2020年高中数学新教材变式题13 概率与统计
2020年高考数学试题分项版—统计概率(原卷版)

2020年高考数学试题分项版——统计概率(原卷版)一、选择题1.(2020·全国Ⅰ理,5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e xD .y =a +b ln x2.(2020·全国Ⅰ理,8)⎝⎛⎭⎫x +y2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10 C .15 D .203.(2020·全国Ⅱ理,3)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1 600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名4.(2020·全国Ⅲ理,3)在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑i =14pi =1,则下面四种情形中,对应样本的标准差最大的一组是()A .p 1=p 4=0.1,p 2=p 3=0.4B .p 1=p 4=0.4,p 2=p 3=0.1C .p 1=p 4=0.2,p 2=p 3=0.3D .p 1=p 4=0.3,p 2=p 3=0.25.(2020·新高考全国Ⅰ,3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A .120种 B .90种 C .60种 D .30种6.(2020·新高考全国Ⅰ,12)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着p i 的增大而增大C .若p i =1n(i =1,2,…,n ),则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y )7.(2020·北京,3)在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .108.(2020·新高考全国Ⅱ,6)3名大学生利用假期到2个山村参加扶贫工作,每名大学生只去1个村,每个村至少1人,则不同的分配方案共有( ) A .4种 B .5种 C .6种 D .8种9.(2020·新高考全国Ⅱ,9)我国新冠肺炎疫情防控进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A .这11天复工指数和复产指数均逐日增加B .这11天期间,复产指数增量大于复工指数的增量C .第3天至第11天复工复产指数均增大都超过80%D .第9天至第11天复产指数增量大于复工指数的增量10.(2020·天津,4)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47]内的个数为( )A .10B .18C .20D .3611.(2020·全国Ⅰ文,4)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B.25 C.12 D.4512.(2020·全国Ⅰ文,5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e xD .y =a +b ln x13.(2020·全国Ⅱ文,3)如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k -j =3且j -i =4,则称a i ,a j ,a k 为原位大三和弦;若k -j =4且j -i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .1514.(2020·全国Ⅱ文,4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名15.(2020·全国Ⅲ文,3)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( )A .0.01B .0.1C .1D .10 二、填空题1.(2020·全国Ⅱ理,14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有________种. 2.(2020·全国Ⅲ理,14)⎝⎛⎭⎫x 2+2x 6的展开式中常数项是________.(用数字作答) 3.(2020·天津,11)在⎝⎛⎭⎫x +2x 25的展开式中,x 2的系数是________. 4.(2020·天津,13)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________;甲、乙两球至少有一个落入盒子的概率为________.5.(2020·江苏,3)已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是________. 6.(2020·江苏,4)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.7.(2020·浙江,12)二项展开式(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 4=________,a 1+a 3+a 5=________.8.(2020·浙江,16)盒中有4个球,其中1个红球,1个绿球,2 个黄球,从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P (ξ=0)=________,E (ξ)=________. 三、解答题1.(2020·全国Ⅰ理,19)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.2.(2020·全国Ⅱ理,18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r))niix y x y --∑((,2≈1.414.3.(2020·全国Ⅲ理,18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),4.(2020·新高考全国Ⅰ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),5.(2020·新高考全国Ⅱ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),6.(2020·北京,18)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率,该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(3)将该校学生支持方案二的概率估计值记为p0,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1,试比较p0与p1的大小.(结论不要求证明)7.(2020·江苏,23)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示).8.(2020·全国Ⅰ文,17)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?9.(2020·全国Ⅱ文,18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r))niix y x y --∑((,2≈1.414.10.(2020·全国Ⅲ文,18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),。
2020年高考数学精选专题(含答案详解)13 概率

2020年高考数学精选专题(含答案详解)一、单选题(共12题;共24分)1.如图, E 、 F 、 G 、 H 为正方形 ABCD 各边上的点,图中曲线为圆弧,两圆弧分别以 B 、 D 为圆心, BO 、 DO 为半径( O 为正方形的中心).现向该正方形内随机抛掷 1 枚豆子,则该枚豆子落在阴影部分的概率为( )A. π4B. π5C. π6D. π82.中国武汉于2019年10月18日至2019年10月27日成功举办了第七届世界军人运动会.来自109个国家的9300余名运动员同台竞技.经过激烈的角逐,奖牌榜的前3名如下:某数学爱好者采用分层抽样的方式,从中国和巴西获得金牌选手中抽取了22名获奖代表.从这22名中随机抽取3人, 则这3人中中国选手恰好1人的概率为( )A. 2257 B. 191540 C. 571540 D. 17115403.齐王有上等、中等、下等马各一匹,田忌也有上等、中等、下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现在从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜得概率为( )A. 49 B. 59 C. 23 D. 794.两个实习生每人加工一个零件.加工为一等品的概率分别为 56 和 34 ,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A. 12 B. 13 C. 512 D. 165.我国数学家陈最润在哥德巴赫猜想的研究中取得了世界瞩目的成就.哥德巴赫猜想简述为“每个大于 2 的偶数可以表示为两个素数的和”(注:如果一个大于 1 的整数除了 1 和自身外无其他正因数,则称这个整数为素数),如 40=3+37 .在不超过 40 的素数,随机选取 2 个不同的数,这两个数的和等于 40 的概率是( )A. 126 B. 122 C. 117 D. 1156.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”. 现有4 名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游, 假设每名同学均从这四个地方中任意选取一个去旅游, 则恰有一个地方未被选中的概率为( )A. 2764 B. 916 C. 81256 D. 7167.割圆术是估算圆周率的科学方法,由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率为 3.1416 ,在半径为 1 的圆内任取一点,则该点取自其内接正十二边形的概率为( )A. 1π B. 3π C. √3πD.3√32π8.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数 y =2sin π8x 的图象分割为两个对称的鱼形图案(如图),其中阴影部分小圆的周长均为 4π ,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A. 136B. 118C. 116D. 189.若某群体中的成员只用现金支付的概率为0.15,既用现金支付也用非现金支付的概率为0.35,则仅用非现金支付的概率为( )A. 0.2B. 0.4C. 0.5D. 0.810.《算法统宗》 中有一图形称为“方五斜七图”,注曰:方五斜七者此乃言其大略矣,内方五尺外方七尺有奇. 实际上,这是一种开平方的近似计算,即用 7 近似表示 5√2 ,当内方的边长为5 时, 外方的边长为 5√2 , 略大于7.如图所示,在外方内随机取一点,则此点取自内方的概率为( )A. 12B. √22C. 57D. 254911.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A. 13 B. 12 C. 23 D. 5612.《西游记》《三国演义》《水浒传》《红楼梦》是我国古典小说四大名著.若在这四大名著中,任取2种进行阅读,则取到《红楼梦》的概率为( )A. 23 B. 12 C. 13 D. 14二、填空题(共5题;共5分)13.如图,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,该几何体是由一个圆锥和一个圆柱组成,若在这个几何体内任取一点,则该点取自圆锥内的概率为________.14.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为________.15.两个男生一个女生并列站成一排,其中两男生相邻的概率为________16.某学生选择物理、化学、地理三门学科参加等级考,已知每门学科考 A + 得70分,考 A 得67分,考 B + 得64分,该生每门学科均不低于64分,则其总分至少为207分的概率为________17.国产杀毒软件进行比赛,每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是 56 , 35 , 34 , 13 ,且各轮考核能否通过互不影响.则该软件至多进入第三轮考核的概率为________.三、解答题(共4题;共40分)18.为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成 [0,2) , [2,4) , [4,6) , [6,8) , [8,10) , [10,12] 六组,得到如下频率分布直方图.(1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);(2)若从答对题数在[2,6)内的学生中随机抽取2人,求恰有1人答对题数在[2,4)内的概率.19.有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)将红色卡片和蓝色卡片分别放在两个袋中,然后从两个袋中各取一张卡片,求两张卡片数字之积为偶数的概率(2)将五张卡片放在一个袋子中,从中任取两张,求两张卡片颜色不同的概率20.每当《我心永恒》这首感人唯美的歌曲回荡在我们耳边时,便会想起电影《泰坦尼克号》中一暮暮感人画面,让我们明白了什么是人类的“真、善、美”.为了推动我市旅游发展和带动全市经济,更为了向外界传递遂宁人民的“真、善、美”.我市某地将按“泰坦尼克号”原型1:1比例重新修建.为了了解该旅游开发在大众中的熟知度,随机从本市20∼70岁的人群中抽取了a人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该旅游开发将在我市哪个地方建成?”,统计结果如下表所示:(1)求出m(x+y+n)的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组抽取的人数;(3)在(2)中抽取的6人中随机抽取2人,求所抽取的人中恰好没有年龄在[30, 40)段的概率.21.为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.经统计,成绩均在2米到12米之间,把获得的所有数据平均分成[2,4),[4,6),[6,8),[8,10),[10,12]五组,得到频率分布直方图如图所示.(Ⅰ)如果有4名学生的成绩在10米到12米之间,求参加“掷实心球”项目测试的人数;(Ⅱ)若测试数据与成绩之间的关系如下表:根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率.(Ⅲ)在(Ⅱ)的条件下,从该市初二年级男生中任意选取两人,假定两人的成绩是否优秀之间没有影响,求两人中恰有一人“掷实心球”成绩为优秀的概率.一、单选题 1.【答案】 A【解析】【解答】设正方形的边长为 2 ,则该正方形的对角线长为 2√2 ,则扇形的半径为 √2 , 两个扇形的面积之和为 2×π4×(√2)2=π ,正方形的面积为 22=4 , 因此,该枚豆子落在阴影部分的概率为 π4 . 故答案为:A.【分析】设正方形的边长为 2 ,可得知两个扇形的半径均为 √2 ,并计算出两个扇形的面积之和,利用几何概型的概率公式可计算出所求事件的概率. 2.【答案】 C【解析】【解答】解:中国和巴西获得金牌总数为154,按照分层抽样方法, 22名获奖代表中有中国选手19个,巴西选手3个, 故这3人中中国选手恰好1人的概率 P =C 191C 32C 223=571540,故答案为:C .【分析】先根据分层抽样确定中国选手的人数,再利用组合数根据古典概型的概率计算公式求解即可. 3.【答案】 C【解析】【解答】设齐王上等、中等、下等马分別为 A,B,C ,田忌上等、中等、下等马分别为 a,b,c , 现从双方的马匹中随机各选一匹进行一场比赛,基本事件有: (A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(C,a),(C,b),(C,c) ,共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有: (A,a),(A,b),(A,c),(B,b),(B,c),(C,c) ,共 6种, ∴ 齐王的马获胜的概率为 P =69=23 ,故选C.【分析】现从双方的马匹中随机各选一匹进行一场比赛 ,利用列举法求出基本事件有9种,齐王的马获胜包含的基本事件有6种,利用古典概型概率公式可求出齐王的马获胜的概率. 4.【答案】 B【解析】【解答】记两个零件中恰好有一个一等品的事件为A , 即仅第一个实习生加工一等品为事件 A 1 , 仅第二个实习生加工一等品为事件 A 2 两种情况, 则 P(A)=P(A 1)+P(A 2)=56×14+16×34=13 , 故答案为:B .【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案. 5.【答案】 B【解析】【解答】40以内的素数为2,3,5,7,11,13,17,19,23,29,31,37共12个,任选两个的方法数有C122=12×112×1=66种,和为40的有3+37=40,11+29=40,17+23=40共3种,所以不超过40的素数,随机选取2个不同的数,这两个数的和等于40的概率是366=122.故答案为:B【分析】先求得40以内的素数的个数,然后根据古典概型概率计算公式,计算出所求的概率.6.【答案】B【解析】【解答】4名同学去旅游的所有情况有:44=256种恰有一个地方未被选中共有:C41⋅C42C21A22⋅A33=144种情况∴恰有一个地方未被选中的概率:p=144256=916本题正确选项:B【分析】根据排列组合的知识分别求解出恰有一个地方未被选中的情况和所有情况,利用古典概型计算可得结果.7.【答案】B【解析】【解答】圆内接正十二边形的每条边在圆内所对的圆心角为2π12=π6,所以,半径为1的圆的内接正十二边形的面积为12×12×12×sinπ6=3,因此,在半径为1的圆内任取一点,则该点取自其内接正十二边形的概率为3π.故选:B.【分析】计算出圆内接正十二边形的面积和圆的面积,然后利用几何概型的概率公式可计算出所求事件的概率.8.【答案】D【解析】【解答】由已知,可得大圆的直径为y=3sin π8x的周期,由T =2ππ8=16,可知大圆半径为8,则面积为S=64π,一个小圆的周长l=2πr=4∴r=2故小圆的面积S′=π•22=4π,在大圆内随机取一点,此点取自阴影部分的概率为:P =2S′S =8π64π=18,故答案为:D.【分析】根据几何概型的概率公式,求出大圆的面积和小圆的面积,计算面积比即可.9.【答案】C【解析】【解答】某群体中的成员只用现金支付的概率为0.15,既用现金支付也用非现金支付的概率为0.35,∴不用现金支付的概率为:p=1-0.15-0.35=0.5.故答案为:C【分析】利用对立事件概率计算公式能求出不用现金支付的概率 10.【答案】 A【解析】【解答】由题意可得 S 内方=25 , S 外方=50 , 则外方内随机取一点,则此点取自内方的概率为 2550=12 , 故答案为:A .【分析】结合题意可计算出 S 内方=25 , S 外方=50 ,根据几何概型概率公式计算即可. 11.【答案】 C【解析】【解答】将4种颜色的花种任选2种种在一个花坛中,余下2种种在另一个花坛中,有6种种法,其中红色和紫色的花不在同一个花坛的种数有4种,故所求概率为 23 , 故答案为:C.【分析】作为客观题形式出现的古典概型试题,一般难度不大,解答中的常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举. 12.【答案】 B【解析】【解答】4本名著选两本共有 C 42=6 种,选取的两本中含有《红楼梦》的共有 C 31=3 种,所以任取2种进行阅读,则取到《红楼梦》的概率为 36=12 。
2020年人教版高中数学单元测试-概率统计综合(附答案)

2020年人教版新课标高中数学模块测试卷概率统计综合一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲一定会胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指明天降水的可能性是90%2.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()图1图2A.1%B.2%C.3%D.5%3.如图是容量为100的某样本的质量的频率分布直方图,则由图可估计样本质量的中位数为()A.11B.11.5C.12D.12.54.从一批羽毛球中任取一个,如果取到质量小于4.8g的概率是0.3,质量不小于4.85g的概率是0.32,那么质量在[4.8,4.85)范围内的概率是()A.0.62B.0.38C.0.70D.0.685.空气质量指数AQI是一种反映和评价空气质量的标准,AQI指数与空气质量对应如表所示:下图是某城市2018年11月全月的AQI变化统计图.根据统计图判断,下列结论正确的是()A.从整体上看,这个月的空气质量越来越差B.从整体上看,前半月的空气质量好于后半月的空气质量C.从AQI数据看,前半月的方差大于后半月的方差D.从AQI数据看,前半月的平均值小于后半月的平均值6.AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或污染的程度.AQI 共分六级:一级优(0~50);二级良(51~100);三级轻度污染(101~150);四级中度污染(151~200);五级重度污染(201~300);六级严重污染(大于300).如图是某市2019年4月份随机抽取10天的AQI指数的茎叶图,利用该样本估计该市2020年4月份空气质量为优的天数为()A.3B.4C.12D.217.黄冈市的天气预报显示,大别山区在今后的三天中,一天有强浓雾的概率为40%,现用随机模拟的方法计这三天中至少有两天有强浓雾的概率:先利用计算器产生0~9之间整数值的随机数,并用0,1,2,3,4,表示没有强浓雾,用6,7,8,9表示有强浓雾,再以每个随机数作为一组,代表三天的天气情况,产生了如20组随机数:779 537 113 730 588 506 027 394 357 231683 569 479 812 842 273 925 191 978 520则这三天中至少有两天有强浓雾的概率近似为()A.14B.25C.310D.158.如果3个正整数可作为一个直角三角形三条边的长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .310B .15C .110D .1209.洛书古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从4个阴数中随机抽取2个数,则能使这2个数与居中阳数之和等于15的概率是( )A .12B .23C .14D .1310.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A .22,100x s +B .22100,100x s ++C .2,x sD .2100,x s +二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.如图是某电视台主办的歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),则下列结论中不正确的是( )A .甲选手的平均分有可能和乙选手的平均分相等B .甲选手的平均分有可能比乙选手的平均分高C .甲选手得分的中位数比乙选手得分的中位数低D .甲选手得分的众数比乙选手得分的众数高12.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是( )A .2018年3月至2019年3月全国居民消费价格同比均上涨B .2018年3月至2019年3月全国居民消费价格环比有涨有跌C .2019年3月全国居民消费价格同比涨幅最大D .2019年3月全国居民消费价格环比变化最快三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.某单位200名职工的年龄分布情况如图所示,现要从中抽取50名职工的年龄作为样本,若采用分层抽样方法,则40~50岁年龄段应抽取________人.14.甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图所示,如果分别从甲、乙两组中各随机选取一名同学,则这两名同学的成绩相同的概率是________.15.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈.若||1a b -≤,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为________.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a ________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)直接根据茎叶图判断哪个班学生的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.18.(12分)改革开放40年来,体育产业的蓬勃发展反映了“健康中国”理念的普及.如图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).(1)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多500亿元以上的概率;(2)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;(3)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(只写结论,不要求证明)19.(12分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),月用水量不超过x 的部分按平价收费,超出x的部分按议价收费.为了了解全市居民用水量的情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中a的值;(2)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.20.(12分)一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每枝2元,云南空运来的百合花每枝进价1.6元,本地供应商处百合花每枝进价1.8元,微店这10天的订单中百合花的日需求量(单位:枝)依次为251,255,231,243,263,241,265,255,244,252.(1)求今年四月前10天订单中百合花日需求量的平均数和众数,并完成频率分布直方图;(2)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(1)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值代表,位于各区间的频率代替位于该区间的概率),微店每天从云南固定空运250枝还是255枝百合花,才能使四月后20天百合花销售总利润更大?21.(12分)2018年8月8日是我国第十个全民健身日,其主题是新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄(单位:岁)分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数和中位数的估计值;(2)①若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;②已知该小区年龄在[10,80]内的总人数为2 000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.,两道题目22.(12分)在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A B中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001—900.(1)若采用随机数表法抽样,并按照以下随机数表,以方框内的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端,写出样本编号的中位数;05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 7407 97 10 88 23 09 98 42 99 64 61 71 62 99 15 58 05 77 09 5151 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 4826 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 9414 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43(2)采用分层抽样的方法按照学生选择A题目或B题目,将成绩分为两层,且样本中A题目的成绩有8个,平均数为7,方差为4;样本中B题目的成绩有2个,平均数为8,方差为1.用样本估计总体,求900名考生选做题得分的平均数与方差。
【高考冲刺】2020年高考数学(理数) 概率与统计 大题(含答案解析)

【高考复习】2020年高考数学(理数) 概率与统计大题1.在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机下单和支付.出门不带现金的人数正在迅速增加.中国人民大学和法国调查公司益普索(Ipsos)合作,调查了腾讯服务的6 000名用户,从中随机抽取了60名,统计他们出门随身携带的现金(单位:元)如茎叶图所示,规定:随身携带的现金在100元以下的为“淡定族”,其他为“非淡定族”.(1)根据上述样本数据,列出2×2列联表,判断是否有75%的把握认为“淡定族”与“性别”有关?(2)用样本估计总体,若从腾讯服务的用户中随机抽取3人,设这3人中“淡定族”的人数为随机变量ξ,求随机变量ξ的概率分布列及数学期望.参考公式:K2=n ad-bc2a+b c+d a+c b+d,其中n=a+b+c+d.参考数据:2.第四届世界互联网大会在浙江乌镇隆重召开,人工智能技术深受全世界人民的关注,不同年龄段的人群关注人工智能技术应用与发展的侧重点有明显的不同,某中等发达城市的市场咨询与投资民调机构在该市对市民关注人工智能技术应用与发展的侧重方向进行调查,随机抽取1 000名市民,将他们的年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],并绘制了如图所示的频率分布直方图.(1)求这 1 000名市民年龄的平均数和中位数(同一组中的数据用该组区间的中点值作代表);(2)调查发现年龄在[20,40)的市民侧重关注人工智能技术在学习与工作方面的应用与发展,其中关注智能办公的共有100人,将样本的频率视为总体的频率,从该市年龄在[20,40)的市民中随机抽取300人,请估计这300人中关注智能办公的人数;(3)用样本的频率代替概率,现从该市随机抽取20名市民调查关注人工智能技术在养老服务方面的应用与发展的情况,其中有k名市民的年龄在[60,80]的概率为P(X=k),其中k=0,1,2,…,20,当P(X=k)最大时,求k的值.3.某校高三年级有500名学生,一次考试的英语成绩服从正态分布N(100,17.52),数学成绩的频率分布直方图如下:(1)如果成绩高于135分的为特别优秀,则本次考试英语、数学成绩特别优秀的学生大约各多少人?(2)试问本次考试英语和数学的平均成绩哪个较高,并说明理由;(3)如果英语和数学两科成绩都特别优秀的共有6人,从(1)中的这些学生中随机抽取3人,设3人中两科成绩都特别优秀的有ξ人,求ξ的分布列和数学期望.参考公式及数据:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.68,P(μ-2σ<X≤μ+2σ)=0.96,P(μ-3σ<X≤μ+3σ)=0.99.4.已知具有相关关系的两个变量x ,y 的几组数据如下表所示:(1)请根据上表数据在网格纸中绘制散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^,并估计当x=20时y 的值;(3)将表格中的数据看作5个点的坐标,则从这5个点中随机抽取3个点,记落在直线2x-y-4=0右下方的点的个数为ξ,求ξ的分布列以及期望.参考公式:b ^=∑i=1nx i y i -n x-y -∑i =1n x 2i -n x -2,a ^=y --b ^x -.5.某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A,B,C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款方式付款的客户进行统计分析,得到柱状图如图所示.已知从A,B,C三种分期付款销售中,该经销商每销售此品牌汽车1辆所获得的利润分别是1万元、2万元、3万元.现甲、乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率估计1位客户采用相应分期付款方式的概率.(1)求甲、乙两人采用不同分期付款方式的概率;(2)记X(单位:万元)为该汽车经销商从甲、乙两人购车中所获得的利润,求X的分布列与期望.6.某电视厂家准备在元旦举行促销活动,现根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x(万元)和销售量y(万元)的数据如下:(1)若用线性回归模型拟合y 与x 的关系,求出y 关于x 的线性回归方程;(2)若用y=c +d x 模型拟合y 与x 的关系,可得回归方程y ^=1.63+0.99x ,经计算线性回归模型和该模型的R 2分别约为0.75和0.88,请用R 2说明选择哪个回归模型更好;(3)已知利润z 与x ,y 的关系为z=200y-x.根据(2)的结果回答下列问题:①广告费x=20时,销售量及利润的预报值是多少?②广告费x 为何值时,利润的预报值最大?(精确到0.01)参考公式:回归直线y ^=a ^+b ^x 的斜率和截距的最小二乘估计分别为b ^=∑i=1n x i y i -n x-y -∑i =1n x 2i -n x -2,a ^=y --b ^x -.参考数据:5≈2.24.7.通过随机询问100名性别不同的大学生是否爱好某项运动,得到如下2×2列联表:(1)将题中的2×2列联表补充完整;(2)能否有99%的把握认为是否爱好该项运动与性别有关?请说明理由;(3)如果按性别进行分层抽样,从以上爱好该项运动的大学生中抽取6人组建“运动达人社”,现从“运动达人社”中选派3人参加某项校际挑战赛,记选出3人中的女大学生人数为X,求X的分布列和数学期望.附:K2=n ad-bc2a+b c+d a+c b+d.8.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司,底薪80元,每单送餐员抽成4元;乙公司,无底薪,40单以内(含40单)的部分送餐员每单抽成6元,超出40单的部分送餐员每单抽成7元.假设同一公司的送餐员一天的送餐单数相同,现从这两家公司各随机选取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:(1)现从记录甲公司的50天送餐单数中随机抽取3天的送餐单数,求这3天送餐单数都不小于40的概率;(2)若将频率视为概率,回答下列两个问题:①记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望E(X);②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.9.近年来“双十一”已成为中国电子商务行业的年度盛事,并且逐渐影响到国际电子商务行业.某商家为了准备2018年“双十一”的广告策略,随机调查了1 000名客户在2017年“双十一”前后10天内网购所花时间T(单位:时),并将调查结果绘制成如图所示的频率分布直方图.由频率分布直方图可以认为,这10天网购所花的时间T近似服从N(μ,σ2),其中μ用样本平均值代替,σ2=0.24.(1)计算μ,并利用该正态分布求P(1.51<T<2.49).(2)利用由样本统计获得的正态分布估计整体,将这10天网购所花时间在(2,2.98)小时内的人定义为目标客户,对目标客户发送广告提醒.现若随机抽取10 000名客户,记X为这10 000人中目标客户的人数.(ⅰ)求EX;(ⅱ)问:10 000人中目标客户的人数X为何值的概率最大?附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4,P(μ-3σ<Z<μ+3σ)=0.997 4.0.24≈0.49.10.某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率p=23,记该班级完成n 首背诵后的总得分为S n . (1)求S 6=20且S i ≥0(i =1,2,3)的概率;(2)记ξ=|S 5|,求ξ的分布列及数学期望.答案解析1.解:(1)依题意可得2×2列联表如下:K 2=60×10×12-30×8218×42×40×20≈1.429>1.323,故有75%的把握认为“淡定族”与“性别”有关.(2)用样本估计总体,用户中为“淡定族”的概率为1860=310,ξ的可能取值为0,1,2,3,由题意,得到ξ~B ⎝ ⎛⎭⎪⎫3,310, P(ξ=k)=C k 3⎝ ⎛⎭⎪⎫310k ⎝ ⎛⎭⎪⎫7103-k,k=0,1,2,3,随机变量ξ的分布列为故随机变量ξ的数学期望E(ξ)=0×3431 000+1×4411 000+2×1891 000+3×271 000=9001 000=910.2.解:(1)由频率分布直方图可知,抽取的1 000名市民年龄的平均数 x -=25×0.05+35×0.1+45×0.2+55×0.3+65×0.25+75×0.1=54(岁). 设1 000名市民年龄的中位数为x ,则0.05+0.1+0.2+0.03×(x -50)=0.5,解得x=55, 所以这1 000名市民年龄的平均数为54,中位数为55.(2)由频率分布直方图可知,这1 000名市民中年龄在[20,40)的市民共有 (0.05+0.10)×1 000=150人,所以关注智能办公的频率为100150=23,则从该市年龄在[20,40)的市民中随机抽取300人,这300人中关注智能办公的人数为300×23=200.故估计这300人中关注智能办公的人数为200.(3)设在抽取的20名市民中,年龄在[60,80]的人数为X ,X 服从二项分布, 由频率分布直方图可知,年龄在[60,80]的频率为(0.025+0.010)×10=0.35,所以X ~B(20,0.35),所以P(X=k)=C k 200.35k (1-0.35)20-k,k=0,1,2, (20)设t=P X =k P X =k -1=C k 200.35k 0.6520-kC k -1200.35k -10.6521-k =721-k 13k ,k=1,2,…,20. 若t>1,则k<7.35,P(X=k-1)<P(X=k); 若t<1,则k>7.35,P(X=k-1)>P(X=k). 所以当k=7时,P(X=k)最大, 即当P(X=k)最大时,k 的值为7.3.解:(1)因为英语成绩服从正态分布N(100,17.52),所以英语成绩特别优秀的概率P 1=P(X≥135)=(1-0.96)×12=0.02,由频率估计概率,得数学成绩特别优秀的概率P 2=0.001 6×20×34=0.024,所以英语成绩特别优秀的学生大约有500×0.02=10(人), 数学成绩特别优秀的学生大约有500×0.024=12(人). (2)本次考试英语的平均成绩为100分,数学的平均成绩为60×0.16+80×0.168+100×0.48+120×0.16+140×0.032=94.72(分),因为94.72<100,所以本次考试英语的平均成绩较高.(3)英语和数学成绩都特别优秀的有6人,则单科成绩特别优秀的有10人, ξ可取的值有0,1,2,3,所以P(ξ=0)=C 310C 316=314,P(ξ=1)=C 210C 16C 316=2756,P(ξ=2)=C 110C 26C 316=1556,P(ξ=3)=C 36C 316=128,故ξ的分布列为E(ξ)=0×314+1×2756+2×1556+3×128=98.4.解:(1)散点图如图所示:(2)依题意,x -=15×(2+4+6+8+10)=6,y -=15×(3+6+7+10+12)=7.6,∑i =15x 2i=4+16+36+64+100=220,∑i =15x i y i =6+24+42+80+120=272,b ^=∑i=15x i y i -5x-y-∑i =15x 2i -5x -2=272-5×6×7.6220-5×62=4440=1.1,∴a ^=7.6-1.1×6=1, ∴线性回归方程为y ^=1.1x +1,故当x=20时,y=23.(3)可以判断,落在直线2x-y-4=0右下方的点满足2x-y-4>0,故符合条件的点的坐标为(6,7),(8,10),(10,12),故ξ的所有可能取值为1,2,3,P(ξ=1)=C22C13C35=310,P(ξ=2)=C12C23C35=610=35,P(ξ=3)=C33C35=110,故ξ的分布列为故E(ξ)=1×310+2×35+3×110=1810=95.5.解:(1)设“采用A种分期付款方式购车”为事件A,“采用B种分期付款方式购车”为事件B,“采用C种分期付款方式购车”为事件C,由柱状图得,P(A)=35100=0.35,P(B)=45100=0.45,P(C)=20100=0.2,∴甲、乙两人采用不同分期付款方式的概率P=1-(P(A)·P(A)+P(B)·P(B)+P(C)·P(C))=0.635.(2)由题意知,X的所有可能取值为2,3,4,5,6,P(X=2)=P(A)P(A)=0.35×0.35=0.122 5,P(X=3)=P(A)P(B)+P(B)P(A)=0.35×0.45+0.45×0.35=0.315,P(X=4)=P(A)P(C)+P(B)P(B)+P(C)P(A)=0.35×0.2+0.45×0.45+0.2×0.35=0.342 5,P(X=5)=P(B)P(C)+P(C)P(B)=0.45×0.2+0.2×0.45=0.18,P(X=6)=P(C)P(C)=0.2×0.2=0.04.∴X的分布列为E(X)=0.122 5×2+0.315×3+0.342 5×4+0.18×5+0.04×6=3.7.6.解:(1)∵x-=8,y-=4.2,∑i=17x i y i=279.4,∑i=17x2i=708,∴b^=∑i=17x i y i-7x-y-∑i=17x2i-7x-2=279.4-7×8×4.2708-7×82=0.17,a^=y--b^x-=4.2-0.17×8=2.84,∴y关于x的线性回归方程为y^=0.17x+2.84.(2)∵0.75<0.88且R2越大,反映残差平方和越小,模型的拟合效果越好,∴选用y^=1.63+0.99x更好.(3)由(2)知,①当x=20时,销售量的预报值y^=1.63+0.9920≈6.07(万台),利润的预报值z=200×6.07-20≈1 194(万元).②z=200(1.63+0.99x)-x=-x+198x+326=-(x)2+198x+326=-(x-99)2+10 127,∴当x=99,即x=9 801时,利润的预报值最大,故广告费为9 801万元时,利润的预报值最大.7.解:(1)题中的2×2列联表补充如下:(2)K 2=100×40×25-20×15255×45×60×40≈8.25>6.635,所以有99%的把握认为是否爱好该项运动与性别有关.(3)由题意,抽取6人中包括男生4名,女生2名,X 的取值为0,1,2,则P(X=0)=C 34C 36=15,P(X=1)=C 24C 12C 36=35,P(X=2)=C 14C 22C 36=15,故X 的分布列为E(X)=0×15+1×35+2×15=1.8.解:(1)记抽取的3天送餐单数都不小于40为事件M ,则P(M)=C 325C 350=23196.(2)①设乙公司送餐员的送餐单数为a , 当a=38时,X=38×6=228, 当a=39时,X=39×6=234, 当a=40时,X=40×6=240,当a=41时,X=40×6+1×7=247, 当a=42时,X=40×6+2×7=254.所以X 的所有可能取值为228,234,240,247,254. 故X 的分布列为所以E(X)=228×110+234×15+240×15+247×25+254×110=241.8.②依题意,甲公司送餐员的日平均送餐单数为38×0.2+39×0.3+40×0.2+41×0.2+42×0.1=39.7,所以甲公司送餐员的日平均工资为80+4×39.7=238.8元. 由①得乙公司送餐员的日平均工资为241.8元. 因为238.8<241.8,所以推荐小王去乙公司应聘. 9.解:(1)μ=0.4×(0.050×0.8+0.225×1.2+0.550×1.6+0.825×2.0+0.600×2.4+0.200×2.8+0.050×3.2)=2,从而T 服从N(2,0.24),又σ=0.24≈0.49,从而P(1.51<T <2.49)=P(μ-σ<T <μ+σ)=0.682 6. (2)(ⅰ)任意抽取1名客户,该客户是目标客户的概率为P(2<T <2.98)=P(μ<T <μ+2σ) =12P(μ-2σ<T <μ+2σ)=12×0.954 4=0.477 2. 由题意知X 服从B(10 000,0.477 2),所以EX=10 000×0.477 2=4 772. (ⅱ)X 服从B(10 000,0.477 2),P(X=k)=C k 10 0000.477 2k (1-0.477 2)10 000-k =C k 10 0000.477 2k ·0.522 810 000-k(k=0,1,2,…,10 000). 设当X=k(k≥1,k ∈N)时概率最大,则有⎩⎪⎨⎪⎧P X =k >P X =k +1,PX =k >P X =k -1,得⎩⎪⎨⎪⎧0.522 8C k 10 000>0.477 2C k +110 000,0.477 2C k 10 000>0.522 8C k -110 000,解得k=4 772.故10 000人中目标客户的人数为4 772的概率最大. 10.解:(1)当S 6=20时,即背诵6首后,正确的有4首,错误的有2首.由S i ≥0(i =1,2,3)可知,若第一首和第二首背诵正确,则其余4首可任意背诵正确2首; 若第一首背诵正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵正确2首.则所求的概率P=⎝ ⎛⎭⎪⎫232×C 24⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132+23×13×23×C 23⎝ ⎛⎭⎪⎫232×13=1681.(2)由题意知ξ=|S 5|的所有可能的取值为10,30,50,又p=23,∴P(ξ=10)=C 35⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+C 25⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫133=4081,P(ξ=30)=C 45⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫131+C 15⎝ ⎛⎭⎪⎫231×⎝ ⎛⎭⎪⎫134=3081,P(ξ=50)=C 55⎝ ⎛⎭⎪⎫235×⎝ ⎛⎭⎪⎫130+C 05⎝ ⎛⎭⎪⎫230×⎝ ⎛⎭⎪⎫135=1181,∴ξ的分布列为∴E(ξ)=10×4081+30×3081+50×1181=1 85081.。
2019_2020学年新教材高中数学第五章统计与概率5.1.3数据的直观表示课后篇巩固提升新人教B版必修第二册

5.1.3数据的直观表示课后篇巩固提升夯实基础1.如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是()什么样的活动最能促进同学们进行垃圾分类A.回答该问卷的总人数不可能是100B.回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多C.回答该问卷的受访者中,选择“学校团委会宣传”的人数最少D.回答该问卷的受访者中,选择“公益广告”的人比选择“学校要求”的少8个2.某校有文科教师120名,理科教师225名,其男女比例如图,则该校女教师的人数为()A.96B.126C.144D.174,该校文科教师中女教师的人数为120×0.7=84,该校理科教师中女教师的人数为225×0.4=90,所以该校女教师的人数为84+90=174,故选D.3.某位教师2017年的家庭总收入为80 000元,各种用途占比统计如下面的折线图.2018年家庭总收入的各种用途占比统计如下面的条形图,已知2018年的就医费用比2017年的就医费用增加了4 750元,则该教师2018年的旅行费用为()A.21 250元B.28 000元C.29 750元D.85 000元,2017年的就医花费为80000×10%=8000(元),则2018年的就医花费为8000+4750=12750(元),2018年的旅行费用为×35=29750(元).故选C.4.(多选)某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至11月期间“跑团”每月跑步的平均里程(单位:千米)的数据,绘制了下面的折线图.根据折线图,下列结论不正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8月、9月D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳,月跑步平均里程的中位数为5月份对应的里程数;月跑步平均里程不是逐月增加的;月跑步平均里程高峰期大致在9、10月份,故A,B,C中结论错误.5.CPI是居民消费价格指数的简称.居民消费价格指数,是一个反映居民家庭一般所购买的消费品价格水平变动情况的宏观经济指标.如图是根据统计局发布的2018年1~7月的CPI同比增长与环比增长涨跌幅数据绘制的折线图(注:2018年2月与2017年2月相比较,叫同比;2018年2月与 2018年1月相比较,叫环比).根据该折线图,下列结论错误的是()2018年1~7月CPI涨跌幅(%)A.2018年1~7月CPI有涨有跌B.2018年2~7月CPI涨跌波动不大,变化比较平稳C.2018年1~7月分别与2017年1~7月相比较,1月CPI涨幅最大D.2018年1~7月分别与2017年1~7月相比较,CPI有涨有跌6.如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男女学生各有500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为.,500名女同学中喜欢篮球运动的频率为,所以女同学中喜欢篮球运动的有100人,500名男同学中喜欢篮球运动的频率为,所以男同学中喜欢篮球运动的有300人.故从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为×32=24.7.下图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次一共调查了多少名学生?(2)在图(1)中将②对应的部分补充完整.从题图中知,选①的共60人,占总人数的百分比为30%,所以总人数为60÷30%=200,即本次一共调查了200名学生.(2)被调查的学生中,选②的有200-60-30-10=100(人),补充完整的条形统计图如图所示.8.某生产企业对其所生产的甲、乙两种产品进行质量检测,分别各抽查6件产品,检测其质量的误差,测得数据如下(单位:mg):甲:131********乙:1513981623(1)画出样本数据的茎叶图;(2)分别计算甲、乙两组数据的方差并分析甲、乙两种产品的质量(精确到0.1).根据题目中的数据,画出茎叶图如图所示.(2)根据茎叶图得出,甲的平均数是=14,乙的平均数是=14;甲的方差是甲[(-6)2+(-1)2+(-1)2+02+12+72]≈14.7.乙的方差是乙[(-6)2+(-5)2+(-1)2+12+22+92]≈24.7.所以甲乙甲乙,所以甲产品质量好,重量误差较稳定.能力提升1.某班级在一次数学竞赛中为全班学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为一等奖18元、二等奖8元、三等奖4元、参与奖2元,获奖人数的分配情况如图,则以下说法不正确...的是()A.获得参与奖的人数最多B.各个奖项中参与奖的总费用最高C.购买每件奖品费用的平均数为4元D.购买的三等奖的奖品件数是一、二等奖的奖品件数和的二倍2.中国仓储指数是反映仓储行业经营和国内市场主要商品供求状况与变化趋势的一套指数体系.如图所示的折线图是2017年和2018年的中国仓储指数走势情况.根据该折线图,下列结论中不正确的是()A.2018年1月至4月的仓储指数比2017年同期波动性更大B.2017年、2018年的最大仓储指数都出现在4月份C.2018年全年仓储指数平均值明显低于2017年D.2018年各月仓储指数的中位数与2017年各月仓储指数中位数差异明显3.某高校组织学生举办辩论赛,六位评委为选手A打出分数的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则所剩数据的平均数与中位数的差为.83,85,87,95,这四个数的平均数(83+85+87+95)=,这四个数的中位数为(85+87)=86,则所剩数据的平均数与中位数的差为-86=.4.为了选拔参加自行车比赛的选手,对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:(1)画出茎叶图,由茎叶图分别求出甲、乙运动员的最大速度的中位数;(2)计算甲、乙两运动员的最大速度的平均数和方差,并判断谁参加比赛更合适.茎叶图如下:所以甲的最大速度的中位数为=33,乙的最大速度的中位数为=33.5.(2)甲的最大速度的平均数为(27+30+31+35+37+38)=33,乙的最大速度的平均数为(28+29+33+34+36+38)=33,甲的最大速度的方差为(36+9+4+4+16+25)=,乙的最大速度的方差为(25+16+1+9+25)=,甲、乙的最大速度的平均数相等,乙的方差更小,则乙的发挥更稳定,故乙参加比赛更合适.。
高考数学《概率与统计》练习题及答案

概率与统计1.[河南省新乡市高三第一次模拟考试(理科数学)]某地有两个国家AAAA级景区—甲景区和乙景区.相关部门统计了这两个景区2019年1月至6月的客流量(单位:百人),得到如图所示的茎叶图.关于2019年1月至6月这两个景区的客流量,下列结论正确的是A.甲景区客流量的中位数为13000B.乙景区客流量的中位数为13000C.甲景区客流量的平均值比乙景区客流量的平均值小D.甲景区客流量的极差比乙景区客流量的极差大【答案】D【解析】2.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论中不一定正确的是注:90后指1990年及以后出生,80后指19801989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多 【答案】D 【解析】 【分析】结合两图对每一个选项逐一分析得解.【详解】对于选项A ,互联网行业从业人员中90后占56%,占一半以上,所以该选项正确; 对于选项B ,互联网行业中90后从事技术岗位的人数占总人数的39.6%56%=22.176%⨯,超过总人数的20%,所以该选项正确;对于选项C ,互联网行业中从事运营岗位的人数90后占总人数的56%17%9.52%⨯=,比80前多,所以该选项正确;对于选项D ,互联网行业中从事运营岗位的人数90后占总人数的56%17%9.52%⨯=,80后占总人数的41%,所以互联网行业中从事运营岗位的人数90后不一定比80后多,所以该选项不一定正确. 故选D.【点睛】本题主要考查饼状图和条形图,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.[福建省永春第一中学2020届高三上学期期初考试数学(理)试题] 某小区有1000户,各户每月的用电量近似服从正态分布(300,100)N ,则用电量在320度以上的户数估计约为 【参考数据:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=,(33)99.74%P μσξμσ-<<+=】 A .17 B .23 C .34 D .46【答案】B4.[广东省三校(广州真光中学、深圳市第二中学、珠海市第二中学)2020届高三上学期第一次联考数学(理)试题]已知某离散型随机变量X 的分布列为X 0 1 2 3则X 的数学期望()E X =A .23B .1C .32D .2【答案】B5.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为A .mm n + B .nm n + C .4m m n+D .4n m n+【答案】C 【解析】 【分析】把每一个所写两数作为一个点的坐标,由题意可得与1不能构成一个锐角三角形是指两个数构成点的坐标在圆221x y +=内,进一步得到211411+m m n π⨯=⨯,则答案可求. 【详解】总人数为+m n ,写出的+m n 组数可以看作是+m n 个点,满足与1不能构成一个锐角三角形是指两个数构成的坐标在圆221x y +=内,则21π1411+mm n ⨯=⨯,即4π+m m n =. 故选C.本题是古典概型和几何概型的实际应用,是一道中等难度的题目.6.[福建省永春第一中学2020届高三上学期期初考试数学(理)试题] 某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:序号 1 2345678 9 10 11 12 13 14 15 16 17 18 19 20数学成绩 95 75 80 94 92 65 678498 71 67 93 64 78 77 90 57 83 72 83 物理成绩90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀。
2020年高考数学分类汇编:概率与统计

2020年高考数学分类汇编:概率与统计3.在一组样本数据中,1,2,3,4出现的频率分别为1p ,2p ,3p ,4p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A. 14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ==== D .14230.3,0.2p p p p ====4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名B .18名C .24名D .32名3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名B .18名C .24名D .32名5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是▲.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲.5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%3.设一组样本数据12,,...,n x x x 的方差为0.01,则数据12n 10,10,...,10x x x 的方差为 A .0.01 B .0.1 C .1 D .1016.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______.4.从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A .10B .18C .20D .3613.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1) 分别估计该市一天的空气质量等级为1,2,3,4的概率;(2) 求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3) 若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”。
2020_2021学年新教材高中数学第五章统计与概率5.4统计与概率的应用课时素养评价含解析新人教B

统计与概率的应用(15分钟30分)1.某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多12人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6位对户外运动持“喜欢”态度,有1位对户外运动持“不喜欢”态度,有3位对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有( )A.36人B.30人C.24人D.18人【解析】选A.设持“喜欢”“不喜欢”“一般”态度的人数分别为6x,x,3x,由题意得3x-x=12,x=6,所以持“喜欢”态度的有6x=36人.2.蜜蜂包括小蜜蜂和黑小蜜蜂等很多种类.在我国的某某及周边各省都有分布.春暖花开的时候是放蜂的大好季节.养蜂人甲在某地区放养了100箱小蜜蜂和1箱黑小蜜蜂,养蜂人乙在同一地区放养了1箱小蜜蜂和100箱黑小蜜蜂.某中学生物小组在上述地区捕获了1只黑小蜜蜂.那么,生物小组的同学认为这只黑小蜜蜂是哪位养蜂人放养的比较合理( )A.甲B.乙C.甲和乙D.以上都对【解析】选B.从养蜂人甲放的蜜蜂中,捕获一只蜜蜂是黑小蜜蜂的概率为错误!未找到引用源。
,而从养蜂人乙放的蜜蜂中,捕获一只蜜蜂是黑小蜜蜂的概率为错误!未找到引用源。
,所以,现在捕获的这只黑小蜜蜂是养蜂人乙放养的可能性较大.3.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:93 28 12 45 85 69 68 34 31 2573 93 02 75 56 48 87 30 11 35据此估计,该运动员两次掷镖恰有一次正中靶心的概率为( )A.0.50B.0.45C.0.40D.0.35【解析】选A.两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的一个,它们分别是93,28,45,25,73,93,02,48,30,35,共10个,因此所求的概率为错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十三、《概率与统计》变式题(命题人:广州市第三中学 刘窗洲)审校人 张志红 1.(人教A 版选修2-3第66页例4)某射手每次射击击中目标的概率是 0.8,求这名射手在 10 次射击中, (1)恰有 8 次击中目标的概率; (2)至少有 8 次击中目标的概率 ?变式1:某人参加一次考试,4道题中解对3道则为及格,已知他的解题正确率为0.4,则他能及格的概率为 .【解析】:他能及格则要解对4道题中解对3道或4道:解对3道的概率为:6.04.0)(334⋅=C A P ,解对4道的概率为:4444.0)(C B P =,且A 与B 互斥,他能及格的概率为4443344.06.04.0)(C C B A P +⋅=+.变式2:设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。
(1) 三人各向目标射击一次,求至少有一人命中目标的概率及恰有两人命中目标的概率;(2) 若甲单独向目标射击三次,求他恰好命中两次的概率. 【解析】(I )设A K 表示“第k 人命中目标”,k=1,2,3. 这里,A 1,A 2,A 3独立,且P (A 1)=0.7,P (A 2)=0.6,P (A 3)=0.5. 从而,至少有一人命中目标的概率为1231231()1()()()10.30.40.50.94P A A A P A P A P A -⋅⋅=-=-⨯⨯= 恰有两人命中目标的概率为123123123123123123123123123()()()()()()()()()()()()()0.70.60.50.70.40.50.30.60.50.44P A A A A A A A A A P A A A P A A A P A A A P A P A P A P A P A P A P A P A P A ⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅⋅+⋅⋅=++=⨯⨯+⨯⨯+⨯⨯=答:至少有一人命中目标的概率为0.94,恰有两人命中目标的概率为0.44. (II )设甲每次射击为一次试验,从而该问题构成三次重复独立试验.又已知在每次试验中事件“命中目标”发生的概率为0.7,故所求概率为.441.0)3.0()7.0()2(2233==C P答:他恰好命中两次的概率为0.441.变式3:在2020年雅典奥运会中,中国女排与俄罗斯女排以“五局三胜”制进行决赛,根据以往战况,中国女排在每一局赢的概率为,53 已知比赛中,俄罗斯女排先胜了每一局,求: (1) 中国女排在这种情况下取胜的概率; (2) 求本场比赛只打四局就结束的概率.(均用分数作答)【解析】(1)中国女排取胜的情况有两种,第一种是中国女排连胜三局,第二种是在第2局到第4局,中国女排赢了两局,第5局中国女排赢,∴中国女排取胜的概率为.6252975352)53()53(2233=⋅⋅⋅+C (2) .12551)53(53)52(3212=+⋅⋅C变式4: 一个质地不均匀的硬币抛掷5次,正面向上恰为1次的可能性不为0,而且与正面向上恰为2次的概率相同.令既约分数ji为硬币在5次抛掷中有3次正面向上的概率,求j i +. 【解析】设正面向上的概率为P,依题意:()()322541511P P C P P C -=-,1-P=2P,解得:31=P , 硬币在5次抛掷中有3次正面向上的概率为:()2434031131123352335=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-C P P C .2.(人教A 版选修2-3第77页例4)随机抛掷一枚质地均匀的骰子,求向上一面的点数X 的均值、方差和标准差。
变式1:设某射手每次射击打中目标的概率为0.8,现在连续射击4次,求击中目标的次数ξ的概率分布.【解析】击中目标的次数ξ可能为0,1,2,3,4。
当ξ=0时,()442.00C P ==ξ,当ξ=1时,()31142.08.01⋅==C P ξ,当ξ=2时,()22242.08.02⋅==C P ξ,当ξ=3时,()13342.08.03⋅==C P ξ,当ξ=4时,()4448.04C P ==ξ,所以ξ的分布列为:变式2:袋中有12个大小规格相同的球,其中含有2个红球,从中任取3个球,求取出的3个球中红球个数ξ的概率分布.【解析】ξ的所有可能的取值为:0,1,2.当ξ=0时,()3123100C C P ==ξ,当ξ=1时,()312210121C C C P ==ξ, 当ξ=2时,()312110222C C C P ==ξ, 评述:312310C C +31221012C C C +31211022C C C =2201090120++=1. 变式3:从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列; (2)求ξ的数学期望;(3)求“所选3人中女生人数1≤ξ”的概率.【解析】(1)ξ可能取的值为0,1,2。
2,1,0,)(36342=⋅==-k C C C k P k k ξ. 所以,ξ的分布列为(2)由(1),ξ的数学期望为1525150=⨯+⨯+⨯=ξE (3)由(1),“所选3人中女生人数1≤ξ”的概率为54)1()0()1(==+==≤ξξξP P P .变式4:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 【解析】(Ⅰ)依题意,甲答对试题数ξ的概率分布如下:甲答对试题数ξ的数学期望 E ξ=0×301+1×103+2×21+3×61=59. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32,P(B)=310381228C C C C +=1205656+=1514. 因为事件A 、B 相互独立, 方法一:∴甲、乙两人考试均不合格的概率为 P(B A ⋅)=P(A )P(B )=1-32)(1-1514)=451. ∴甲、乙两人至少有一人考试合格的概率为P=1-P(B A ⋅)=1-451=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:∴甲、乙两人至少有一个考试合格的概率为P=P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B) =32×151+31×1514+32×1514=4544. 答:甲、乙两人至少有一人考试合格的概率为4544.3.(人教A 版选修2-3第86页B 组2) 若 ~(5,1)X N ,求 (67)P X <<。
变式1:随机变量ξ服从正态分布N (0,1),如果P (ξ<1)=0.8413,求P (-1<ξ<0).【解析】∵ξ~N (0,1),∴P (-1<ξ<0)=P (0<ξ<1)=Φ(1)-Φ(0)=0.8413-0.5=0.3413.变式2:一投资者在两个投资方案中选择一个,这两个投资方案的利润x (万元)分别服从正态分布N (8,32)和N (6,22),投资者要求利润超过5万元的概率尽量地大,那么他应选择哪一个方案?【解析】对第一个方案,有x ~N (8,32),于是P (x >5)=1-P (x ≤5)=1-F (5)=1-Φ(385-)=1-Φ(-1)=1-[1-Φ(1)]=Φ(1)=0.8413.对第二个方案,有x ~N (6,22),于是P (x >5)=1-P (x ≤5)=1-F (5)=1-Φ(265-)=1-Φ(-0.5)=Φ(0.5)=0.6915.相比之下,“利润超过5万元”的概率以第一个方案为好,可选第一个方案.变式3:在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布()100,70N .已知成绩在90分以上(含90分)的学生有12名. (Ⅰ)试问此次参赛的学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可供查阅的(部分)标准正态分布表()()00x x P x <=φ【解析】:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力.【解答】(Ⅰ)设参赛学生的分数为ξ,因为ξ~N(70,100),由条件知,P(ξ≥90)=1-P (ξ<90)=1-F(90)=1-Φ)107090(-=1-Φ(2)=1-0.9772=0.228. 这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此, 参赛总人数约为0228.012≈526(人).(Ⅱ)假定设奖的分数线为x 分,则 P(ξ≥x )=1-P (ξ<x )=1-F(x )=1-Φ)1070(-x =52650=0.0951,即Φ)1070(-x =0.9049,查表得1070-x ≈1.31,解得x =83.1. 故设奖得分数线约为83.1分.4.(人教A 版选修2-3第100页例2)一只红铃虫的产卵数 y 和温度 x 有关,现收集了 7 组观测数据列于表中,试建立 y 与 x 之间的回归方程。
变式1:为了对2020年佛山市中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学(已折算为百分制)、物理、化学分数对应如下表,(1) 若规定85分(包括85分)以上为优秀,求这8位同学中数学和物理分数均为优秀的概率; (2) 用变量y 与x 、z 与x 的相关系数说明物理与数学、化学与数学的相关程度;(3) 求y 与x 、z 与x 的线性回归方程(系数精确到0.01),并用相关指数比较所求回归模型的效果.参考数据:5.77=x ,85=y ,81=z ,1050)(812≈-∑=i ix x,456)(812≈-∑=i i y y ,550)(812≈-∑=i iz z,688))((81≈--∑=i i i y y x x ,755))((81≈--∑=i i i z z x x ,7)ˆ(812≈-∑=i i i yy ,94)ˆ(812≈-∑=i i izz,5.23550,4.21456,4.321050≈≈≈.解答:(1) 由表中可以看出,所选出的8位同学中,数学和物理分数均为优秀的人数是3人,其概率是83. ………………………………………………………………………………………………………3分(2) 变量y 与x 、z 与x 的相关系数分别是99.04.214.32688≈⨯=r 、99.05.234.32755≈⨯='r . ……………………………………………5分 可以看出,物理与数学、化学与数学的成绩都是高度正相关. …………………………6分(3) 设y 与x 、z 与x 的线性回归方程分别是a bx y+=ˆ、a x b z '+'=ˆ. 根据所给的数据,可以计算出63.345.77*65.085,65.01050688=-===a b , 20.255.77*72.081,72.01050755=-='=='a b . ……………………………………………………10分 所以y 与x 和z 与x 的回归方程分别是63.3465.0ˆ+=x y、20.2572.0ˆ+=x z . …………………………………………………………11分 又y 与x 、z 与x 的相关指数是98.0456712≈-=R 、83.05509412≈-='R . ……13分故回归模型63.3465.0ˆ+=x y比回归模型20.2572.0ˆ+=x z 的拟合的效果好. …14分。