接收信号的质量。

为了保证经天线接收的信号能在接收机的最后一级得到恢复,LNA需要在放大信号的同时产生尽可能低的噪声和失真。

因此,在生产测试中,我们主要关注LNA的增益和噪声系数这两个参数。

2 射频功率放大器(PA)射频功率放大器用于发射机的末级,它将已调制的频带信号放大到所需要的功率值,送到天线中发射,保证在一定区域内的接收机可以收到满意的信号电平,并且不干扰相邻信道的通信。

不同的应用场合对发射功率的大小要求不一,如移动通信基站的发射功率可达上百瓦,卫星通信的发射功率可达上千瓦,而便携式无线通信设备却只需几十毫瓦到几百毫瓦。

射频功率放大器的主要指标有工作频段、输出功率、功率增益和增益平坦度、噪声系数、输入输出驻波比、输入输出三阶交调点、邻道功率比、效率等。

与低噪声放大器相比,射频功率放大器除了要满足一定的增益、驻波比、带宽,还要有高的输出功率和转换效率及小的非线性失真。

3 射频滤波器射频滤波器主要用于滤去不需要的信号保留有用信号,是具有选频特性的二端口器件,它对通带内频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。

根据不同的选频特性,滤波器可以分为低通、高通、带通和带阻滤波器,这是最基本的四种滤波器。

图1归纳了四种滤波器的衰减系数与归一化角频率的关系。

根据不同的实现方法,滤波器可分为使用无源器件(如电感、电容和传输线)实现的无源滤波器和使用有源器件(如晶体管和运算放大器)实现的有源滤波器。

射频与微波电路设计介绍-7-功率放大器设计介绍

射频与微波电路设计介绍-7-功率放大器设计介绍

热设计与散热问题解决方案
热设计基本原理
阐述热设计的基本原理,包括热传导、热对流、热辐射等 概念。
散热问题解决方案
探讨散热问题的解决方案,如采用高效散热器、使用热管 技术等,并分析其优缺点。
热设计与散热问题实例分析
给出热设计与散热问题的实例分析,包括热仿真、热测试 等方面。
热设计与散热问题解决方案
热设计基本原理
阐述热设计的基本原理,包括热传导、热对流、热辐射等 概念。
散热问题解决方案
探讨散热问题的解决方案,如采用高效散热器、使用热管 技术等,并分析其优缺点。
热设计与散热问题实例分析
给出热设计与散热问题的实例分析,包括热仿真、热测试 等方面。
05
射频与微波功率放大器仿真与测 试方法
05
射频与微波功率放大器仿真与测 试方法
01
02
03
04
高集成度
随着半导体工艺的发展,射频 与微波电路将实现更高的集成
度,减小体积和重量。
高性能
采用新材料和新技术,提高电 路的性能指标,如更高的工作 频率、更低的噪声系数等。
多功能融合
将不同功能的电路模块集成在 一起,实现多功能融合,满足
复杂应用场景的需求。
智能化
引入人工智能和机器学习技术 ,实现电路的自适应调整和智 能化管理,提高系统性能。
连接测试仪器,设置合 适的测试参数(如频率 、功率等)。
对功率放大器的各项性 能指标进行测试,如输 出功率、增益、效率等 。
通过输入不同幅度和频 率的信号,观察功率放 大器的输出信号是否失 真,评估其线性度性能 。
在长时间工作和不同环 境温度下,测试功率放 大器的稳定性和可靠性 。
测试平台搭建及测试步骤说明

功率放大器主要指标测试方法

功率放大器主要指标测试方法

一、功率/1dB压缩点测试
功率计测试框图4:
小功率负载
波导大功率负载
信号源
功率放大器
波导耦合器 功率计探头
注意事项: 1、信号源输出功率包含-10dBm~+15dBm,具有脉冲信号调制; 2、功率放大器输出通过大功率射频电缆连接大功率耦合器和大功率负载; 3、耦合器及负载的承载功率和频段需要与功放的最大频率一致。 4、功率计需要使用连续波功率计或者雷达脉冲功率计,频率上限覆盖功放 的频率。耦合器为40dB或者50dB满足耦合端不损坏功率计为原则。
有用信号
杂散 f1
杂散
f0
f2
频率
三、输出失真(谐波, 交调, 杂波)
失真测试框图:
小功率负载
波导负载
信号源
功率放大器
波导耦合器
频谱分析仪
注意事项: 1、信号源输出功率包含-10dBm~+15dBm,具有连续波/脉冲信号调制; 2、功率放大器输出通过大功率射频电缆连接大功率耦合器和大功率负载; 3、耦合器及负载的承载功率和频段需要与功放的最大频率一致。 4、频谱仪至少需要覆盖功放最大频率。功率标记点分别测试主信号和其 他谐波或交调等杂散信号。
二、增益及带内平坦度测试
增益测试框图:
小功率负载
波导负载
信号源
功率放大器
波导耦合器
频谱分析仪
注意事项:
1、信号源输出功率包含-10dBm~+15dBm,具有连续波/脉冲信号调制;
2、功率放大器输出通过大功率射频电缆连接大功率耦合器和大功率负载;
3、耦合器及负载的承载功率和频段需要与功放的最大频率一致。
反射特性测量是通过测试被测件的反射损耗,或测出被测件的反射系数、 电压驻波比,反映端口的匹配情况。 回波损耗 LR、反射系数ρ、电压驻波比S 三者的关系如下:

地球站射频系统的基本原理及技术指标

地球站射频系统的基本原理及技术指标

卫星地球站目前常用的高“功放”主要有两种:一是早期的大功率高“功放”(HPA),如美国VARIAN公司生产的VZJ-2700M速调管高功率放大器;二是全固态高功率放大器(SSPA),如美国生产的HPAC-125-RM固态高“功放”。
(1)VZJ-2700M是一个C波段高功率速调管放大器,其发射频率范围5.85~6.45 GHz,输出功率为3 kW,主要组成部分包括:由集成固态放大器速调管放大和输出波导装置组成的射频放大器链路、可调节的功率电源装置和控制/监测/保护系统,如图3所示。
输出电平:+9 dBm (在1 dB压缩点)
互调:-38 dBc,0 dBm输出(双载波)
杂散:-65 dBc,0 dB输出
AM/PM:0.1°/dB,-5 dBm输出
(3)输入/输出特性
增益:(35±1)dB
相位噪声:10 Hz,-59 dB ;100 Hz,-69 dB;1 kHz,-79 dB;10 kHz,-89 dB;100 kHz,-99 dB;1 MHz,-109 dB
1?2 高“功放”
高“功放”的作用是将上变频器输出的射频放大信号送入卫星上行发射天线,然后发射至卫星转发器。其发射信号电平由卫星公司统一标定,高“功放”的选择对卫星地球站的技术指标、可靠性、造价及维护费用等有重要影响。
速调管型号为VA-936R12,可在5.85~6.45 GHz频率范围内预置12个标准频道,额定功率输出3.35 kW,1 dB带宽45 MHz,功率增益40 dB(最小)。VA-93R12属五腔内腔式速调管,腔体及调谐机构是管子的一部分,其调谐机械结构相当精密,共有12组调谐螺钉,因速调管有5个谐振腔,故每组调谐螺钉共有5颗,每一颗螺钉对应一个谐振腔,每一组5颗调谐螺钉的不同位置对应一个预置频道。

射频功率放大器

射频功率放大器

射频功率放大器射频功率放大器(RF PA)是各种无线发射机的重要组成部分。

在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。

为了获得足够大的射频输出功率,必须采用射频功率放大器。

目录一、什么是射频功率放大器二、射频功率放大器技术指标三、射频功率放大器功能介绍四、射频功率放大器的工作原理五、射频放大器的芯片六、射频功率放大器的技术参数七、射频放大器的功率参数八、射频功率放大器组成结构九、射频功率放大器的种类正文一、什么是射频功率放大器射频功率放大器是发送设备的重要组成部分。

射频功率放大器的主要技术指标是输出功率与效率。

除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。

射频功率放大器是对输出功率、激励电平、功耗、失真、效率、尺寸和重量等问题作综合考虑的电子电路。

在发射系统中,射频功率放大器输出功率的范围可以小至mW,大至数kW,但是这是指末级功率放大器的输出功率。

为了实现大功率输出,末前级就必须要有足够高的激励功率电平。

射频功率放大器的主要技术指标是输出功率与效率,是研究射频功率放大器的关键。

而对功率晶体管的要求,主要是考虑击穿电压、最大集电极电流和最大管耗等参数。

为了实现有效的能量传输,天线和放大器之间需要采用阻抗匹配网络。

二、射频功率放大器技术指标1、工作频率范围一般来讲,是指放大器的线性工作频率范围。

如果频率从DC开始,则认为放大器是直流放大器。

2、增益工作增益是衡量放大器放大能力的主要指标。

增益的定义是放大器输出端口传送到负载的功率与信号源实际传送到放大器输入端口的功率之比。

增益平坦度,是指在一定温度下,整个工作频带范围内放大器增益的变化范围,也是放大器的一个主要指标。

3、输出功率和1dB压缩点(P1dB)当输入功率超过一定量值后,晶体管的增益开始下降,最终结果是输出功率达到饱和。

Icepak学习笔记

Icepak学习笔记

ICEPAK学习笔记张永立;2010-09-13目录算例一:翅片散热流量单位CFMICEPAK的分析流程Peclet数网格Peclet数注意opening和风扇的边界条件设置算例二:RF放大器射频功率放大器简介Wall/Enclosure/Block/Plate的区别Wall的内侧(inner)和外侧(Outside)是如何定义的?Enclosure内部是否有网格,内部是如何定义和处理的?PCB板的定义(Rack/Board/HeatDissipation/TraceLayers)HeatSink的定义尺寸含义算例三:风扇位置优化格栅(Grille)可以定义倾斜角度类型为“hollow”的Block内部没有网格优化参数的定义定义并显示多工况报告(report)如何修正风扇模型中P-Q随着海拔高度的变化注意network block的用法算例四:冷板的模拟(Cold-Plate)在Block1内部又建立Block2意味着什么?注意优先级的应用算例五:热管模拟Unpack的应用各向异性导热的设置嵌套assembly的使用方法算例六:协调网格/非协调网格对比ICEPAK的默认参数设置为什么ICEPAK写出的*.res文件不能读入到CFD-Post后处理?算例七:高级网格划分建立Assembly实现非连续网格划分时需要注意掩膜板划分网格需要注意接触热阻和薄导热板的差别是什么?注意:ICEPAK中不允许两个“thin objects”交叠在一起!算例八:计算Grille损失系数(批处理/优化)ICEPAK中多孔板的创建方法注意多种批处理的设置和后处理功能算例九:两种散热器翅片散热效果(参数开关)多种散热器对比可以在一个case中通过切换开关来实现一个case计算多种散热器模型不需要预先生成网格本算例的opening边界没有设置压力边界条件算例十:最小化热阻(参数优化)计算域外延新材料的定义如何才能激活ICEPAK的优化参数(optimization)?优化计算的基本步骤算例十一:ICEPAK的辐射模型自然对流最好给定非零速度的初始条件:辐射模型一:S2S模型辐射模型二:DO模型三种计算结果对比算例十二:瞬态模拟定义一个瞬态问题随时间变化函数实体的定义方法非定常动画算例十三:Zoom In功能注意本算例hollow Block的用法Grille的方向问题Grille和Resistance的差别当所设置的ZoomIn区域和系统中的实体(object)相交时关于ZoomIn的详细分析直接详细计算和通过ZoomIn详细计算的结果差别比较算例十四:IDF导入功能IDF文件说明注意“Group”的应用算例十五:CAD导入功能CAD几何面导入成ICEPAK实体(object)的方法Mentor输出文件格式Mesher HD网格如何查询网格数量和质量?如何并行计算?如何重启动计算?算例十六:PCB板的Trace导入可以导入Trace的文件格式如何能够查询材料库函数的具体物性参数?ICEPAK是如何根据导入的trace计算热导率的? PCB实体不能兼容非连续网格PCB实体和Block实体有什么区别?IDF导入的模型划分网格出错:算例十七:Trace焦耳热给定局部关心的Trace焦耳热计算过程中中途强制停止计算的后果算例十八:微电子封装注意封装库的选择和使用注意network类型的Block的设置和结果温度查询方法注意探针(probe)的使用为什么文本输出和图形显示的最高温度差别很大?算例十九:多级网格定义assembly时需要注意注意多级网格的用途和用法算例二十:BGA封装的Trace导入注意导入BGA中trace的方法计算封装内部的热问题没有流动注意本算例自然对流系数的处理方式(不是常数)注意Rjc的计算方法算例二十一:30所ICEM题目如何在ICEPAK中实现模拟?经验技巧总结1.如何把元器件功率导入ICEPAK中?2.应用“two resistor”双热阻模型计算温度不合理的问题3.关于IDF文件的说明4.IDF中间格式如何导入Pro/E5.关于常用EDA软件的介绍6.PADS和Protel文件格式互转7.Protel的数据输入给ICEPAK的方法算例一:翅片散热流量单位CFM:CFM是一种流量单位cubic feet per minute 立方英尺每分钟1CFM=28.3185 L/MINICEPAK的分析流程:建模——模型检查——划分网格——网格观察——检查Reynolds和Peclet数——求解Peclet数:peclet number,用P或Pe表示,是一个无量纲数值,用来表示对流与扩散的相对比例。

射频功率放大器的研究

射频功率放大器的研究

射频功率放大器的研究作者:张磊来源:《电子技术与软件工程》2016年第16期摘要随着现代通信技术的不断发展,射频功率放大器在通信系统中的应用越来越广泛,它主要是用来将小信号在指定频段高效率的将其放大,再利用馈线系统将放大的信号传送给发射天线。

由此可见,通信系统中的大部分能量都被射频功率放大器所消耗,因此,对于射频电路设计来说,怎样进一步提高射频功率放大器的工作效率和输出功率是研究的重点也是难点。

本文首先分析了我国射频功率放大器的研究现状,并对射频功率放大器进行了简要的概述,然后以E类功率放大器为基础进行深入的研究。

另外,本文还深入的分析了功率合成器,旨在提高输出功率。

【关键词】射频功率放大器功率合成 E类功率放大器射频功率放大器是各种无线发射机中十分关键的组成部分,对现代通信系统有非常重要的意义,它主要被用来将射频小信号在指定工作频段高效率的放大,然后再将其传送给发射天线。

要想使整个通信系统的水平得到进一步提高,提高射频功率放大器的输出功率、工作效率等指标至关重要。

目前,4G无线通信网络被广泛应用于各个领域,为了尽可能的满足人们的生产和生活需求,提高通信速率和频带利用率是重要手段,但在此过程中,也使得通信系统中的调试方式越来越复杂,再加上数字传输技术的出现,在提高工作效率及线性度方面都给射频功率放大器提出了更高的要求。

1 射频功率放大器国内的研究现状我国涉足射频领域较晚,很多方面与国外相比还处于初级阶段,再加上军工产品的禁运限制,很多先进的射频功率放大器无法运往国内。

功率放大器的应用极为广泛,涉及到的领域包括航天科技、卫星通信、军用通信等,因此,充分了解和掌握射频电路设计核心技术,进一步提高半导体方面的工艺设计,是提高射频技术的唯一途径。

值得庆幸的是,我国对于高精度设备的设计和产生给予了高度重视,越来越多的专家学者致力于射频技术的研究,这就使得国内的射频技术也得到了很大程度的提高,取得的成果也较为瞩目。

射频放大器的9个主要性能指标

射频放大器的9个主要性能指标

射频放大器的9个主要性能指标RF PA(radio frequency power amplifier)是各种无线发射机的重要组成部分。

在发送机的前级电路中,调制振荡电路产生的射频信号的功率非常小,需要经过一系列放大一缓冲级、中间放大级、最终级的功率放大级,得到足够的射频功率后,提供给天线进行辐射。

为了得到足够大的射频输出功率,射频功率放大器常常扮演着不可或缺的作用。

那么,射频放大器的主要指标有哪些呢?射频放大器结构射频放大器的9个主要性能指标1、输出功率和1dB压缩点(P1dB)输入功率超过一定值时,晶体管的增益开始下降,最终输出功率饱和。

如果放大器的增益偏离常数或低于其他小信号增益1dB,这个点就是1dB压缩点(P1dB)。

放大器的功率容量通常用1dB的压缩点表示。

2、增益工作增益是测量放大器放大能力的主要指标。

增益的定义是放大器输出端口传输到负载的功率与信号源实际传输到放大器输入端口的功率之比。

增益平坦度是在一定温度下放大器增益在整个工作频带内变化的范围,也是放大器的主要指标。

3、工作频率范围一般是指放大器的线性工作频率范围。

当频率从DC开始时,放大器被认为是直流放大器。

4、效率放大器是功率元件,所以需要消耗供电电流。

因此,放大器的效率对整个系统的效率非常重要。

功率效率是放大器的高频输出功率与提供给晶体管的直流功率之比。

NP=RF输出功率/直流输入功率。

5、交条失真(IMD)交条失真是具有不同频率的两个或更多个输入信号通过功率放大器而产生的混合分量。

这是因为放大器的非线性特点。

其中,三阶交条产物特别接近基波信号,影响最大,因此交条失真中最重要的是三阶交,当然,三阶交条产物越低越好。

6、三阶交条截止点(IP3)图2中基波信号的输出功率延长线与三阶交条延长线的交点称为三阶交条截止点,用符号IP3表示。

IP3也是放大器非线性的重要指标。

输出功率一定时,三阶交条截止点的输出功率越大,放大器的线性度越好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

射频功率放大器是各种无线发射机的主要组成部分。

在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大如缓冲级、中间放大级、末级功率放大级,获得足够的射频功率后,才能馈送到天线上辐射出去。

为了获得足够大的射频输出功率,必须采用射频功率放大器。

射频功率放大器电路设计需要对输出功率、激励电平、功耗、失真、效率、尺寸和重量等问题进行综合考虑。

射频功率放大器的主要技术指标是输出功率与效率,是研究射频功率放大器的关键。

而对功率晶体管的要求,主要是考虑击穿电压、最大集电极电流和最大管耗等参数。

为了实现有效的能量传输,天线和放大器之间需要采用阻抗匹配网络。

3.1.1输出功率
在发射系统中,射频末级功率放大器输出功率的范围可小到毫瓦级(便携式移动通信设备)、大至数千瓦级(发射广播电台)。

为了要实现大功率输出,末级功率放大器的前级放大器单路必须要有足够高的激励功率电平。

显然大功率发射系统中,往往由二到三级甚至由四级以上功率放大器组成射频功率放大器,而各级的工作状态也往往不同。

根据对工作频率、输出功率、用途等的不同要求,可以用晶体管、FET 、射频功率集成电路或电子管作为射频功率放大器。

在射频功率方面,目前无论是在输出功率或在最高工作频率方面,电子管仍然占优势。

现在已有单管输出功率达2000kW 的巨型电子管,千瓦级以上的发射机大多数还是采用电子管。

当然,晶体管、FET 也在射频大功率方面不断取得新的突破。

例如,目前单管的功率输出已超过100W ,若采用功率合成技术,输出功率可以达到3000W 。

3.1.2效率
效率是射频功率放大器极为重要的指标,特别是对于移动通信设备。

定义功率放大器的效率,通常采用集电极效率ƞc 和功率增加效率PAE 两种方法。

1. 集电极效率ƞc
集电极效率ƞc 定义为输出功率P out 与电源供给功率P dc 之比,即
dc
out p P =c η (3.1.1) 2.功率增加效率(PAE ,power added efficiency )
功率增加效率定义为输出功率P out 与输入功率P in 的差于电源供给功率P dc 之比,即
c p
dc in out PAE A P P P PAE ηη)11(-=-== (3.1.2) 功率增加效率PAE 的定义中包含了功率增益的因素,当有比较大的功率增益。

如何提高输出功率和保证高的效率,是射频功率放大器设计目标的核心。

3.1.3线性
⏹ 衡量射频功率放大器线性度的指标有三阶互调截点(IP3)、1dB 压缩点、谐波、邻道功
率比等。

邻道功率比衡量由放大器的非线性引起的频谱再生对邻道的干扰程度。

⏹ 由于非线性放大器的效率高于现行放大器的效率,射频功率放大器通常采用非线性放大
器。

但是分线性放大器在放大输入信号的放大的同时会产生一系列的有害影响。

⏹ 从频谱的角度看,由于非线性的作用,输出信号中会产生新的频率分量,如三阶互调分
量、五阶互调分量等,它干扰了有用信号并使被放大的信号频谱发生变化,即频带展宽了。

⏹从时域的角度,对于波形为非恒定包络的已调信号,由于非线性放大器的增益与信号幅
度有关,因此使输出信号的包络发生了变化,引起了波形失真,同时频谱也发生了变化并引起了频谱再生现象。

对于包含非线性电抗元件(如晶体管的极间电容)的非线性放大器,还存在使幅度变化转变为相位变化的影响,干扰了已调波的相位。

⏹非线性放大器的所有这些影响对移动通信设备来说都是至关重要的。

因为,为了有效地
利用频率资源和避免对邻道的干扰,一般都将基带信号通过相应滤波器形成特定波形,以限制它的频带宽度,从而限制调制后的频带信号的频谱宽度。

但这样产生的已调信号的包络往往是非恒定的,因此非线性放大器的频谱再生作用使发射机的这些性能指标变差。

⏹非线性放大器对发射信号的影响,与调制方式密切相关。

不同的调制方式,所得到的时
域波形是不同的,如用于欧洲移动通信的GSM制式,该制式采用了高斯滤波的最小偏移键控(GMSK),是一种相位平滑变化的恒定包络的调制方式,因此可以用非线性放大器来放大,不存在包络失真问题,也不会因为频谱再生而干扰邻近信道。

⏹但对于北美的数字蜂窝(NADC)标准,采用的是偏移差分正交移相键控调制方式,已
调波为非恒定包络,它就必须用线性放大器放大,以防止频谱再生。

3.1.4杂散输出与噪声
对于通过天线双工器公用一副天线的接收机和发射机,如果接收机和发射机采用不同的工作频带,发射机功率放大器产生频带外的杂散输出或噪声若位于接收机频带内,就会由于天线双工器的隔离性能不好而被耦合到接收机前端的低噪声放大器输入端,形成干扰,或者也会对其他相邻信道形成干扰。

因此必须限制功率放大器的带外寄生输出,而且要求发射机的热噪声的功率谱密度在相应的接收频带出要小于-130dBm/Hz,这样对接收机的影响基本上可以忽略。

相关文档
最新文档