中考数学函数知识点讲解

合集下载

初三函数全部知识点总结

初三函数全部知识点总结

初三函数全部知识点总结一、函数的概念1. 函数的定义函数是一种对应关系,它把一个自变量的值对应到一个因变量的值上。

一般地,函数f(x)可以表示为y=f(x),其中x为自变量,y为因变量。

2. 自变量与因变量自变量是函数中独立变化的变量,通常用x表示;因变量是根据自变量的取值而定的变量,通常用y表示。

3. 定义域和值域定义域是自变量的所有可能取值的集合;值域是因变量的所有可能取值的集合。

4. 函数的图像函数的图像是函数在平面直角坐标系中的点的集合。

二、函数的表示方法1. 用一个通项公式表示函数函数f(x)有时可以用一个表达式y=f(x)表示。

2. 用函数的图像表示函数函数的图像是函数在平面直角坐标系中的点的集合。

三、常见函数及其性质1. 线性函数线性函数是具有形式y=kx的函数,其中k为常数。

2. 幂函数幂函数是具有形式y=ax^n的函数,其中a和n为常数。

3. 指数函数指数函数是具有形式y=a^x的函数,其中a为正数且不等于1。

4. 对数函数对数函数是指数函数的逆运算。

5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等。

四、函数的性质1. 奇偶性如果对于函数f(x),有f(-x)=f(x),则称f(x)为偶函数;如果对于函数f(x),有f(-x)=-f(x),则称f(x)为奇函数。

2. 增减性如果函数f(x)在区间(a,b)上有f'(x)>0,那么f(x)在区间(a,b)上是增函数;如果函数f(x)在区间(a,b)上有f'(x)<0,那么f(x)在区间(a,b)上是减函数。

3. 最值和零点函数在定义域内可能有最大值、最小值和零点。

4. 对称性有关函数的图像可能有关于y轴对称、关于x轴对称、或者关于原点对称的性质。

五、函数的运算1. 基本函数的运算加减乘除四则运算和复合运算。

2. 复合函数复合函数是一个函数作为另一个函数的自变量而得到的函数。

3. 函数的反函数函数的反函数是满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数。

中考函数必备知识点归纳

中考函数必备知识点归纳

中考函数必备知识点归纳函数是中考数学中的一个重要概念,掌握好函数的知识点对于解决中考数学问题至关重要。

以下是中考必备的函数知识点归纳:1. 函数的概念:函数是一种特殊的关系,它将一个集合中的每一个元素都映射到另一个集合中的一个元素。

在数学中,我们通常用\( y =f(x) \)来表示函数,其中\( f \)是函数名,\( x \)是自变量,\( y \)是因变量。

2. 函数的三要素:定义域、值域和对应法则。

定义域是函数中自变量的所有可能取值的集合;值域是函数中因变量的所有可能取值的集合;对应法则是确定函数值的规则。

3. 函数的表示方法:列表法、图象法和解析法。

列表法通过列出自变量和对应的因变量来表示函数;图象法通过函数的图象来表示函数;解析法通过数学表达式来表示函数。

4. 函数的类型:一次函数、二次函数、反比例函数等。

一次函数的一般形式为\( y = ax + b \);二次函数的一般形式为\( y = ax^2 +bx + c \);反比例函数的一般形式为\( y = \frac{k}{x} \)。

5. 函数的图象:一次函数的图象是直线,二次函数的图象是抛物线,反比例函数的图象是双曲线。

图象的对称性、顶点、焦点等特征是中考中常考的内容。

6. 函数的增减性:函数的增减性是指函数值随自变量变化的趋势。

一次函数和反比例函数具有单调性,即要么一直增加要么一直减少;而二次函数则可能在某个区间内增加,在另一个区间内减少。

7. 函数的极值:极值是指函数在某点的局部最大值或最小值。

二次函数的极值通常出现在对称轴上。

8. 函数的复合:两个函数的复合是指先对自变量进行一个函数的运算,然后再用另一个函数进行运算。

复合函数的求解是中考中的难点。

9. 函数的解析式:解析式是函数的数学表达式,掌握如何根据已知条件求出函数的解析式是中考中的重要技能。

10. 函数的实际应用:函数在实际问题中的应用非常广泛,如速度与时间的关系、成本与产量的关系等,中考中经常会出现将函数应用到实际问题中的题目。

初中函数知识点总结(全面)

初中函数知识点总结(全面)

初中函数知识点总结(全面)1. 函数的概念函数是一种特殊的关系,它将一个自变量的值映射到唯一的因变量的值。

函数通常用来描述两个变量之间的依赖关系。

2. 函数的表示方式函数可以通过方程、表格和图像等方式来表示。

方程表示函数时,可以使用变量和常数来描述自变量和因变量之间的关系。

表格则将自变量和因变量的值以表格形式列出。

图像则以直线、曲线或者其他形状来表示函数的变化规律。

3. 函数的定义域和值域函数的定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。

定义域和值域的确定需要根据函数的实际情况来分析和判断。

4. 常见的函数类型初中阶段研究的函数类型包括线性函数、二次函数、反比例函数和指数函数等。

线性函数是一种最简单的函数类型,它的方程形式为y = kx + b,其中k和b分别代表斜率和截距。

二次函数的方程形式为y = ax^2 + bx + c,其中a、b和c分别代表二次项、一次项和常数项的系数。

5. 函数的图像特征函数的图像可以通过斜率和截距、顶点坐标、对称轴和开口方向等特征来描述。

对于线性函数,斜率代表图像的倾斜程度,截距代表图像与y轴的交点;对于二次函数,顶点坐标代表图像的最高点或者最低点的位置,对称轴代表图像的对称线。

6. 函数的应用函数在数学和实际生活中都有广泛的应用。

在数学中,函数可以用来解决各种关系和变化的问题,例如求解方程、确定最大值和最小值等。

在实际生活中,函数可以用来描述各种现象和规律,例如汽车的加速度、温度的变化等。

总结:初中函数知识点包括函数的概念、表示方式、定义域和值域、常见的函数类型、图像特征和应用。

掌握这些知识点可以帮助学生更好地理解和应用函数,提高数学能力。

以上是初中函数知识点的全面总结,希望对你的学习有所帮助!。

(完整版)初中数学函数知识点归纳

(完整版)初中数学函数知识点归纳

初中数学函数板块的知识点总结与归类学习方法初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。

初中数学从性质上分,可以分为:一次函数、反比例函数、二次函 数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。

一、一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。

2. 图象及其性质 (1)形状、直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+当时,;当时,与交于,点。

k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。

(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。

(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。

3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。

(二)反比例函数 1. 定义:应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x==-⎧⎨⎪⎩⎪()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。

初三数学函数知识点归纳

初三数学函数知识点归纳

初三数学函数知识点归纳一、函数的概念1. 定义在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。

2. 函数的表示方法解析法:用数学式子表示两个变量之间的函数关系,如。

列表法:通过列出自变量与函数的对应值来表示函数关系,例如,在研究正方形面积与边长的关系时,可列出时,;时,等表格。

图象法:用图象来表示函数关系,如一次函数的图象是一条直线。

二、一次函数1. 定义形如是常数,的函数叫做一次函数。

当时,叫做正比例函数,正比例函数是特殊的一次函数。

2. 一次函数的图象与性质图象:一次函数的图象是一条直线,叫做直线在轴上的截距。

当,时,图象经过一、二、三象限;当,时,图象经过一、三、四象限;当,时,图象经过一、二、四象限;当,时,图象经过二、三、四象限。

性质当时,随的增大而增大;当时,随的增大而减小。

3. 一次函数的解析式的确定通常采用待定系数法,设出函数解析式,根据已知条件列出关于、的方程组,解方程组求出、的值,从而确定函数解析式。

三、反比例函数1. 定义形如为常数,的函数叫做反比例函数。

2. 反比例函数的图象与性质图象:反比例函数的图象是双曲线。

当时,双曲线的两支分别位于第一、三象限,在每一象限内随的增大而减小;当时,双曲线的两支分别位于第二、四象限,在每一象限内随的增大而增大。

反比例函数图象关于原点对称,它的对称轴是直线和。

3. 反比例函数解析式的确定同样采用待定系数法,设,把已知点的坐标代入求出的值即可确定解析式。

四、二次函数1. 定义形如是常数,的函数叫做二次函数。

2. 二次函数的图象与性质图象:二次函数的图象是一条抛物线。

顶点坐标:。

对称轴:直线。

性质当时,抛物线开口向上,在对称轴左侧随的增大而减小,在对称轴右侧随的增大而增大,函数有最小值;当时,抛物线开口向下,在对称轴左侧随的增大而增大,在对称轴右侧随的增大而减小,函数有最大值。

函数应用中考知识点总结

函数应用中考知识点总结

函数应用中考知识点总结一、函数的定义函数是一种特殊的关系,它将一个或多个输入值映射到一个输出值。

函数通常用字母表示,例如f(x),其中x表示输入值,f(x)表示输出值。

函数的定义包括定义域、值域和对应关系。

其中,定义域是指函数可以接受的输入值的范围,值域是函数输出值的集合,对应关系则描述了输入值与输出值之间的映射关系。

例如,对于函数f(x)=x^2,其定义域为实数集,值域为非负实数集,对应关系为x与x^2的映射关系。

二、函数的性质在中考中,学生需要掌握函数的一些基本性质,包括奇偶性、周期性和单调性等。

其中,奇偶性是指函数图像关于原点对称时称为奇函数,关于y轴对称时称为偶函数;周期性是指函数在一定范围内具有重复的规律性;单调性是指函数在定义域内的增减规律。

这些性质对于理解函数的图像和求解函数的最值等问题具有重要的作用。

三、函数的图像函数的图像是函数在平面直角坐标系中的几何表现,它可以帮助我们直观地理解函数的性质和特点。

在中考中,学生需要学会绘制函数的图像,并理解函数图像与函数性质之间的关系。

例如,对于一元二次函数f(x)=ax^2+bx+c,学生可以通过绘制函数的图像来理解函数的开口方向、顶点坐标和对称轴等特点,从而更好地理解函数的性质和应用。

四、函数的应用函数在实际问题中具有广泛的应用,它可以帮助我们描述和求解各种实际问题。

在中考中,学生需要学会应用函数解答与函数相关的问题,例如函数的定义域、值域和逆函数的求解等。

此外,函数还可以帮助我们求解各种实际问题,如函数模型的建立和函数方程的求解等。

通过学习函数的应用,学生可以更好地理解函数的概念和性质,并将其运用到实际问题中去。

总之,函数是数学和计算机科学中的重要概念,它在解决问题和设计算法时起着至关重要的作用。

在中考中,函数也是一个重要的知识点,学生需要掌握函数的定义、性质和应用等方面的知识。

通过本文的总结,相信学生们可以更好地理解函数的相关知识,从而更好地应对中考中与函数相关的各种问题。

初中数学函数知识点汇总

初中数学函数知识点汇总

初中数学函数知识点汇总函数是数学中的一个概念,它描述了一个数集和另一个数集之间的对应关系。

在初中数学中,函数是一个重要的知识点,它包含了很多基本概念和性质。

下面是初中数学函数知识点的汇总。

1.函数的定义与表示函数定义为:设有两个非空数集A,B,如果按照其中一种确定的方法,对于A中的每个元素a,都能找到B中唯一确定的一个元素b和它对应,则称这种对应关系为函数,记作y=f(x)。

其中,x是自变量,y是因变量。

2.函数的图像函数的图像是用平面直角坐标系表示函数的形状和特点。

横坐标表示自变量x,纵坐标表示因变量y,函数的图像是由平面上的一些点构成的。

3.定义域和值域函数的定义域是指自变量取值的范围,值域是指因变量取值的范围。

4.一次函数(线性函数)一次函数的定义为:f(x)=kx+b,其中,k为斜率,b为截距。

一次函数的图像是一条直线,斜率越大,直线越陡峭;斜率为0时,直线平行于x轴,斜率不存在时,直线垂直于x轴。

5.二次函数(抛物线函数)二次函数的定义为:f(x)=ax²+bx+c,其中,a不等于0。

二次函数的图像是一个抛物线,开口方向取决于a的正负,抛物线的顶点坐标为(-b/2a,f(-b/2a))。

6.幂函数幂函数的定义为:f(x)=x^a,其中,a为常数。

幂函数的图像取决于幂指数a的值:当a>1时,图像上升得很快;当0<a<1时,图像上升得很慢;当a<0时,图像在y轴下方,但是a为负偶数时,图像在y轴上方。

7.反比例函数反比例函数的定义为:f(x)=a/x,其中,a为常数,且a不等于0。

反比例函数的图像是一个通过原点的开口向右上或右下的双曲线。

8.复合函数复合函数是指一个函数的自变量是另一个函数的因变量。

9.奇偶函数奇函数的定义为:f(-x)=-f(x),即函数关于原点对称。

偶函数的定义为:f(-x)=f(x),即函数关于y轴对称。

10.函数的单调性和极值函数的单调性是指函数在一些区间上的变化趋势,可以分为增函数和减函数。

初中数学函数知识点归纳

初中数学函数知识点归纳

初中数学函数知识点归纳初中数学中的函数知识点主要包括函数的定义、函数的性质、函数的表示方法、函数之间的关系以及函数的应用等内容。

下面我将对这些知识点进行归纳总结。

一、函数的定义:1.自变量和因变量:函数是一种数与数之间的对应关系,其中自变量是输入的数值,因变量是输出的数值。

2.值域:函数的值域是所有可能输出的数值的集合,通常用符号D表示。

3.定义域:函数的定义域是所有可能输入的数值的集合,通常用符号R表示。

二、函数的性质:1.奇偶性:函数f(x)的性质与其自变量的奇偶性有关,如果f(-x)=f(x),则函数是偶函数;如果f(-x)=-f(x),则函数是奇函数。

2.单调性:函数在一些定义域上的增减性,可以分为递增和递减。

3.周期性:函数在一些定义域上的输出数值存在重复规律,称为函数的周期性。

三、函数的表示方法:1.函数表:通过给定自变量的数值,得出相应的因变量的数值。

2.函数图像:将函数的自变量和因变量分别作为x轴和y轴坐标,画出函数的图像。

3.函数公式:通过表示自变量与因变量之间关系的数学式子来表示函数。

四、函数之间的关系:1.复合函数:若函数f(x)的值域是另一个函数g(x)的定义域,则通过将f(x)的输出作为g(x)的输入,得到的新函数称为复合函数。

2.反函数:若函数f(x)的一些值对应唯一的自变量,且该自变量对应的值也能唯一地确定f(x)的值,则称函数f(x)具有反函数,记作f^(-1)(x)。

3.逆函数:若函数f(x)的自变量与因变量对换,得到新的函数g(x),则称g(x)为函数f(x)的逆函数,记作g(x)=f^(-1)(x)。

五、函数的应用:1.函数的模型:可以用函数来表示一些实际问题中的关系,如速度函数、利润函数等。

2.函数的最值:通过求函数的最大值和最小值,可以解决许多优化问题。

3.函数的图像在坐标系中的位置和形状:通过观察函数的图像,可以判断其基本形状、范围、特征点等。

六、常见的函数类型:1. 一次函数:f(x) = kx + b,其中k和b为常数,其图像为一条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学二次函数知识点1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .3.二次函数c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 10.几种特殊的二次函数的图像特征如下:(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切;③没有交点⇔0<∆⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故a cx x a b x x =⋅-=+2121,()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121一次函数与反比例函数考点一、平面直角坐标系 (3分) 1、平面直角坐标系在平面画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

考点二、不同位置的点的坐标的特征 (3分) 1、各象限点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x点P(x,y)在第三象限0,0<<⇔y x点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数 点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y(2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x + 考点三、函数及其相关概念 (3~8分) 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值围。

3、函数的三种表示法及其优缺点 (1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

考点四、正比例函数和一次函数 (3~10分) 1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。

这时,y 叫做x 的正比例函数。

2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

4、正比例函数的性质,,一般地,正比例函数kx y =有下列性质: (1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。

5、一次函数的性质,,一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。

确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。

解这类问题的一般方法是待定系数法。

考点五、反比例函数 (3~10分) 1、反比例函数的概念一般地,函数xk y =(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值围是x ≠0的一切实数,函数的取值围也是一切非零实数。

2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

相关文档
最新文档