材料热力学及动力学复习题答案

合集下载

热力学与动力学往年考试整理

热力学与动力学往年考试整理

判断题:1.由亚稳相向稳定相转变不需要推动力。

X2.压力可以改变材料的结构,导致材料发生相变。

V3.对于凝聚态材料,随着压力升高,熔点提高。

V4.热力学第三定律指出:在0K时任何纯物质的熵值等于零。

X5.在高温下各种物质显示相同的比热。

V6.溶体的性质主要取决于组元间的相互作用参数。

V7.金属和合金在平衡态下都存在一定数量的空位,因此空位是热力学稳定的缺陷。

V8.固溶体中原子定向迁移的驱动力是浓度梯度。

X9.溶体中析出第二相初期,第二相一般与母相保持非共格以降低应变能。

X10.相变过程中如果稳定相的相变驱动力大于亚稳相,一定优先析出。

X1.根据理查德规则,所有纯固体物质具有大致相同的熔化熵。

2.合金的任何结构转变都可以通过应力驱动来实现。

3.在马氏体相变中,界面能和应变能构成正相变的阻力,但也是逆相变的驱动力。

4.在高温下各种纯单质固体显示相同的等容热容。

5.二元溶体的混合熵只和溶体的成分有关,与组元的种类无关。

6.材料相变形核时,过冷度越大,临界核心尺寸越大。

7.二元合金在扩散时,两组元的扩散系数总是相同。

8.焓具有能量单位,但它不是能量,也不遵守能量守恒定律;但是系统的焓变可由能量表达。

9.对于凝聚态材料,随着压力升高,熔点提高,BCC—FCC转变温度也升高。

10.由于马氏体相变属于无扩散切变过程,因此应力可以促发形核和相变。

简答题:1.一般具有同素异构转变的金属从高温冷却至低温时,其转变具有怎样的体积特征?试根据高温和低温下自由能与温度的关系解释此现象。

有一种具有同素异构转变的常用金属和一般金属所具有的普遍规律不同,请指出是那种金属?简要解释其原因?(8分)答:在一定温度下元素的焓和熵随着体积的增加而增大,因此疏排结构的焓和熵大于密排结构。

G=H-TS,低温下,TS项贡献很小,G主要取决于H。

而疏排结构的H大于密排结构,疏排结构的自由能G也大于密排结构。

所以低温下密排结构是稳定相。

高温下,G主要取决于TS项,而疏排结构的熵大于密排结构,其自由能G则小于密排结构。

材料热力学与动力学复习资料+课后习题

材料热力学与动力学复习资料+课后习题

材料热力学与动力学(复习资料)一、 概念•热力学基本概念和基本定律1. 热0:一切互为热平衡的物体,具有相同的温度。

2. 热1: - 焓:恒压体系→吸收的热量=焓的增加→焓变等于等压热效应 - 变化的可能性→过程的方向;限度→平衡3. 热2:任何不受外界影响体系总是单向地趋向平衡状态→熵+自发过程+可逆过程→隔绝体系的熵值在平衡时为最大→熵增原理(隔离体系)→Gibbs 自由能:dG<0,自发进行(同T ,p : )4. 热3:- (H.W.Nernst ,1906): - (M .Plank ,1912):假定在绝对零度时,任何纯物质凝聚态的熵值为零S*(0K)=0 - (Lewis ,Gibson ,1920):对于过冷溶体或内部运动未达平衡的纯物质,即使在0K 时,其熵值也不等于零,而是存在所谓的“残余熵” - Final :在OK 时任何纯物质的完美晶体的熵值等于零• 单组元材料热力学1. 纯金属固态相变的体积效应- 除非特殊理由,所有纯金属加热固态相变都是由密排结构(fcc )向疏排结构(bcc )的转变→加热过程发生的相变要引起体积的膨胀→BCC 结构相在高温将变得比其他典型金属结构(如FCC 和HCP 结构)更稳定(除了Fe )- 热力学解释1→G :温度相同时,疏排结构的熵大于密排结构;疏排结构的焓大于密排结构→低温:H ;高温:TS - 热力学解释2→ Maxwell 方程: - α-Fe →γ-Fe :磁性转变自由能- Richard 规则:熔化熵-Trouton 规则:蒸发熵 (估算熔沸点)2. 晶体中平衡状态下的热空位- 实际金属晶体中空位随着温度升高浓度增加,大多数常用金属(Cu 、Al 、Pb 、W 、Ag …)在接近熔点时,其空位平衡浓度约为10-4;把高温时金属中存在的平衡空位通过淬火固定下来,形成过饱和空位状态,对金属中的许多物理过程(例如扩散、时效、回复、位错攀移等)产生重要影响3. 晶体的热容- Dulong-Petit :线性谐振动子+能量均分定律→适应于较高温度及室温附近,低温时与实验不符U Q W∆=-dH PV U d Q =+=)(δRd Q S Tδ=()d dH TdS G H d TS =--=00lim()lim()0p T T T GS T→→∂∆-=∆=∂()()V T T P V V S ∂∂=∂∂//()()()T T T V P V V S T V H ∂∂+∂∂=∂∂///RK mol J T H S mm m ≈⋅≈∆=∆/3.8/K mol J T H S b v v ⋅≈∆=∆/9.87/3V V VQ dU C RdT dT δ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭-Einstein(固体振动热容理论):晶体总共吸收了n 个声子,被分配到3N 个谐振子中;不适用于极低温度,无法说明在极低温度时定容热容的实验值与绝对温度的3次方成比例。

材料热力学与动力学:热力学定律习题

材料热力学与动力学:热力学定律习题

p2 p1
vapHm R
(1 T2
1) T1
(定积分式)
ln p vapH m / RT C (不定积分式)
第一章 热力学定律 习题课
13. Gibbs-Helmholtz方程
( A / T )
T
V
U T2
(G /Tபைடு நூலகம்)
T
p
H T2
第一章 热力学定律 习题课
1.判断下列说法是否正确: ① 状态给定后,状态函数就有一定的值,反之亦然。
② 状态函数改变后,状态一定改变。
③ 状态改变后,状态函数一定都改变。
解释:若外界条件不变,即状态给定后,所有的状态函数都有定 值。当某一个或某几个状态函数发生变化时,状态一定改变;反 之,当状态发生改变时,状态函数中,一定有某一个或几个发生 变化,而不一定全部的状态函数都发生变化。 如:气体节流膨胀过程,焓不变。
第一章 热力学定律 习题课
10.热力学基本关系式
dU TdS pdV dH TdS Vdp
dA SdT pdV dG SdT Vdp
11.克拉佩龙方程
dT dp
TVm Hm
第一章 热力学定律 习题课
12.克劳修斯—克拉佩龙方程
d ln p dT
Vap H m RT 2
(微分式)
ln
第一章 热力学定律 习题课
⑤ 恒温过程一定是可逆过程。
解释:恒温过程是指系统与环境的温度始终保持相 等且恒定,是一个自始至终保持热平衡的过程,即 为可逆过程。数学表达式dT = 0; ✓若对于一个ΔT = 0的过程,则说明该过程始终态温 度相等,并不一定是恒温过程。 ✓等温可逆过程一定是恒温过程。
可以这么看,一个思想封闭的人遇到烦恼时就 会焦躁不按或者抑郁忧愁,也就是内心混乱度增 加。但是当这个人向他人敞开心扉获得安慰之后 ,他就会趋于平静。所以,同学们都要学会向他 人倾诉,同他人交流,不要把自己封闭在一个狭 小的世界里。

高考物理力学知识点之热力学定律知识点总复习附答案解析(4)

高考物理力学知识点之热力学定律知识点总复习附答案解析(4)

高考物理力学知识点之热力学定律知识点总复习附答案解析(4)一、选择题1.在下列叙述中,正确的是A.物体里所有分子动能的总和叫做物体的内能B.—定质量的气体,体积不变时,温度越高,气体的压强就越大C.对一定质量的气体加热,其内能一定增加D.随着分子间的距离增大分子间引力和斥力的合力一定减小2.如图所示导热性良好的汽缸内密封的气体(可视为理想气体),在等压膨胀过程中,下列关于气体说法正确的是()A.气体内能可能减少B.气体会向外界放热C.气体吸收的热量大于对外界所做的功D.气体平均动能将减小3.图为某种椅子与其升降部分的结构示意图,M、N两筒间密闭了一定质量的气体,M可沿N的内壁上下滑动,设筒内气体不与外界发生热交换,当人从椅子上离开,M向上滑动的过程中()A.外界对气体做功,气体内能增大B.外界对气体做功,气体内能减小C.气体对外界做功,气体内能增大D.气体对外界做功,气体内能减小4.一定质量的理想气体在某一过程中,气体对外界做功1.6×104J,从外界吸收热量3.8×104J,则该理想气体的()A.温度降低,密度减小B.温度降低,密度增大C.温度升高,密度减小D.温度升高,密度增大5.如图所示为一定质量的理想气体压强随热力学温度变化的图象,气体经历了ab、bc、cd、da四个过程。

其中bc的延长线经过原点,ab与竖直轴平行,cd与水平轴平行,ad与bc平行。

则气体在A.ab过程中对外界做功B.bc过程中从外界吸收热量C.cd过程中内能保持不变D.da过程中体积保持不变6.下列说法正确的是A.物体吸收热量,其内能一定增加B.不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响C.第二类永动机不能制成是因为违背了能量守恒定律D.热量能够自发地从低温物体传递到高温物体7.一定质量的理想气体由状态A变化到状态B,气体的压强随热力学温度变化如图所示,则此过程()A.气体的密度减小B.外界对气体做功C.气体从外界吸收了热量D.气体分子的平均动能增大8.下列说法正确的是()A.布朗运动就是液体分子的热运动B.在实验室中可以得到-273.15℃的低温C.一定质量的气体被压缩时,气体压强不一定增大D.热量一定是从内能大的物体传递到内能小的物体9.带有活塞的汽缸内封闭一定量的理想气体.气体开始处于状态a;然后经过过程ab到达状态b或经过过程ac到状态c,b、c状态温度相同,如V﹣T图所示.设气体在状态b 和状态c的压强分别为P b和P c,在过程ab和ac中吸收的热量分别为Q ab和Q ac,则()A.p b>p c,Q ab>Q ac B.p b>p c,Q ab<Q acC.p b<p c,Q ab<Q ac D.p b<p c,Q ab>Q ac10.一定质量的理想气体的状态变化过程如图所示,MN为一条直线,则气体从状态M到状态N的过程中A.温度保持不变B.温度先升高,后又减小到初始温度C.整个过程中气体对外不做功,气体要吸热D.气体的密度在不断增大11.如图所示,一定质量的理想气体密封在绝热(即与外界不发生热交换)容器中,容器内装有一可以活动的绝热活塞.今对活塞施以一竖直向下的压力F,使活塞缓慢向下移动一段距离后,气体的体积减小.若忽略活塞与容器壁间的摩擦力,则被密封的气体( )图13-2-4A.温度升高,压强增大,内能减少B.温度降低,压强增大,内能减少C.温度升高,压强增大,内能增加D.温度降低,压强减小,内能增加12.一定量的理想气体,从状态a开始,经历ab、bc、ca三个过程,其图象如图所示,下列判断正确的是()A .a b →过程气体吸收的热量大于内能的增加B .b c →过程气体吸收的热量全部用于对外做功C .c a →过程外界对气体做的功大于放出的热量D .b c →过程的体积变化量大于c a →过程的体积变化量13.下列说法正确的是_________.A .布朗运动是液体分子的无规则运动B .只有外界对物体做功才能增加物体的内能C .功转变为热的实际宏观过程是可逆过程D .一定量的气体,在压强不变时,分子每秒对器壁单位面积平均碰撞次数随着温度降低而增加14.关于物体内能的变化,以下说法中正确的是( )A .物体吸收热量,内能一定增大B .物体对外做功,内能一定减少C .物体吸收热量,同时对外做功,内能可能不变D .物体放出热量,同时对外做功,内能可能不变15.一个气泡从恒温水槽的底部缓慢向上浮起,(若不计气泡内空气分子势能的变化)则( )A .气泡对外做功,内能不变,同时放热B .气泡对外做功,内能不变,同时吸热C .气泡内能减少,同时放热D .气泡内能不变,不吸热也不放热16.一定质量的理想气体,从状态M 开始,经状态N 、Q 回到原状态M ,其p-V 图象如图所示,其中QM 平行于横轴,NQ 平行于纵轴.则( )A .M →N 过程气体温度不变B .N →Q 过程气体对外做功C .N →Q 过程气体内能减小D .Q →M 过程气体放出热量17.关于热力学定律,下列说法中正确的是( )A .可以从单一热源吸收热量,使之完全变为功B .理想气体的等压膨胀过程一定放热C .热量不可能从低温物体传递到高温物体D .压缩气体做功,该气体的内能一定增加18.如图所示,水平放置的封闭绝热气缸,被一锁定的绝热活塞分为体积相等的a 、b 两部分。

材料热力学习题答案1

材料热力学习题答案1

The problems of the first law1. a lead bullet is fired at a frigid surface. At what speed must it travel to melt on impact, if its initial temperature is 25℃ and heating of the rigid surface of the rigid surface is neglected? The melting point of lead is 327℃. The molar heat of fusion of the lead is 4.8kJ/mol. The molar heat capacity C P of lead may be taken as 29.3J/(mol K) (1.1)Solution: )/(5.112.20721]108.4)25327(3.29[2121)(2322s m V v n n WQ nMv mv W H T C n Q Q Q absorb melting p melt increase absorb ==⨯+-⨯===∆+∆=+=2. what is the average power production in watts of a person who burns 2500 kcal of food in a day? Estimate the average additional powder production of 75Kg man who is climbing a mountain at eh rate of 20 m/min (1.2)Solution )/(24560208.975)/(12160602410467000//)(104670001868.4102500sin 3S J t h mg P S J t Q t W P J Q gincrea Burning Burning =⨯⨯=∆==⨯⨯====⨯⨯=3 One cubic decimeter (1 dm 3) of water is broken into droplets having a diameter of one micrometer (1 um) at 20℃. (1.3)(a) what is the total area of the droplets?(b) Calculate the minimum work required to produce the droplets. Assume that the droplets arerest (have zero velocity)Water have a surface tension of 72.75 dyn/cm at 20℃ (NOTES: the term surface energy (ene/cm 2) is also used for surface tension dyn/cm)Solution)(25.218)106103(1075.72)(103)101(4)101(34)101(232523263631J S W m nS S Single total =⨯-⨯⨯⨯=∆=⨯=⨯⨯⨯⨯⨯⨯⨯⨯==-+----σππ4.Gaseous helium is to be used to quench a hot piece of metal. The helium is in storage in aninsulated tank with a volume of 50 L and a temperature of 25℃, the pressure is 10 atm. Assume that helium is an ideal gas.(a) when the valve is opened and the gas escapes into the quench chamber (pressure=1 atm), whatwill be the temperature of the first gas to hit the specimen?(b) As the helium flows, the pressure in the tank drops. What will be the temperature of thehelium entering the quench chamber when the pressure in the tank has fallen to 1 atm? (1.4)Solution: )(180118298)(1185.229810101325501010101325)5500(1)()(118)101(298)()(0334.0/00K T T T K RR nC W T b K T P PT T Adiabatic a p C R P=-=∆-==⨯⨯⨯⨯⨯⨯⨯-⨯==∆=⨯==--5 An evacuated (P=0), insulted tank is surrounded by a very large volume (assume infinite volume) of an ideal gas at a temperature T 0. The valve on the tank is opened and the surrounding gas is allowed to flow quickly into the tank until the pressure inside the tank is equals the pressure outside. Assume that no heat flow takes place. What is the final tempeture of the gas in the tank? The heat capacity of the gas, C p and C v each may be assumed to be constant over the temperature rang spanned by the experiment. You answer may be left in terms of C p and C vhint: one way to approach the problem is to define the system as the gas ends up in the tank. (1.5)solution 0/000/00)0()(T P P T T P PT T Adiabatic PPC R C R ≈-==6. Calculate the heat of reaction of methane with oxygen at 298K, assuming that the products of reaction are CO 2 and CH 4 (gas)[This heat of reaction is also called the low calorific power of methane] convert the answer into unites of Btu/1000 SCF of methane. SCF means standard cubic feet, taken at 298 and 1atmNOTE: this value is a good approximation for the low calorific powder of natural gas (1.6)DA TA:)()()(224g O H g CO g CH FOR80.5705.9489.17]/[0298---•∆mol g Kcal Hsolution)1000/(9.2610252103048.01101076.191)/(76.191)89.1780.57205.94()2(22333332982982224422SCF Btu mol g Kcal H H H H H OH CO O CH CH O H CO =⨯⨯⨯⨯⨯=•=∆+⨯---=∆-∆+∆-=∆+=+-7. Methane is delivered at 298 K to a glass factory, which operates a melting furnace at 1600 K. The fuel is mixed with a quantity of air, also at 298 K, which is 10% in excess of the amount theoretically needed for complete combustion (air is approximately 21% O 2 and 79% N 2) (1.7) (a) Assuming complete combustion, what is the composition of the flue gas (the gas followingcombustion)?(b) What is the temperature of the gas, assuming no heat loss?(c) The furnace processes 2000kg of glass hourly, and its heat losses to the surroundings average400000 kJ/h. calculate the fuel consumption at STP (in m 3/h) assuming that for gas H 1600-H 298=1200KJ/KG(d) A heat exchanger is installed to transfer some of the sensible heat of the flue gas to thecombustion air. Calculate the decrease in fuel consumption if the combustion air is heated to 800KDA TA STP means T=298K, P=1atm22224O N O H CO CH for 2.82.89.117.1316)/(C mol cal C P •Solution)(210448.1125.9100076.191298)/(25.9)]87.012.72(2.843.179.1171.87.13[01.0)(%87.0%%12.72%%43.17%2%%71.8)11.1(221791.1231%22)(0,,222222224K T T T C mol cal X C C b O N CO O H CO O H CO O CH a i i p p p =⨯⨯+=∆+=•=+⨯+⨯+⨯=======-⨯+⨯⨯+=+=+∑)/(1644)0224.011868.448.11)8001600(48.1125.9189570(102800000)/(189570)298800)](48.1187.8)48.1125.9[(100076.191)()/(87.848.11/]211002.22.816[)()/(3214)0224.011868.448.11)2981600(48.1125.9100076.191(102800000)/(280000040000020001200)(33min ,,,,298,,33min h m V mol g cal dTn C n C H H C mol cal X C C d h m V h KJ P C gConsu i i r p i i p p i i p r p g Consu =⨯⨯-⨯-⨯=•=-⨯-⨯-⨯=--∆=∆•=⨯⨯+===⨯⨯-⨯-⨯⨯==+⨯=⎰∑∑∑8.In an investigation of the thermodynamic properties of a-manganese, the following heat contents were determined:H 700-H 298=12113 J/(g atom) H 1000-H 298=22803 J/(g atom)Find a suitable equation for H T -H 298 and also for C P as a function of temperature in the form (a+bT) Assume that no structure transformation takes place in the given tempeture rang. (1.8)Solution )298(0055.0)298(62.35011.062.35011.062.3522803)2981000(2)2981000(12113)298700(2)298700(]2[2229822222982---=∆-=-===-+-=-+-+=+==∆⎰⎰T T H TC b a ba ba T baT bTdT a dT C H TP T P9.A fuel gas containing 40% CO, 10% CO 2, and the rest N 2 (by volume) is burnt completely with air in a furnace. The incoming and ongoing temperatures of the gases in the furnace are 773K and 1250K,respectively. Calculate (a) the maximum flame temperature and (b) heat supplied to the furnace per cu. ft of exhaust gas (1.9)molJ Hmol J H CO f CO f /393296/1104580,298,0,298,2-=∆-=∆)/(10184.403.29)/(1067.11010.492.19)/(1037.81020.935.44)/(1042.01097.345.283,253,253,253,222molK J T C molK J T T C molK J T T C molK J T T C N P O P CO P CO P -------⨯+=⨯-⨯+=⨯-⨯+=⨯-⨯+=Solution?0)499.0321.018.1()1067.01019.277.28(28.282831067.01038.477.289.0)1019.01058.528.33(2.0282838)()/(1019.01058.528.33722.0278.0)/(1067.01038.477.281.065.005.02.0)()/(282838110458393296%2.72%8.27%10%65%5%20)4/(1122298127332981523733253253298,,,,298,253,,,,,253,,,,,,,0,298,0,298,298,22222222222222==+--⨯+⨯++⨯=⨯-⨯++⨯⨯-⨯+-⨯=--∆=∆⨯-⨯+=+==⨯-⨯+=+++===-=∆-∆=∆========+-----------⎰⎰⎰∑∑⎰∑∑∑∑T T T T T T T dTT T dTT T dT n C n C n H H molK J T T C C n C C molK J T T C C C C n C C a mol J n H n H H N CO production O N CO CO reation then O N air mole need fuel mole when CO O CO T TT i i r p i i p p i i N P CO P i i p p r p O P N P CO P CO P i i p p r p i p f i r f idTT T Q dT T T Q b T T T T T T T dT T T dTT T dT n C n C n H H T TT i i r p i i p p i i 9.0)1019.01058.528.33(2.02828389.0)1019.01058.528.33(2.0282838)(0)499.0321.018.1()1067.01019.277.28(28.282831067.01038.477.289.0)1019.01058.528.33(2.0282838)(253125029812502982531250298125029829812125029815231250253253298,,,,298,⨯⨯-⨯++⨯-=⨯⨯-⨯++⨯-===+--⨯+⨯++⨯=⨯-⨯++⨯⨯-⨯+-⨯=--∆=∆-----------⎰⎰⎰⎰⎰∑∑⎰10. (a) for the reaction 2221CO O CO →+,what is the enthalpy of reaction (0H ∆) at 298 K ? (b) a fuel gas, with composition 50% CO, 50% N 2 is burned using the stoichiometric amount of air. What is the composition of the flue gas?(c) If the fuel gas and the air enter there burner at 298 K, what is the highest temperature theflame may attain (adiabatic flame temperature)? DA TA :standard heats of formation f H ∆ at 298 K (1.10))/(393000)/(1100002mol J CO mol J CO -=-=Heat capacities [J/(mol K)] to be used for this problem N 2=33, O 2=33, CO=34, CO 2=57 Solution)(21100)298)(39889.0(222.02830000)/(3975.03325.057)/(33111.034222.033666.033)(%,75%%,251.111002.22%%1.11%%,6.66%%,2.222.0/25.015.0%)()/(283000393000110000)(,0,,,,,,22220,298,0,298,0K T T dT C n H H K mol J X C C K mol J X C C C N CO product O N CO fuel b mol J n H n H H a P p p i P r i P r i P p i P p i P f i r f ==-⨯-⨯=-∆=∆•=⨯+⨯==•=⨯+⨯+⨯====-====+==+-=∆-∆=∆⎰∑∑∑∑11.a particular blast furnace gas has the following composition by (volume): N 2=60%, H 2=4, CO=12%, CO 2=24%(a) if the gas at 298K is burned with the stochiometric amount of dry air at 298 K, what is the composition of the flue gas? What is the adiabatic flame temperature? (b) repeat the calculation for 30% excess combustion air at 298K(C)what is the adiabatic flame temperature when the blast furnace gas is preheated to 700K (the dry air is at 298K)(d) suppose the combustion air is not dry ( has partial pressure of water 15 mm Hg and a total pressure of 760 mm Hg) how will the flame temperature be affected? DA TA(k J/mol) (1.11)2CO CO FOR513.393523.110)/(--∆mol kJ H f 2222,)(O N g O H CO CO FOR34505733]/[K mol J C P •Solution)(1052)(75438286370])295.03450(241604[026.0])335.03457(110523393513[079.0])([%8.66%%,8.6%%,6.2%%,8.15%%,9.72.0/83.110012%)()(1122)(82538313430])295.03450(241604[029.0])335.03457(110523393513[086.0])([%7.65%%,7.5%%,9.2%%,1.17%%,6.82.0/810012%2121)(,,,,,,,02222,,,,,,,0222222222K T K T T n C T T X C dT n C n C H x H N O H CO CO b K T K T T n C T T X C dT n C n C H x H N O H CO CO OH O H CO O CO a i i r P ii P i i r P i i p P i i i i r P ii P i i r P i i p P i i ===∆=∆-∆-⨯--+∆-⨯---=+--∆=∆=====⨯+====∆=∆-∆-⨯--+∆-⨯---=+--∆=∆=====+=→+→+∑∑∑⎰∑∑∑∑∑⎰∑∑)(1419),(11213842594034286.0)402(2.39714.0])295.03450(241604[029.0])335.03457(110523393513[086.0)3(K T K T T T T T H ===∆=∆⨯--∆⨯-∆-⨯--+∆-⨯---=∆12.A bath of molten copper is super cooled to 5℃ below its true melting point. Nucleation of solid copper then takes place, and the solidification proceeds under adiabatic conditions. What percentage of the bath solidifies?DA TA: Heat of fusion for copper is 3100 cal/mol at 1803℃(the melting point of copper) C P,L =7.5(cal/mol ℃), C P,S =5.41+(1.5*10-3T )(cal/mol ℃) (1.12) Solution)/(310355.75.0)17981803(105.1541.5310002231798,1798,17981803,18031798,1803,mol cal H H dT C dT C H L S SL L P S P L S =⨯-⨯-⨯+⨯+==+++-⎰⎰13.Cuprous oxide (Cu 2O) is being reduced by hydrogen in a furnace at 1000K, (a)write the chemical reaction for the reduced one mole of Cu 2O(b)how much heat is release or absorbed per mole reacted? Given the quantity of heat and state whether heat is evolved (exothermic reaction) or absorbed (endothermic reaction)DA TA: heat of formation of 1000K in cal/mol Cu 2O=-41900 H 2O=-59210 (1.13) solution)/(173104190059210222mol cal H OH Cu H O Cu =-=∆+=+,exothermic reaction14. (a) what is the enthalpy of pure, liquid aluminum at 1000K?(b) an electric resistance furnace is used to melt pure aluminum at the rate of 100kg/h. the furnace is fed with solid aluminum at 298K. The liquid aluminum leaves the furnace at 1000K. what is the minimum electric powder rating (kW) of furnace.DA TA : For aluminum : atomic weight=27g/mol, C p,s =26(J/molK), C p,L =29(J/molK), Melting point=932K, Heat of fusion=10700J/mol (1.14)Solution )(28.0)(7.2793600110002727184)/(2718410700)9321000(29)298932(261000932,932298,1000,kW W P mol J H dT C dT C H SLL P S P l ==⨯⨯==+-⨯+-⨯=++=⎰⎰15 A waste material (dross from the melting of aluminum) is found to contain 1 wt% metallic aluminum. The rest may be assumed to aluminum oxide. The aluminum is finely divided and dispersed in the aluminum oxide; that is the two material are thermally connected.If the waster material is stored at 298K. what is the maximum temperature to which it may rise if all the metallic aluminum is oxidized by air/ the entire mass may be assumed to rise to the same temperature. Data : atomic weight Al=27g/mol, O=16g/mol, C p,s,Al =26(J/molK), C p,s,Al2O3=104J/mol, heat formation of Al 2O 3=-1676000J/mol (1.15)Solution;)(600)(3021041029927275.116122711676000K T K T T ==∆∆⨯⨯++⨯⨯=⨯⨯16 Metals exhibit some interesting properties when they are rapidly solidified from the liquid state. An apparatus for the rapid solidification of copper is cooled by water. In the apparatus, liquid copper at its melting point (1356K) is sprayed on a cooling surface, where it solidified and cools to 400K. The copper is supplied to the apparatus at the rate of one kilogram per minute. Cooling water is available at 20℃, and is not allowed to raise above 80℃. What is the minimum flow rate of water in the apparatus, in cubic meters per minute?DA TA; for water: C p =4.184J/g k, Density=1g/cm 3; for copper: molecular weight=63.54g/mol C p =7cal/mol k, heat of fusion=3120 cal/mol (1.16)Solution:min)/(10573.2)2080(1min /min54.631000)]4001356(73120[min /33m V VQ Q Water Copper -⨯=-=⨯⨯-⨯+=17 water flowing through an insulated pipe at the rate of 5L/min is to be heated from 20℃ to 60℃ b an electrical resistance heater. Calculate the minimum power rating of the resistance heater in watts. Specify the system and basis for you calculation. DA TA; For water C p =4.184J/g k, Density=1g/cm 3 (1.17)Solution: )(139476010005)2060(184.4W W =⨯⨯-⨯=18 The heat of evaporation of water at 100℃ and 1 atm is 2261J/mol (a) what percentage of that energy is used as work done by the vapor?(b)if the density of water vapor at 100℃ and 1 atm is 0.597kg/m 3 what is the internal energy change for the evaporation of water? (1.18)Solution: )/(375971822613101%6.71822613101%)/(31010224.0273373101325mol J Q W U mol J V P =⨯+-=+=∆=⨯==⨯⨯=∆19 water is the minimum amount of steam (at 100℃ and 1 atm pressure) required to melt a kilogram of ice (at 0℃)? Use data for problem 1.20 (1.19) Solution )(125,3341000)10018.42261(g m m =⨯=⨯+20 in certain parts of the world pressurized water from beneath the surface of the earth is available as a source of thermal energy. To make steam, the geothermal water at 180℃is passed through a flash evaporator that operates at 1atm pressure. Two streams come out of the evaporator, liquid water and water vapor. How much water vapor is formed per kilogram of geothermal water? Is the process reversible? Assume that water is incompressible. The vapor pressure of water at 180℃is1.0021 Mpa( about 10 atm) Data: C P,L=4.18J/(g k), C P,v=2.00J/(g k), △H V=2261J/g, △H m=334 J/g (1.20)Solution:leirreversibgxxx)(138),1000(8018.4)8018.48022261(=-⨯⨯=⨯-⨯+。

材料热力学与动力学_2

材料热力学与动力学_2

C 2 C1
Fick’s first law in Cylinder-System
C C1 C2 r
If (r2-r1) << r1 (thin walled), ln(r2/r1)=ln(1+(r2-r1)/r1)=(r2-r1)/r1
dm dt 2 Lr1 D C 2 C1 r2 r1
Chapter 2. Diffusion
Prof. Dr. X.B. Zhao
Department of Materials Science and Engineering Zhejiang University
Diffusion Process
1 B A 2
G
@ T0
mA1
G1
G3
G4
G2
mB2
Chapter 2 : Diffusion
2-13
2.2 Steady-State Diffusion
2.2.1 Diffusion through the cylinder wall
For steady-state diffusion the flux through a cylinder wall with radius of r (r1 < r < r2) is a constant.
This means y 2 ( t ) will increase d 2 if the atoms jump one time. If the jump frequency of the atoms is n, an atom will jump nt times from t = 0 to t = t, and then we have: y 2 ( t ) d 2 n t Einstein has demonstrated that d 2n equals to 2D for one dimensional and to 4D and 6D for two- and three-dimensional case respectively.

材料热力学复习题

材料热力学复习题

《材料热力学》复习题一、在定压热容C p 的经验表达式中,若使用T 2项来代替T -2项,试导出这时的焓(H)、熵(S)和Gibbs 自由能(G)的表达式。

二、已知液体锌的()l p C 为()K mol J C T C l p •︒-⨯+=-/()8505.419(1081.466.293) 固体密排六方锌的()l p C 为())/(1005.1113.223K mol TJ C s p •⨯+=-,锌的熔点为692.6K ,熔化热mol J H /80.6589=∆,求固、液相之间随温度变化的自由能差值()T G ∆。

三、某化合物A m B 的两种晶体结构分别是α、β,相变稳定为在0.1MPa 压力下为400K ,相变潜热为5.02J·mol -1,相变温度随压力的变化为0.005K·MPa -1,400K 时的密度为1.25g·cm-3,A m B 的相对分子量为120,试求该温度下β相的密度。

四、已知纯Sn 在压力为P MPa 时的熔点T sn 为:T sn =238.1+0.0033(P-0.1)℃ 纯Sn 的熔化潜热为58.8J·g -1,0.1MPa 压力下液体的密度为6.988g·cm-3,试求固体的密度。

五、试用G m-X图解法说明,为什么fcc结构的金属加入铁中后,大多会扩展Fe 的fcc结构相区?而Al(fcc结构)为什么却会封闭Fe的fcc相区?六、根据相图,绘出T1、T2、T3温度下各相(L、α)摩尔自由能-成分曲线的位置关系。

七、根据相图,绘出T1、T2、T3、T4温度下各相(L、α、β)摩尔自由能-成分曲线的位置关系。

八、试用G m-X图中化学势的图解法,解释为什么有的固溶体中会发生上坡扩散?九、试用G m-X图解法说明,为什么fcc结构的金属加入铁中后,大多会扩展Fe 的fcc结构相区?而Al(fcc结构)为什么却会封闭Fe的fcc相区?第六题第七题十、试根据Einstein热容理论,证明Dulong-Petit经验定律的正确性。

材料热力学习题解答

材料热力学习题解答

《材料热力学》复习思考题解答3. 在1560℃时,C 在液态铁中的活度系数和偏摩尔超额焓由下列式表示: 2l n 0.37711.7c C C X X γ=-++25.415.017.25E C C C H X X =++(K Cal) 其标准态为纯石墨,计算1560℃时液相与石墨平衡的相线的斜率。

解:以石墨为标准态时,C 在液态铁中的化学位为:l n (1)LC CC R T a μμ=+ 石墨 当液相与石墨平衡时,L C Cμμ=石墨。

即ln 0C α=。

又ln ln ln C C C X αγ=+ln ln 0(2)C C X γ∴+=由(2)式得:平衡时0.2067C X =两边取微分得:(ln )(ln )1[](1/)[]0(1/)C C C X T C C C C d T dX dX T X X γγ∂∂++=∂∂ (ln )[](1/)ln ln 1(1/)[()]1()CC X EC C C C C T C TC C CdX H X T d T R X X X X γγγ∂-∂∴==⋅∂∂-++∂∂2(5.415.017.25) 4.1810000.20678.311(723.4)278.6C C CC X X X X ++⨯⨯=-⋅++=- 2C dX T dT=-CdX 又d(1/T)5221278.68.310(1560273)C dX dT T -∴=-==⨯+C dX d(1/T) 1()K - 4. 在1000K 时,A-B 二元溶液中,当0.01B X =时,0.1B a =。

在盛有大量A 的量热计中加入少量的B 组元时,测得吸热7000Cal/mol ,假定2ln ln B A B X γγ=。

求1500K 时,当0.02B X =时,B 组元的活度。

解:在1000K 时,当0.01B X =时,0.1B a =0.1100.01B γ∴== 又022ln ln10ln 2.3490.99B B A X γγ=== 又ln [](1/)ii P H R T γ∂∆=∂15001500010001000l n (1/)BBH d d T Rγ∆∴=⎰⎰1500100011[ln ][ln ]()15001000B B B H R γγ∆∴=+-7000 4.18112.349()8.31150010001.175⨯=+-= 202l n (l n )0.981.175B A B X γγ∴==⨯ 1.128= l n 3.09B γ∴= 3.090.020.0B B B a X γ==⨯=7. 若A-B 二元合金系在液、固态两组元均能无限互溶,且均为理想溶液。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、常压时纯Al 的密度为ρ=2.7g/cm 3,熔点T m =660.28℃,熔化时体积增加5%。

用理查得规则和克-克方程估计一下,当压力增加1Gpa 时其熔点大约是多少? 解:由理查德规则RTm Hm R Tm HmSm ≈∆⇒≈∆=∆…①由克-克方程VT H dTdP ∆∆=…②温度变化对ΔH m 影响较小,可以忽略,①代入②得V T H dT dP ∆∆=dT T1V Tm R dp V T Tm R ∆≈⇒∆≈…③ 对③积分dT T1V T Tm R p d T Tm Tm p p p⎰⎰∆+∆+∆=整理⎪⎭⎫ ⎝⎛∆+∆=∆Tm T 1ln V Tm R p V T R V Tm R Tm T ∆∆=∆⨯∆≈Al 的摩尔体积V m =m/ρ=10cm 3=1×10-5m 3Al 体积增加ΔV=5%V m =0.05×10-5m3K 14.60314.810510R V p T 79=⨯⨯=∆∆=∆-Tm ’=Tm+T ∆=660.28+273.15+60.14=993.57K二、热力学平衡包含哪些内容,如何判断热力学平衡。

内容:(1)热平衡,体系的各部分温度相等;(2)质平衡:体系与环境所含有的质量不变;(3)力平衡:体系各部分所受的力平衡,即在不考虑重力的前提下,体系内部各处所受的压力相等;(4)化学平衡:体系的组成不随时间而改变。

热力学平衡的判据:(1)熵判据:由熵的定义知dS Q Tδ≥不可逆可逆对于孤立体系,有0Q =δ,因此有dS 可逆不可逆≥,由于可逆过程由无限多个平衡态组成,因此对于孤立体系有dS 可逆不可逆0≥,对于封闭体系,可将体系和环境一并作为整个孤立体系来考虑熵的变化,即平衡自发环境体系总0S S S ≥∆+∆=∆(2)自由能判据 若当体系不作非体积功时,在等温等容下,有()0d ,≤V T F 平衡状态自发过程上式表明,体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向进行,直至自由能减小到最低值,体系达到平衡为止。

(3)自由焓判据 若当体系不作非体积功时,在等温等压下,有d ≤G 平衡状态自发过程所以体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向进 行,直至自由能减小到最低值,体系达到平衡为止。

三、试比较理想熔体模型与规则熔体模型的异同点。

(1)理想熔体模型:在整个成分范围内每个组元都符合拉乌尔定律,这样的溶体称为理想溶体,其特征为混合热为零,混合体积变化为零,混合熵不为零。

从微观上看,组元间粒子为相互独立的,无相互作用。

(2)符合下列方程的溶体称为规则溶体:(形成(混合)热不为零,混合熵等于理想的混合熵)⎪⎪⎭⎪⎪⎬⎫=='='=2A B 2BA 2AB 2BA ln ln ln ln x x x RT x RT αγαγαγαγ其中,α’为常数,而α为(1/T)的函数,即α =α’/RT相同点:混合熵相等。

不同点:(1)理想熔体模型混合热为零,规则混合热不为零;(2)理想假设组元间粒子为相互独立的,无相互作用,规则考虑粒子间的相互作用。

四、固溶体的亚规则溶体模型中,自由能表示为m ii i ii i m G x x RT G x G E 0 ln ++=∑∑其中过剩自由能表示为∑=-=0B A AB B A E )(ννx x L x x G m实际测得某相中0L AB 和1L AB ,请分别给出组元A 和B 的化学位表达式。

解:该模型有A ,B 两相。

00(ln ln )Em A A B B A A B B m G x G x G RT x x x x G =++++过剩自由能表示为∑=-=0B A AB B A E )(ννx x L x x G mE01m A B AB A B AB A B G =x x L +x x L x -x () 代入Gm 中00(ln ln )m A A B B A A B B G x G x G RT x x x x =+++01A B AB A B AB A B x x L x x L x -x ++()化学位m m BA G G x x μ∂==+∂AA G mB B m A BGG G x x μ∂==+∂解得:020ln (3)A A A B AB A B AB G RT x x L x x L μ⎡⎤=+++-⎣⎦ 020ln (3)B B B A AB A B AB G RT x x L x x L μ⎡⎤=+++-⎣⎦五、向Fe 中加入α形成元素会使γ区缩小,但无论加入什么元素也不能使两相区缩小到0.6at%以内,请说明原因。

解:当1,γB αB <<x x 时γαF e0γαA 0αB γB 11→→∆=∆≈-G RT G RT x x加入一种合金元素后,0B x γ≈,此时01ααγB Fe x G RT→-=∆在1400K (x γB 最大值点)时,0αγFeG →∆有最小值71.7J 此时B x γ≈0.6at%则:%1001400314.87.71⨯⨯-=γB x =0.6at%六、今有Fe-18Cr-9Ni 和Ni80-Cr20两种合金,设其中含碳量为0.1wt%,求T=1273︒C 时碳在这两种合金中活度。

解:对于Fe-20Cr-10Ni 合金,由x i 与y i 的关系可得00462.01C CC =-=x x y 21330.0Cr =y 09447.0Ni =y 69223.0Fe =y从表9-1查得J γCr = -100964J/mol ,J γNi = 46000J/mol 而molJ 21701178.1946115])21([C C grC 0Fe 0FeC 0=-=-+--T I y G G G γγγmolJ 35788555.1121079C -=--=T I γ58.1)]2(1ex p[C C gr C 0C C F e 0F eC 0C =∑+--+-=M M v v y J I y G I G G RTf γγγγ因此在Fe-20Cr-10Ni 合金%727.000727.0C C C ===x f a γ 对于 Ni80-Cr20合金,有%465.0Ni γC =-a七、假如白口铁中含有3.96%C 及2.2%Si ,计算在900︒C 时发生石墨化的驱动力,以铸铁分别处于γ+渗碳体两相状态与γ+石墨两相状态时碳的活度差来表示此驱动力。

由于Si 不进入Fe 3C 中,所以有K SiCem/γ= 0。

在Fe-C 二元合金中,已知900︒C 时γ+渗碳体两相状态碳的活度为二a γC = 1.04;当γ与石墨平衡时a γC = 1。

解:要计算Fe-Si-C 三元合金中石墨化驱动力,首先要求出三元合金中x γC ,u γC ,x γSi 和u γSi 四个参数。

188.009.28/0.285.55/04.94011.12/96.31Si Fe C C C alloy C =+=+=-=x x x x x u0406.009.28/0.285.55/04.9409.28/0.21Si Fe Si C Si alloySi =+=+=-=x x x x x u假定γ中的碳含量与二元系中相同,根据Fe-C 相图,900℃与渗碳体相平衡时奥氏体碳含量为1.23%。

因此有0579.085.55/77.98011.12/23.1γC ==u渗碳体的分子式为Fe 3C ,因此x C Cem=0.25或u C Cem =0.333,利用杠杆定律计算γ相的摩尔分数528.00579.0333.0188.0333.0=--=γf 472.0Cem =f 因为K SiCem/γ=0,由硅的质量平衡可得alloySiCem Si 0u f f u =⋅+γγ0769.0528.0/0406.0Si ==γu279.01)()(lnCCem CCem Si BC TC =--=γγγγu u K a aa γC = 1.375二元合金中石墨化驱动力为 ()()04.0104.1Gr C Fe 3=-=-γγγγC Ca a 三元合金中石墨化驱动力为()()375.01375.1Gr C Fe 3=-=-γγγγC Ca a八、通过相图如何计算溶体的热力学量如熔化热、组元活度。

解:熔化热以Bi-Cd 相图为例计算如含0.1摩尔分数的Cd 时,合金的熔点要降低T=22.8K ,已知Bi 的熔点为T A * = 43.5K ,于是Bi 的熔化热H Bi 可由以下方法计算得到:l s G G BiBi =l l s sa RT G a RT G Bi Bi 0Bi Bi0ln ln +=+ sl l s G G a a RT Bi0Bi 0BiBi ln -=Bi 0Bi 0Bi 0Bi 0Bi 0S T H G G G s l ∆-∆=∆=-在纯Bi 的熔点温度T Bi *时,熔化自由能Δ0G Bi = 0,于是由式(10-4)可得纯Bi 的熔化熵为*∆=∆BiBi 0Bi 0T H S)1(Bi Bi 0Bi 0Bi 0Bi 0*-∆=-=∆T T H G G G s l由于Bi-Cd 为稀溶体,可近似取1Bi Bi ==ss x a l l l x x a CdBi Bi 1-==ll x x CdCd )1ln(-≈-于是得lx T R T H Cd2Bi Bi 0)(1*∆=∆将具体数据T=22.8K ,T Bi *=543.5K ,R=8.314J/K*mol ,x Cd l=0.1 mol 代入得Δ0H Bi = 10.77kJ/mol组元活度:设已知相图如图所示。

在温度为T 1时,a 点组成的α相与b 点组成的l 相平衡共存,所以l A αA μμ=αA αA 0l A l A 0ln ln a RT a RT +=+μμl A αA αA0l Aln a a RT =-μμRT G a a *∆=A0l A αA lnαA 0l A 0A 0 μμ-=∆*G 为A 组分的摩尔熔化吉布斯自由能当固溶体α中A 浓度x A α 接近1时,可近似假定A 组元遵从拉乌尔定律,即用x A α代替a A α,则RTG x a *∆-=A 0αAl Alnln⎰⎰********∆-∆+∆-∆=∆TT p TT p TTC TT C T H T H G AAd d A,A ,AA0A0A 0A ,A ,A ,≈-=∆*s p l p p C C C ***-∆+=AA A 0αAA][lnlnRTT T T H x a l***-∆=AA A 0A][ln RTT T T H a l (当固溶体α为极稀溶体,x A α→1)九、请说明相图要满足那些基本原理和规则。

相关文档
最新文档