新型微生物燃料电池耦合技术的研究进展
MDC和MEC及其耦合系统在水处理应用的研究进展

MDC和MEC及其耦合系统在水处理应用的研究进展MDC和MEC及其耦合系统在水处理应用的研究进展水是人类生产和生活不可或缺的重要资源,而如今水资源的日益枯竭和水污染的问题日益严重已经成为全球面临的严峻挑战。
对此,科学家们通过不懈的努力和研究,提出了许多高效的水处理技术,其中包括MDC(微生物燃料电池)和MEC(微生物电解池),这两种技术通过耦合系统进一步提升了水处理效果。
MDC是一种基于微生物氧化有机物产电的过程,通过启用微生物将有机物氧化成CO2释放出电子来降解废水。
MDC技术的主要过程可以分为两个阶段:废水进入阳极室,然后通过微生物的呼吸作用发生氧化还原反应产生电子,这些电子通过外部连接的电阻产生电流;而在阴极室,电子和氧气结合形成水。
这种技术不仅可以高效地降解有机物,还能产生电能,实现能源的回收和再利用。
通过电池反应机制,MDC技术在水处理领域展现出了巨大的潜力。
与此同时,MEC技术也被广泛应用于废水处理。
它是一种通过微生物催化作用将废水中的有机物转化为氢气、乙酸和电子的过程。
MEC技术的主要过程是通过外部电压的作用使得催化材料上的微生物进行氧化反应,将有机物氧化成乙酸和电子,而电子则经过外部连接的电阻产生电流。
MEC技术的独特之处在于其产生的乙酸可以被进一步转化为甲烷气体,从而实现能源的回收和利用。
因此,MEC技术在废水处理和能源回收方面具有广阔的应用前景。
为了更好地提高水处理效果和能源回收利用率,研究人员开始尝试将MDC和MEC技术进行耦合。
MDC和MEC的耦合系统可以充分利用两种技术的优势,实现有机物的高效降解和能源的回收利用。
MDC和MEC耦合系统的主要设计是将MDC的阴极室与MEC中的阳极室相连,从而实现电子的传递和能量的转化。
这种耦合系统可以提高水处理的效率,同时增加能源的回收。
研究表明,MDC和MEC耦合系统在水处理应用中具有显著的优势。
首先,通过耦合系统,可以提高有机物的降解效率。
微生物燃料电池构造研究进展

微生物燃料电池构造研究进展微生物燃料电池构造研究进展微生物燃料电池(Microbial Fuel Cell,MFC)是一种利用微生物代谢活性将有机物(如废水、污泥等)转化为电能的技术。
该技术的发展为废弃物的处理和能源获取提供了一种新颖的途径。
近年来,微生物燃料电池在研究和应用中取得了一系列的进展。
首先,关于微生物燃料电池构造的研究重点主要包括电极材料、微生物群落和电子中介物的选取等方面。
电极是微生物燃料电池的重要组成部分,其材料的选择直接影响到能量转化效率和稳定性。
常用的电极材料包括碳纳米管、氧化物和导电聚合物等,这些材料具有良好的导电性和生物相容性。
同时,为了提高电极的催化活性,研究人员还引入了纳米颗粒、催化剂等辅助材料,进一步提高电极的性能。
其次,微生物群落在微生物燃料电池中起到了重要的作用。
选择合适的微生物能够提高电子转移效率和电能输出。
其中,传统的微生物群落主要包括脱氢菌和电化学活性菌等。
脱氢菌通过酶的作用将有机物氧化为电子和质子,而电化学活性菌则利用电子和质子来还原氧化剂,完成电路中的电子传递。
最近,一些研究者正在探索采用基因工程方法改造微生物群落,以进一步提高微生物燃料电池的性能。
如利用基因工程技术,可以使微生物产生更多的电子中转蛋白,从而增加电极和电子转移酶之间的接触面积,提高转移效率。
第三,电子中介物的选择对微生物燃料电池的效率也有重要影响。
传统的电子中介物主要是存在于电极材料上的红外物质。
这些红外物质能够帮助电子从微生物细胞中释放出来,并在电极表面进行直接传递。
但是,这些电子中介物的使用可能存在环境污染的问题。
因此,研究人员开始探索更加环保和可再生的电子中介物。
如最近的研究表明,微生物本身也具有一定的电子传导能力,因此可以利用微生物自身来完成电子传递,减少对传统电子中介物的依赖。
此外,还有一些研究致力于提高微生物燃料电池的稳定性和可持续性。
长期运行过程中,微生物燃料电池常常会受到微生物代谢活性的下降和电极材料的腐蚀等问题。
微生物在生物燃料电池中的应用技术研究

微生物在生物燃料电池中的应用技术研究随着全球能源危机的严峻形势以及对可再生能源需求的增加,生物燃料电池作为一种新兴的清洁能源技术备受关注。
微生物在生物燃料电池中的应用,为电能的高效转换提供了一种独特的解决方案。
本文将针对微生物在生物燃料电池中的应用技术进行深入研究。
一、微生物燃料电池概述生物燃料电池是一种将有机废物直接转化为电能的装置,其基本原理是利用微生物的代谢活动将有机物氧化为电子,并通过电子传递的方式直接将电子输送到电极表面,实现电流的产生。
微生物燃料电池具有结构简单、能源转化效率高以及对环境友好等优点,因此被广泛应用于生物能源领域。
二、微生物选择与培养在微生物燃料电池中,微生物的选择和培养对于电池的性能具有重要影响。
微生物应具备较高的电子传递速率和氧化底物能力,同时要适应极端环境条件的要求。
目前常用的微生物包括细菌、酵母和藻类等。
为了获得高效的微生物,需要通过筛选和培养等手段进行优化。
三、微生物代谢产物的利用在微生物燃料电池中,微生物的代谢产物是产生电流的关键因素。
微生物通过氧化底物,产生电子和质子,通过电子传递链将电子输送到电极表面,形成电流。
此外,微生物还可以产生有机酸、氢气等代谢产物,这些产物可以进一步被利用,提高电池的性能。
四、电极材料与结构优化电极材料的选择和设计对于提高微生物燃料电池性能至关重要。
传统的电极材料包括碳纳米管和导电聚合物等。
近年来,通过纳米技术和材料工程的手段,开发了许多新型电极材料,如纳米颗粒、纳米线和二维材料等。
此外,电极的结构优化也是提高电池性能的关键,如增加电极表面积、提高电子传递速率等。
五、微生物燃料电池的应用领域微生物燃料电池的应用领域广泛,涉及生活污水处理、生物医药以及可穿戴设备等领域。
在生活污水处理中,微生物燃料电池能够将有机废物直接转化为电能,实现废物资源化利用。
在生物医药领域,微生物燃料电池可以作为植入式生物传感器,实时监测体内代谢情况。
此外,微生物燃料电池在可穿戴设备中的应用,为便携式电源提供了新的解决方案。
微生物燃料电池的研究和应用

微生物燃料电池的研究和应用微生物燃料电池是近年来备受关注的一项颇具潜力的清洁能源技术。
它利用微生物的代谢活动将有机废弃物转化为电能,不仅具有环保、可再生的特点,还可以从废物中回收能源。
本文将从研究和应用两个方面来探讨微生物燃料电池的发展。
一、微生物燃料电池的研究1.1 微生物燃料电池的基本原理微生物燃料电池以微生物为媒介,将废弃物中的有机物质通过微生物的代谢活动转化为电子。
它利用了微生物的生物电化学反应,通过氧化废弃物中的有机物质,将其转化为电子和质子。
微生物使用特殊的酶来催化这些反应,将有机物质转化为二氧化碳和电子,电子则在电极上流动,产生电流。
这样就实现了能量的转化和回收。
1.2 微生物燃料电池的研究进展微生物燃料电池的研究已经取得了一些重要的进展。
科研人员不断改进电极材料和微生物种类,以提高微生物燃料电池的性能和效率。
一些新型电极材料,如天然石墨烯和金属有机骨架材料,具有更好的电导性和催化性能,可以促进微生物燃料电池的反应速率。
此外,研究人员还发现了一些新型的电转移体系,可以增强微生物和电极之间的电子传输效果。
二、微生物燃料电池的应用2.1 微生物燃料电池在环境污染治理中的应用微生物燃料电池可以将有机废弃物转化为电能,为环境污染治理提供了一种创新的方法。
传统的废弃物处理方法可能会产生二氧化碳和其他有害物质,而微生物燃料电池可以将有机物质完全转化为电能和无害的气体。
这样不仅减少了废弃物的排放,还产生了电能用于其他用途,减少对传统能源的需求。
2.2 微生物燃料电池在能源回收利用中的应用微生物燃料电池可以将废弃物中的有机物质转化为电能,实现能源的回收利用。
在农村地区或偏远地区,由于缺乏传统能源供应,微生物燃料电池可以成为一种非常有前景的能源解决方案。
通过收集并处理有机废弃物,可以提供可再生的电力供应。
此外,微生物燃料电池还可以在生活垃圾处理过程中提供有价值的资源回收,如有机肥料的产生。
2.3 微生物燃料电池在生物传感器中的应用微生物燃料电池还可以应用于生物传感器领域。
微生物燃料电池技术的研究进展

微生物燃料电池技术的研究进展近年来,随着环境污染日益加重,新能源技术正逐渐成为一种热门话题,微生物燃料电池技术就是其中之一。
微生物燃料电池技术是将生物体内的微生物进行利用,将其通过化学反应转化为电能供应器械使用,从而达到绿色环保的效果。
本文将从微生物燃料电池技术的原理、分类、应用以及未来发展方向四个方面来展开讨论。
一、微生物燃料电池技术的原理微生物燃料电池技术利用了微生物代谢的特性。
微生物在代谢过程中会产生电子,一般情况下,电子会释放到自由基、分子中去而形成较为稳定物质。
而微生物燃料电池技术便是通过掌握微生物代谢过程,将电子提取出来,并将其动员起来进行反应,从而产生电力。
具体而言,微生物燃料电池技术是利用微生物菌种代谢的产物如电子、氢离子、酸碱度等,与电极发生反应。
通过微生物与电极之间的媒介物质,在电极表面上形成微生物薄膜,将微生物的产物输入到电极中,从而形成电流,达到发电的效果。
二、微生物燃料电池技术的分类微生物燃料电池技术按照其所涉及的电极,可分为两类:阳极和阴极微生物燃料电池。
阳极微生物燃料电池,是指利用微生物对有机物进行氧化反应,并通过自由电子将反应生成的电子输送至阳极表面。
此类微生物燃料电池的主体为桶状结构,包括有机物质源、阳极、媒介和微生物等组件。
这种类型的微生物燃料电池技术多用于废水处理工程中。
阴极微生物燃料电池,是指利用微生物还原没有质子的化合物,将产生的电子由阴极输送到外部电路,以使电池发出电流。
与阳极微生物燃料电池不同,阴极微生物燃料电池是一种氧还原反应(ORR)技术。
酸碱性阴离子交换膜(AEM)被用作阴极颜料分解电解池的膜,以便于质子渗透到阳极以维持电荷平衡,而电子则流经外部电路。
这种类型的微生物燃料电池技术多用于废气处理工程中。
三、微生物燃料电池技术的应用微生物燃料电池技术在实际工业应用中具有广泛的应用前景。
1. 废水处理:微生物燃料电池技术具有优秀的废水处理效果。
利用微生物燃料电池技术处理废水可以在一定程度上降低传统废水处理的运行成本,改善处理效果。
微生物燃料电池技术的研究与应用

微生物燃料电池技术的研究与应用随着人类社会对环境保护问题的日益重视,越来越多的科学家和工程师开始寻求绿色、可再生的能源。
微生物燃料电池技术作为一种新兴的可再生能源技术,备受人们的关注和关注。
在这篇文章中,我们将探讨微生物燃料电池技术的定义、原理、研究进展和应用前景。
一、定义与原理微生物燃料电池技术是利用微生物的生物能量代谢过程将有机物转化为电能的一种新型能源技术。
微生物燃料电池的工作原理基于微生物的电化学活性。
在微生物的代谢过程中,有机物被氧化成CO2和电子,同时电子被移向电子接受体或氧化还原电解质中。
在微生物燃料电池中,电子将被转移到金属阳极上(如铜、铁)或其他电化学固体电极上,而电荷转移会导致电子流,从而产生电力。
这种能量结构被称为“生物-电化学系统”。
二、研究进展微生物燃料电池技术是一个相对较新的领域,发展历程还比较短。
在过去的两十多年里,科学家们已经进行了大量研究,逐渐深入了解了微生物燃料电池的工作原理和基本构造。
随着研究的不断深入,人们发现了许多与微生物燃料电池相关的技术挑战。
其中最主要的是提高微生物的电子转移效率和生产效率。
现有的微生物种类通常为电子转移提供不够充分的代谢途径,因此科学家们开始寻找能够提高电子转移效率的新型微生物株。
此外,还需要优化微生物燃料电池的构造和材料,以提高其生产效率和减少生产成本。
三、应用前景微生物燃料电池技术的应用前景非常广阔。
首先,微生物燃料电池可以作为一种“无源之水,无源之火”的能源供应方式,为偏远地区和发展中国家提供可靠的电源。
其次,微生物燃料电池也可以被广泛应用于环境监测和污染处理领域。
由于微生物燃料电池对多种污染物都具有高度的选择性和灵敏性,它可以用于检测环境中的污染物和监测地下水中的污染程度。
除此之外,微生物燃料电池还可以被应用于废水和污泥处理领域,利用废水和污泥中的有机污染物来发电,从而实现资源的再利用和减少环境污染。
总之,微生物燃料电池技术是一项具有极高发展潜力的新兴能源技术,它能够为我们提供绿色、可再生的能源,成为未来可持续发展的重要组成部分。
微生物燃料电池研究进展

微生物燃料电池研究进展一、本文概述微生物燃料电池(Microbial Fuel Cell, MFC)是一种将微生物的生物化学过程与电化学过程相结合的新型能源技术。
近年来,随着全球对可再生能源和环保技术的日益关注,MFC因其在废水处理同时产生电能的优势,受到了广泛关注和研究。
本文旨在综述当前微生物燃料电池的研究进展,包括其基本原理、性能提升、应用领域以及未来挑战等方面,以期为MFC的进一步研究和应用提供参考和借鉴。
MFC的基本原理是利用微生物作为催化剂,将有机物质在阳极进行氧化反应,产生电子和质子。
电子通过外电路传递到阴极,与阴极的氧化剂(如氧气)发生还原反应,产生电能。
同时,质子通过电解质传递到阴极,与电子和氧化剂反应生成水。
MFC的性能受到多种因素的影响,包括微生物种类、电极材料、电解质性质、操作条件等。
目前,MFC的研究主要集中在性能提升和应用拓展两个方面。
性能提升方面,研究者们通过优化电极材料、改进电解质配方、提高微生物活性等手段,提高了MFC的产电性能。
应用拓展方面,MFC已被尝试应用于废水处理、生物传感器、海洋能源开发等领域,展示了其广阔的应用前景。
然而,MFC技术仍面临一些挑战和问题,如产电效率低、稳定性差、成本高等。
因此,未来的研究需要在提高MFC性能的注重其实际应用中的可操作性和经济性。
本文将对MFC的研究进展进行详细的梳理和评价,以期为MFC的进一步发展和应用提供有益的参考。
二、MFC的分类与特点微生物燃料电池(MFC)是一种将微生物的生物化学反应与电化学过程相结合,将化学能直接转化为电能的装置。
根据其结构、运行方式以及电解质的不同,MFC可以分为多种类型,各具特色。
单室MFC:单室MFC是最简单的MFC结构,阳极和阴极位于同一室中,通过质子交换膜分隔。
这种结构使得MFC更为紧凑,但也可能因为质子传递的限制而影响性能。
双室MFC:双室MFC由两个独立的室组成,分别包含阳极和阴极,通过质子交换膜或盐桥连接。
微生物燃料电池技术研究与发展

微生物燃料电池技术研究与发展一、引言微生物燃料电池(Microbial Fuel Cell,简称MFC)是一种能够通过微生物的代谢产生电能的设备,已经成为新能源领域的研究热点之一。
本文将介绍微生物燃料电池技术的研究与发展情况。
二、微生物燃料电池的原理微生物燃料电池的基本原理是利用微生物(通常是细菌)在低氧条件下将有机物氧化为电子和质子,从而产生电流。
MFC通常由两个电极(阳极和阴极)和一个电解质介质组成。
微生物在阳极附近氧化有机物,释放出电子和质子。
电子经过外部电路流至阴极,与来自外部的氧气或其他氧化剂结合,形成水。
质子则通过电解质介质流动到阴极,与那里的氧气结合形成水。
三、微生物燃料电池的类型微生物燃料电池可以根据其结构和操作方式分为多种类型。
常见的类型包括双室型MFC、单室型MFC、厌氧型MFC、好氧型MFC等。
双室型MFC是最早被研究的一种MFC类型,由两个相互隔离的室构成。
微生物在阳极室或阴极室中生长,通过离子交换膜或盐桥来实现电荷传递。
单室型MFC将阳极和阴极放置在同一个室内,通过电子中介体来传递电子和质子。
厌氧型MFC在无氧环境中操作,适用于处理废弃物水和废气等。
好氧型MFC则在有氧条件下操作,通过微生物在阳极上氧化有机物来产生电流。
四、微生物燃料电池的应用微生物燃料电池技术在多个领域具有广阔的应用前景。
1. 环境领域:微生物燃料电池可以用于处理废水和污水,将有机物转化为电能。
同时,MFC还可以减少温室气体排放,实现废水资源化利用。
2. 能源领域:微生物燃料电池可以作为一种新型的清洁能源来源。
通过利用可再生有机物,如废弃物、农业废弃物和生物质,来产生电能,实现能源的可持续发展。
3. 生活领域:微生物燃料电池可以应用于可穿戴设备、生物传感器和远程监测等方面,提供便携式、自供电的解决方案。
五、微生物燃料电池技术的挑战与展望尽管微生物燃料电池技术在许多领域具有广泛的应用前景,但仍然存在挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年第8期广东化工第46卷总第394期 ·101 ·新型微生物燃料电池耦合技术的研究进展阳柳,刘志华,苗珂,王丹阳,赵文玉*,杨敏,夏畅斌(长沙理工大学化学与食品工程学院,电力与交通材料保护湖南省重点实验室,湖南长沙410004) [摘要]微生物燃料电池(MFC)产电低而难以商业化应用制约了其发展,而MFC与其它技术耦合实现电能的有效利用成为研究者关注的热点,也为MFC的商业化应用提供更广阔的思路。
本文综述了MFC耦合新技术研究进展,包括MFC-MEC、MFC-电芬顿、MFC-PEC、MFC-CW、MFC-超级电容器,并对其进行展望。
[关键词]微生物燃料电池;耦合技术;能源利用[中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2019)08-0101-02Research Progress on New Microbial Fuel Cell Coupling TechnologyYang Liu, Liu Zhihua, Miao Ke, Wang Danyang, Zhao Wenyu*, Yang Min, Xia Changbin(Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemical and Food Engineering,Changsha University of Science and Technology, Changsha 410004, China)Abstract: Due to the low power generation of microbial fuel cells (MFC), it is difficult to commercialize applications, and the coupling of MFC with other technologies has become the main focus of researchers. This paper reviews the research progress of new MFC coupling technologies, including MFC-MEC, MFC-Electric Fenton, MFC-PEC, MFC-CW, and MFC-supercapacitors.Keywords: Microbial fuel cell(MFC);coupling technique;energy use微生物燃料电池(MFC)是把生物电化学能转化为电能的一种新型技术,它通过细菌对有机物的氧化和氧气的还原来发电。
该技术可以实现废水处理的同时实现电能回收,为解决能源和环境挑战提供了一种很有前景的解决方案,从而成为环境工程研究的热点方向之一。
在MFC染料方面,从简单物质(如醋酸盐[1])到复杂的难降解物质(如纤维素[2]);以及从低浓度易降解的废水(如生活污水[3])到复杂有机废水(如玉米秸秆水解物[4])等MFC的应用方面均开展了大量的研究。
为了提高MFC产电效能,从电极材料的选择[5]、质子膜的使用[6]、MFC构型的改进[7]以及MFC的规模化[8]、包括新型MFC生物阴极[9-11]等MFC构型开发方面也做了大量的开发。
然而,MFC的最大功率(200~250 Wm-3)仍然比化学燃料电池(CFCs)低几个数量级[12],从而限制了其进一步的开发应用。
为了克服MFC产电低而难以直接商业利用的缺点,许多研究者开发MFC与其它技术的耦合方式来实现电能的使用而开发出新型的污染治理工艺。
本文对微生物燃料电池与微生物电解池、电芬顿、光催化、人工湿地和超级电容器等技术进行耦合技术发展进行了综述,同时对其发展的前景进行了展望。
1 MFC-MEC耦合技术微生物电解池(MEC)利用微生物作为反应主体,在阴阳极间施加电流后产生氢气。
利用MFC产生的电能作为MEC电能供给成为MFC电能利用的新思路,成为MFC研究的热点之一。
Sun等[13]采用MFC-MEC的耦合系统实现了醋酸盐产氢,电路中负载电阻从10 Ω变为10 kΩ时,氢气产率在2.9±0.2到0.2±0.0mL L-1·d-1的范围内变化,其中氢回收率(RH2),库仑效率(CE)和氢产率(YH2)均随着负载电阻的增加而降低。
Wang等[14]先采用发酵方式水解纤维素,再采用MFC-MEC耦合系统实现产氢,与单独发酵相比,综合系统(发酵-MFC-MEC)的总产氢量增加了41%,达到14.3 mmol H2·g-1纤维素,总产氢率为0.24 m3 H2·m-3·d-1,总能量回收效率为23 %。
同时将MFC-MEC系统串联或并联有利于提高污染物处理效率,同时提高能源的回收效率。
Yong Zhang等[15]在用MFC-MEC耦合系统回收Cr(VI)、Cu(II)和Cd(II)时发现,将MFCs(Cr)和MFCs(Cu)串联的回收率优于并联配置,此时,每mol的COD可分别回收0.23±0.04 mol Cd,0.27±0.03 mol Cr,和0.40±0.05 mol Cu,同时产氢量为0.0022±0.0001 m3 H2·m-3·d-1。
随着MFC-MEC耦合系统的发展,其也可实现其他污染物的协同处理。
Yong Jiang等[16]使用硫化物和有机化合物作为电子供体,在MFC-MEC耦合系统中实现了从二氧化碳中去除硫化物同时产生甲烷,三个阳极室中的硫化物去除率分别为62.5 %、60.4 %和57.7 %。
甲烷以0.354 mL·h-1·L-1的速率累积,库伦效率为51 %。
Liping Huang等[17]在自驱动MFC-MEC系统中实现从钴酸锂中完全回收钴,并从MEC中获得0.8 g Co g-1 COD产率,以及0.15 g Co g-1Co的总系统钴产率。
潘璐璐等[18]则实现了含镉重金属废水中Cd2+的去除,并发现,MFC的产电量、MEC中Cd2+的去除率和MFC容积成正相关,但与MFC阴极处Cr6+去除率呈负相关,MEC 阴极液pH在3~5时有利于含镉重金属废水的处理,最高Cr6+去除率可达80 %以上。
2 MFC-电芬顿耦合技术电芬顿技术是近年来在水处理技术中发展起来的一种新型电化学氧化技术,因其氧化能力强,耗能低等特点,备受国内外的重视。
MFC与电芬顿技术相结合成为一种新型组合工艺。
利用MFC产电驱动电芬顿反应来控制MFC阴极中污染物降解[18],与传统的电芬顿系统相比,将节省能源成本,同时拓宽MFC的应用领域。
Rozendal等[19]将有机废水作为MFC的阳极燃料,使MFC-Fenton系统降解非生物化学物质,例如废水染料,从废水中回收能量。
Lei Fu等[20]用MFC-电芬顿系统降解偶氮染料-觅菜红,以0.5 mmol·L-1 Fe3+为催化剂,1 h内75 mg·L-1苋菜红的降解率可达76.4 %。
Xiuping Zhu等[21]使用苯酚为燃料,在电-芬顿反应器中进行一个循环(22小时)能除去75±2 %的总有机碳(TOC),并且苯酚完全降解为简单且易于生物降解的有机酸。
对燃料电池或者电芬顿系统进行电极改性强化,能提高MFC-电芬顿系统的总体性能。
Dios等[22]利用MFC和电芬顿技术中的真菌细菌组合开发了废物可持续能源生产的潜力,该系统能产生稳定的电,当在阴极室中发生电芬顿反应时,该配置可达到约1000 mV 的稳定电压,证明了MFC-电芬顿,同时进行染料脱色和发电的双重益处。
MFC-电芬顿耦合系统系统中,可以利用MFC阴极室连续产生H2O2,促进芬顿系统降解废水中的染料[23]。
Chunhua Feng等[24]发现具有改性电极的MFC通过O2的双电子还原能在阴极室中有H2O2最大生成速率,而H2O2浓度的增加有利于H2O2与Fe2+反应产生的羟基自由基数量的增加,能使电芬顿过程的氧化能力提高到偶氮染料的脱色和矿化。
3 MFC-PEC耦合技术近年来,光电催化(PEC)由于克服了光催化过程中光生电子-空穴对的复合这一限制因素而成为研究热点[56-27],利用MFC与PEC耦合可利用MFC产生的电能降低PEC的能耗和提高处理效率成为MFC研究的新方向。
SHI-JIE YUAN等[28]在生物电化学系统中,利用微生物燃料电池产生的能量,有效地减少了有机污染物-对硝基苯酚。
耦合系统中,电化学和光催化氧化过程之间存在协同效应,表现出更快速地降解对硝基苯酚,其最大降解速率常数0.411 h-1,为单个光催化和电化学方法的两倍。
吕淑彬等[29]在以TiO2纳米孔阵列电极作光阳极,金属铂黑做阴极,设计了一种光催化废水燃料电池,用于有机废水处理和废水有机物化学能的综合利用,该系统开路电压为1.16 V,短路电流为1.28 mA·cm-2,最大输出功率密度达[收稿日期] 2019-03-26[基金项目] 长沙理工大学电力与交通材料保护湖南省重点实验室开放基金资助项目(2017CL09);2018年度湖南省重点研发计划项目(2018SK2011) [作者简介] 阳柳(1994-),女,湖南人,硕士研究生,主要研究方向废水处理及污泥资源化。
*为通讯作者。
到0.28 mW·cm-2。
Manman Zhang[30]用MFC-PEC系统去除难降解的有机污染物(即苯酚和苯胺),同时回收能量。
MFC过程产生的电流用于驱动PEC反应,结果显示,与单一PEC或MFC工艺相比,MFC-PEC组合工艺显示出更高的污染物和化学需氧量(COD)去除能力和产电生产,苯酚和苯胺的COD去除效率分别约为96 %(700至29 mg·L-1)和70 %(165至49 mg·L-1)。
提高光电极的性能能显著提高染料的脱色。
研究发现,二氧化钛纳米管用作PEC 部分的光电极,能实现大于85 %的脱色[31]。
4 MFC-CW耦合技术人工湿地(CW)基质中的细菌使复杂的有机化合物转化为可供植物和微生物利用的无机化合物,在此过程中能够产生电子,使之具备产电潜力,从而MFC-CW耦合系统在污水处理中作为一种兼具污水处理和产电的方式,正受到越来越多的关注。
Yadav等[32]最早进行了这一尝试,成功将MFC嵌入处置合成染料废水的CW中用以处理废水,得到0.035 W·m-2的功率密度。