2019年四川师大附中自主招生数学试卷

合集下载

2019年四川某师大一中招生数学真卷(五)

2019年四川某师大一中招生数学真卷(五)

2019年四川某师大一中招生数学真卷(五)(满分:100分 时间:60分钟)一、填空题(每小题4分,共24分) 1.把910米的木棒平均锯成若干段,一共锯了4次,平均每段长( )米。

2.化肥厂计划全月生产化肥2400吨,实际上半月完成计划的712,下半月生产化肥和上半月同样多,实际超产( )吨。

3.一辆汽车从甲地开往乙地,行了全程的14,距中点还有5千米,甲、乙两地相距( )千米。

4.师徒二人共同加工240个零件,已知师傅加工个数的13比徒弟加工个数的35少4个,那么师傅加工了( )个。

5.如下图,不同的汉字代表不同的数字,那么:++=小升初( )。

小升初初升小206×6.有四个不同的非零自然数,其中任意两个数的和是2的倍数,任意三个数的和是3的 倍数,为使这四个数的和尽可能小,这四个数的和是( )。

二、选择题(每小题4分,共20分) 1. 5千克增加它的12后,再减少12千克,结果是( )。

A .334千克B .134千克C .5千克D .7千克2.一种药品,第一次降价10%,第二次降价20%,现在药品的价格是最初价格的()。

A.70%B.60%C.72%D.64%3.一项工程,小李单独完成要5小时,小陈单独完成要4小时,那么小李与小陈的效率比是()。

A.5:4B.4:5C.5:9D.无法判断4.把一个正方形按1:200的比例尺画在地图上,已知量得图上边长为5厘米,那么这个正方形实际面积是()平方米。

A.10B.100C.4000D.10000005.下列说法中,正确的有()个。

①小数点后面添上0或者去掉0,小数的大小不变。

②最小的合数比最小的质数多100%。

③含有未知数的式子叫做方程。

④所有的自然数都有倒数。

⑤因为55%100=,所以5100与5%的意义相同。

A.0B.1C.2D.3三、计算题(共25分)1.解方程。

(每小题5分,共5分)()67230x x x--=-2.脱式计算。

2019-2020学年四川师范大学附属第一实验学校九上入学考试数学试卷

2019-2020学年四川师范大学附属第一实验学校九上入学考试数学试卷

2019-2020 上学年师大一中(锦江校区)九年级上学期数学入学考试题卷一、选择题.(每小题 3 分,共 30 分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()2.若m > n ,则下列各式中不成立的是()A m - 5 > n - 5B m + 4 > n + 4C 6m > 6nD - 3m > -3n3.如图,DE 是△ABC 的边 AB 的垂直平分线,D 为垂足,DE 交 AC 于点 E ,且 AC=8,BC=5,则△BEC 的周长是()A 12B 13C 14D 154.下列从左到右的变形是因式分解的是()A x 2- x + 2 = x (x - 1) + 2 B x - 1 = x 1(1)x -C x 2 - x = x (x - 1) D (x - 1)2 = x 2 - 2 x +5.下列方程式关于x 的一元二次方程的是()A x 2 + = 0 B 2 x + 5 = 0 C (x - 1)(x + 2) = 1 D 3x 2 - 2 x y - 5 y 2 = 021x6.已知分式的值为 0,则x 的取值为()293x x -+A 3 B - 3 C 9 D ± 37.在平面直角坐标系中,将点 A (21) 向左平移 2 个单位长度得到点 A ' ,则点 A ' 的坐标为()A (2, 3)B (2,-1)C (4,1)D (0,1)8.如图,△ABC 中,AB=AC ,∠A = 40 ,将△ABC 绕点 B 逆时针旋转得到△EBD ,若点 C 的对应点D 落在 A B 边上,则旋转角为()A 140B 80C 70D 409.如图,四边形 A BCD 中,已知 AD//BC ,AC 与 BD 相交于点 O ,则添加下列一个条件后,不能判定该四边形为平行四边形的是()A AD=BCB AB=DC C OD=OBD OA=OC10.如图,在△ABC 中,D 是 B C 边的中点,AE 是∠BAC 的角平分线, AE ⊥ CE 于点 E ,连接 D E , 若 A B=7,DE=1,则 A C 的长度是()A 5B 4C 3D 2二、填空题.(每小题4 分,共16 分)11.若某正多边形的一个外角是45 ,则该正多边形的边数为 .12.如图,函数 y = kx + b (k ≠ 0) 的图像与函数 y = 2 x 的图像交于点 A (12) ,则不等式kx + b < 2 x 的解 集为 .13.如图,平行四边形 ABCD 的对角线 AC 与 BD 相交于点 O ,∠BAC = 900,AC=6,BD=8,则 C D 的长为 .14.如图,已知正方形纸片 A BCD ,M 、N 分别是 A D 、BC 的中点,把 B C 边向上翻折,使点 C 恰好落 在 M N 上的 P 点处,BQ 为折痕,则∠BPN= .三、解答题(共54 分)15.(每小题 6 分,共 12 分)(1)因式分解:2a x 2 - 2a y 2(2)解不等式组,并将解集在数轴上表示出来205121123x x x ->⎧⎪+-⎨+≥⎪⎩16.(本题满分 6 分)化简,并求值,请从满足不等式- 1 ≤ x ≤ 1 的整2221(x x x x x x---÷数中选择一个合适的x 的取值代入计算.17.(本题满分 8 分)如图,在△ABC 中,∠ABC = 90,过点 B 作BD ⊥ AC 于点 D ,BE 平分∠ABD 交 A C 于点 E .(1)求证:CB=CE ;(2)若∠CEB = 80 ,求∠DBC 的大小.18.(本题满分 8 分)在平面直角坐标系中,△ABC 三个顶点的坐标分别是 A (- 3, 1),B (- 1,4) ,C (0,1) .(1)将△ABC 绕点 C 旋转180 ,请画出旋转后对应的∆A 1 B 1C 1;2)将∆A 1 B 1C 1 沿着某个方向平移一定的距离后得到∆A 2 B 2C 2 ,已知点 A 1 的对应点 A 2 的坐标为(3- 1) ,请画出平移后的∆A 2 B 2C 2 ;(3)若△ABC 与∆A 2 B 2C 2 关于某一点中心对称,则对称中心的坐标为19.(本题满分 10 分)如图,已知直线 y = - x + 1 与x 、y 轴分别交于点 A 、B ,以线段 13AB 为直角边在第一象限内作等腰Rt ∆ABC ,∠BAC = 90,点P (x ,y ) 为线段 B C 上一个动点(点 P 不与 B 、C 重 合),设△OPA 的面积为 S .(1)求点 C 的坐标;(2)求 S 关于x 的函数关系式,并写出自变量x 的取值范围;(3)求 P O+PA 的最小值.20.(本题满分 10 分)如图,已知菱形 ABCD 的对角线相交于点 O ,∠BAD = 45 ,DE ⊥ BC 于点 E , 交 A C 于点 F ,点 G 是 B C 的中点,连接 F G ,过点 C 作CM ⊥ CD 交 F G 的延长线于点 M .(1)若 A B=4,求该菱形的面积;(2)①求证:BE=EF ;②求证:CM+2EF=BC.B 卷(50 分)一、填空题(每小题 4 分,共20 分)21.已知x + y = 0.2 ,x + 3 y = 1 ,则x 2 + 4 x y + 4 y 2 的值为 .22.若关于x 的分式方程的解为正实数,则整数m 的最大值是 1211m x x -=--23.若直线l 1 : y 1 = k 1 x + b 1 经过点(03) ,l 2 : y 2 = k 2 x + b 2 经过点(31) ,且l 1 与l 2 关于x 轴对称,则关于x 的不等式k 1 x + b 1 > k 2 x + b 2 的解集为 .24.如图,在△ABC 中,D 是 AC 边的中点,连接 BD ,把△BDC 沿 BD 翻折,得到∆BDC ' ,DC ' 与AB 交于点 E ,连接 A C ' ,若 A D= AC ' =2,BD=3,则点 D 到BC ' 的距离为.25.如图,四边形A BCD 中,AD//BC,AD=AB=CD=2,∠C = 60 ,M 是B C 的中点,将△MDC 绕点M 旋转,当M D(即MD')与A B 交于一点E,MC(即MC')同时与A D 交于一点F时,点E、F 和点A构成△AEF,则△AEF 周长的最小值是.二、解答题(共30 分)26.(本小题8 分)中国传统的“中秋季”马上到了,某超市准备购进甲、乙两种月饼,其中甲、乙两种月饼的进价和售价如下表:月饼价格甲乙进价(元/盒)m m - 2售价(元/盒)2416已知:用300 元购进甲种月饼的数量与用240 元购进乙种月饼的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种月饼共200 盒的总利润(利润=售价-进价)不少于2170 元,且不超过2200元,问该超市有几种进货方案?(3)在(2)的条件下,超市准备对甲种月饼进行优惠促销活动,决定对甲种月饼每盒优惠a(5<a <7)元出售,乙种月饼不变,那么该超市要获得最大利润应如何进货?27.(本小题10 分)如图,在正方形A BCD 中,E 是A B 边上一点,G 是A D 延长线上一点,BE=DG,连接E G,CF ⊥EG 于点H,交A D 于点F,连接C E、BH.(1)求证:∠CEH = 45 ;(2)求证:BH;(3)若C D=6,BH= ,求F G 的长28.(本小题12 分)如图1,直线l1 : y + 6 与x 轴,y 轴分别交于B、A 两点,过点A作AC ⊥AB交x 轴于点C,将直线l1 沿着x 轴正方形平移一段距离得到直线l2 ,直线l2 交直线A C 于点D,交x 轴于点E,将△CDE 沿直线l翻折得到△FDE.2(1)请直接写出A、B 两点的坐标,并求出直线l2 经过原点时的解析式;(2)若△BCF 的面积等于,求l2 的解析式;(3)在(1)问的条件下,将△ABO绕点C选择60 得到∆A1B1O1,点R是直线l2上一点,在直角标系中是否存在点S,使得以点A1、B1 、R、S 为顶点的四边形是矩形?若存在,请直接写出点S 坐的坐标;若不存在,请说明理由.。

成都四川师范大学附属中学数学全等三角形综合测试卷(word含答案)

成都四川师范大学附属中学数学全等三角形综合测试卷(word含答案)

成都四川师范大学附属中学数学全等三角形综合测试卷(word含答案)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.3.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE 的长为10,即PE+PF的最小值为10.故答案为10.4.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.【答案】4【解析】【分析】以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.【详解】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.5.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】①连接NP,MP.在△ANP与△AMP中,∵AN AM NP MP AP AP=⎧⎪=⎨⎪=⎩,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④∵在Rt△ACD中,∠2=30°,∴CD=12AD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S △ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故此选项正确.故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.6.如图,已知,点E是线段AB的中点,点C在线段BD上,8BD=,2DC=,线段AC交线段DE于点F,若AF BD=,则AC=__________.【答案】10.【解析】【分析】延长DE至G,使EG=DE,连接AG,证明BDE AGE∆≅∆,而后证明AFG∆、CDF∆是等腰三角形,即可求出CF的长,于是可求AC的长.【详解】解:如图,延长DE至G,使EG=DE,连接AG,∵点E是线段AB的中点,∴AE=BE,∴在BDE∆和AGE∆中,BE AEBED AEGDE EG=⎧⎪∠=∠⎨⎪=⎩,∴BDE AGE∆≅∆,∴AG=BD, BDE AGE∠=∠,∵AF=BD=8,∴AG=AF,∴AFG AGE∠=∠∵AFG DFC∠=∠,∴BDE DFC∠=∠,∴FC=DC,∴FC=2,∴AC=AF+FC=8+2=10.【点睛】本题考查了等腰三角形的性质与判定以及全等三角形的判定与性质,能利用中点条件作辅助线构造全等三角形是解题的关键.7.如图,已知AB AC=,AD平分BAC∠,60DEB EBC∠=∠=︒,若3BE=,3DE =,则BC =____________.【答案】33+【解析】【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC 于点F.由已知条件推出△BEM 是等边三角形,△FDE 是等边三角形,在△DNM 中求出NM 的长度,即可求出BC 的长度.【详解】如图,延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC 于点F ,∵AB AC =,AD 平分BAC ∠,∴AN ⊥BC ,BN=CN ,∵60DEB EBC ∠=∠=︒,∴△BEM 是等边三角形,∴△FDE 是等边三角形,∵3BE =,3DE =33DM =-∵△BEM 是等边三角形,∴∠EMB=60°,∵AN ⊥BC ,∴∠DNM=90°,∴∠NDM=30°,∴13322NM DM ==, ∴33333BN BM NM -+=-=-= ∴233BC BN ==+【点睛】本题考查了等边三角形的性质,解题的关键是作出辅助线构造等边三角形.8.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出_____个格点三角形与△ABC成轴对称.【答案】6【解析】【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.9.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=2,则CP+PM+DM的最小值是_____.【答案】34.【解析】【分析】如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=32,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,于是得到结论.【详解】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,则OC′=OC=2,OD′=OD=32,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,∴CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,则C′T=OT=2,∴D′T=42,∴C′D′=34,∴CP+PM+DM的最小值是34.故答案为:34.【点睛】本题考查了最短路径问题,掌握作轴对称点是解题的关键.10.如图,在△ABC 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是_____.【答案】9.6.【解析】【分析】由等腰三角形的三线合一可得出AD 垂直平分BC ,过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长.在△ABC 中,利用面积法可求出BQ 的长度,此题得解.【详解】∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,如图所示.∵S △ABC 12=BC •AD 12=AC •BQ ,∴BQ 12810BC AD AC ⋅⨯===9.6. 故答案为:9.6.【点睛】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC +PQ 的最小值为BQ 是解题的关键.二、八年级数学轴对称三角形选择题(难) 11.已知点M(2,2),且OM=22,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .(22,0)B .(0,4)C .(4,0)D .(0,82) 【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且OM=22,且点P 在坐标轴上当22OM OP == 时P 点坐标为:()()22,0,0,22±± ,A 满足;当22MO MP ==时:P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.12.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD ≌△ACD ;②2DE=2DF=AD ;③△ADE ≌△ADF ;④4BE=4CF=AB .正确的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 由等边三角形的性质可得BD=DC ,AB=AC ,∠B=∠C=60°,利用SAS 可证明△ABD ≌△ACD ,从而可判断①正确;利用ASA 可证明△ADE ≌△ADF ,从而可判断③正确;在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得2DE=2DF=AD ,从而可判断②正确;同理可得2BE=2CF=BD ,继而可得4BE=4CF=AB ,从而可判断④正确,由此即可得答案.【详解】∵等边△ABC 中,AD 是BC 边上的高, ∴BD=DC ,AB=AC ,∠B=∠C=60°,在△ABD 与△ACD 中90AD AD ADB ADC DB DC =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△ABD ≌△ACD ,故①正确;在△ADE 与△ADF 中60EAD FAD AD ADEDA FDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ADE ≌△ADF ,故③正确;∵在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,∴2DE=2DF=AD ,故②正确;同理2BE=2CF=BD ,∵AB=2BD ,∴4BE=4CF=AB ,故④正确,故选D .【点睛】本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.13.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,按此规律作下去,若11A B O α∠=,则1010A B O ∠=( )A .102aB .92aC .20aD .18a 【答案】B【解析】 【分析】 根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.【详解】解:1212B A B B =,11A B O α∠=,2212A B O α∴∠=, 同理332111222A B O αα∠=⨯=, 44312A B O α∠=, 112n n n A B O α-∴∠=, 101092A B O α∴∠=,故选:B .【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.14.如图,△ABC 的周长为32,点D 、E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC =12,则PQ 的长为( )A .3B .4C .5D .6【答案】B【解析】【分析】 首先判断△BAE 、△CAD 是等腰三角形,从而得出BA =BE ,CA =CD ,由△ABC 的周长为32以及BC =12,可得DE =8,利用中位线定理可求出PQ .【详解】∵BQ 平分∠ABC ,BQ ⊥AE ,∴∠ABQ =∠EBQ ,∵∠ABQ+∠BAQ =90°,∠EBQ+∠BEQ =90°,∴∠BAQ =∠BEQ ,∴AB =BE ,同理:CA =CD ,∴点Q 是AE 中点,点P 是AD 中点(三线合一),∴PQ 是△ADE 的中位线,∵BE+CD =AB+AC =32﹣BC =32﹣12=20,∴DE =BE+CD ﹣BC =8,∴PQ =12DE =4. 故选:B .【点睛】 本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE 、△CAD 是等腰三角形,利用等腰三角形的性质确定PQ 是△ADE 的中位线.15.如图,ABC ∆中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=,其中正确的是( )A .①②B .①②③C .①②④D .①②③④【答案】C【解析】【分析】 ①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明②正确;③若DM 平分∠EDF ,则∠EDM=90°,从而得到∠ABC 为直角三角形,条件不足,不能确定,故③错误;④连接BD 、DC ,然后证明△EBD ≌△DFC ,从而得到BE=FC ,从而可证明④.【详解】解:如图所示:连接BD 、DC .①∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴ED=DF .∴①正确.②∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°, ∴ED=12AD . 同理:DF=12AD . ∴DE+DF=AD .∴②正确. ③由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC 是否等于90°不知道,∴不能判定MD 平分∠EDF ,故③错误.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.综上所述,①②④正确,故选:C .【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.16.如图所示,把多块大小不同的30角三角板,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与x 轴重合且点A 的坐标为()2,0,30ABO ∠=︒,第二块三角板的斜边1BB 与第一块三角板的斜边AB 垂直且交x 轴于点1B ,第三块三角板的斜边12B B 与第二块三角板的斜边1BB 垂直且交y 轴于点2B ,第四块三角板斜边23B B 与第三块三角板的斜边12B B 垂直且交x 轴于点3B ,按此规律继续下去,则点2018B 的坐标为( )A .()20182(3),0-⨯ B .()20180,2(3)-⨯ C .()20192(3),0⨯ D .()20190,2(3)-⨯ 【答案】D【解析】【分析】 计算出OB 、OB 1、 OB 2的长度,根据题意和图象可以发现题目中的变化规律,从而可以求得点B 2018的坐标.【详解】解:由题意可得,2242-3OB 1323322(3)⨯,OB 231= 323)⨯,…∵2018÷4=504…2,∴点B 2018在y 轴的负半轴上,∴点B 2018的坐标为()20190,2(3)-⨯.故答案为:D .【点睛】本题考查规律型:点的坐标规律及含30度角的直角三角形的性质,解答本题的关键是明确题意,找出题目中坐标的变化规律,求出相应的点的坐标.17.如图,已知AD为ABC∆的高线,AD BC=,以AB为底边作等腰Rt ABE∆,连接ED,EC,延长CE交AD于F点,下列结论:①DAE CBE∠=∠;②CE DE⊥;③BD AF=;④AED∆为等腰三角形;⑤BDE ACES S∆∆=,其中正确的有( )A.①③B.①②④C.①③④D.①②③⑤【答案】D【解析】【分析】①根据等腰直角三角形的性质即可证明∠CBE=∠DAE,再得到△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④根据△AEF≌△BED得到DE=EF, 又DE⊥CF,故可判断;⑤易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE =S△ACE,所以S△BDE=S△ACE.【详解】①∵AD为△ABC的高线,∴CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE,故①正确;在△DAE和△CBE中,AE BEDAE CBEAD BC⎧⎪∠∠⎨⎪⎩===,∴△ADE≌△BCE(SAS);②∵△ADE≌△BCE,∴∠EDA=∠ECB,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF,在△AEF和△BED中,BDE AFEBED AEFAE BE∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF≌△BED(AAS),∴BD=AF故③正确;∵△AEF≌△BED∴DE=EF, 又DE⊥CF,∴△DEF为等腰直角三角形,故④错误;④∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF=S △ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确;故选:D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.18.已知:如图,ABC∆、CDE∆都是等腰三角形,且CA CB=,CD CE=,ACB DCEα∠=∠=,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.以下4个结论:①AD BE=;②180DOBα∠=-;③CMN∆是等边三角形;④连OC ,则OC 平分AOE ∠.正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】B【解析】【分析】 ①根据∠ACB=∠DCE 求出∠ACD=∠BCE,证出ACD BCE ≅△△即可得出结论,故可判断; ②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB ,故可判断;③根据已知条件可求出AM=BN,根据SAS 可求出CAM CBN ≅,推出CM=CN ,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN ∆的形状;④在AD 上取一点P 使得DP=EO,连接CP ,根据ACD BCE ≅△△,可求出∠CEO=∠CDP ,根据SAS 可求出 CEO CDP ≅,可得∠COE=∠CPD,CP=CO,进而得到 ∠COP=∠COE ,故可判断.【详解】①正确,理由如下:∵ACB DCE α∠=∠=,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,又∵CA=CB,CD=CE,∴ACD BCE ≅△△(SAS),∴AD=BE,故①正确;②正确,理由如下:由①知,ACD BCE ≅△△,∴∠CAD=∠CBE,∵∠DOB 为ABO 的外角,∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,∴∠CBA+∠BAC=180°-α,即∠DOB=180°-α,故②正确;③错误,理由如下:∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD,BN= 12BE, 又∵由①知,AD=BE,∴AM=BN,又∵∠CAD=∠CBE,CA=CB,∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,∴MCN △为等腰三角形且∠MCN=α,∴MCN △不是等边三角形,故③错误;④正确,理由如下:如图所示,在AD 上取一点P 使得DP=EO,连接CP ,由①知,ACD BCE ≅△△,∴∠CEO=∠CDP ,又∵CE=CD,EO=DP ,∴CEO CDP ≅(SAS),∴∠COE=∠CPD,CP=CO,∴∠CPO=∠COP ,∴∠COP=∠COE,即OC 平分∠AOE,故④正确;故答案为:B.【点睛】本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.19.如图,等腰三角形ABC 的底边BC 长为4,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,若△CDM 周长的最小值为8,则△ABC 的面积为( )A .12B .16C .24D .32 【答案】A【解析】【分析】 连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM+MD 的最小值,再根据三角形的周长求出AD 的长,由此即可得出结论.【详解】连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 的长为CM+MD 的最小值,∵△CDM 周长的最小值为8,∴AD=8-12BC=8-2=6 ∴S △ABC =12BC•AD=12×4×6=12, 故选A .【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.20.如图,在ABC △中,2B C ∠=∠,AH BC ⊥,AE 平分BAC ∠,M 是 BC 中点,则下列结论正确的个数为( )(1)AB BE AC += (2)2AB BH BC += (3)2AB HM = (4)CH EH AC +=A.1 B.2 C.3 D.4【答案】D【解析】【分析】(1)延长AB取BD=BE,连接DE,由∠D=∠BED,2ABC C∠=∠,得到∠D=∠C,在△ADE和△ACE中,利用AAS证明ADE ACE≌,可得AC=AD=AB+BE;(2)在HC上截取HF=BH,连接AF,可知△ABF为等腰三角形,再根据2ABC AFB C∠=∠=∠,可得出△AFC为等腰三角形,所以FC+BH+HF=AB+2BH=BC;(3)HM=BM-BH,所以2HM=2BM-2BH=BC-2BH,再结合(2)中结论,可得2AB HM=;(4)结合(1)(2)的结论,BC2BH BE BC BH BE BH CH EHAC AB BE=+=-+=-+-=+.【详解】解:①延长AB取BD=BE,连接DE,∴∠D=∠BED,∠ABC=∠D+∠BED=2∠D,∵2ABC C∠=∠,∴∠D=∠C,在△ADE和△ACE中,DAE CAED CAE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE ACE≌∴AC=AD=AB+BE,故(1)正确;②在HC上截取HF=BH,连接AF,∵AH BC⊥,∴△ABF为等腰三角形,∴AB=AF,∠ABF=∠AFB,∵2ABC C∠=∠,∴∠AFB=2∠C=∠C+∠CAF,∴FC=AF=AB,∴FC+BH+HF=AB+2BH=BC,故(2)正确;③∵HM=BM-BH,∴2HM=2BM-2BH=BC-2BH,由②可知BC-2BH=AB ,∴2AB HM =④根据①②结论,可得:BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+,故(4)正确;故选D.【点睛】本题主要考查了等腰三角形的判定和性质、三角形的外角以及全等三角形的判定和性质,结合实际问题作出合适辅助线是解题关键.。

2019年四川某师大一中麓山校区招生数学真卷(二)

2019年四川某师大一中麓山校区招生数学真卷(二)

2019年四川某师大一中麓山校区招生数学真卷(二)(满分:120分时间:60分钟)一、选择题(每小题3分,共30分)1.有两层书架,共有书173本,从第一层拿走38本书后,第二层的书比第一层的2倍还多6本,则第二层有()本书。

A.80B.82C.88D.922.如果两个四位数的差等于8921,就说这两个四位数组成一个数对,那么这样的数对共有()个。

A.79B.78C.75D.803.如图,把长方形ABCD绕顶点A向右旋转90°,求CD边扫过的阴影部分的面积是()。

A.21.96B.25.12C.28.26D.31.44.一艘轮船从甲港开往乙港,由于顺水,每小时可以航行28千米,3小时到达。

这艘轮船从乙港返回甲港时,由于逆水,每小时只能航行21千米。

这艘轮船往返一次每小时的平均速度是()千米。

A.12B.24C.24.5D.255.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400千米,运费为每吨货物运1千米收1.5元。

如果在运输及销售过程中的损耗是10%,那么商店要想实现25%的利润率,零售价应是每千克()元。

A.2B.2.5C.3D.3.56.有自然数N,使得它能被5和49整除,并且包括1和N在内,它共有10个约数,N是()。

A.12500B.12005C.24010D.241007.已知a、b是任意自然数,我们规定:1a b ab⊗=-,那么⊕=+-,2a b a b()()⊗⊕⊕⊗=46835⎡⎤⎣⎦()。

A.94B.96C.98D.1008.把浓度为20%、30%和50%的某溶液混合在一起,得到浓度为36%的溶液50升。

已知浓度为30%的溶液用量是浓度为20%的溶液用量的2倍,浓度为30%的溶液用量是( )升。

A .20B .22.5C .25D .27.59.某人沿公路前进,迎面来了一辆汽车,他问司机:“后面有骑自行车的人吗?”司机回答:“10分钟前我超过一个骑自行车的人。

成都四川师范大学附属中学数学平面图形的认识(一)综合测试卷(word含答案)

成都四川师范大学附属中学数学平面图形的认识(一)综合测试卷(word含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断 AB 与 CD 的位置关系,并说明理由;(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.【答案】(1),理由如下:CE 平分,AE 平分,;(2),理由如下:如图,延长AE交CD于点F,则由三角形的外角性质得:;(3),理由如下:,即由三角形的外角性质得:又,即即.【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.2.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.3.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.4.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.5.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线 ________(平分或不平分) .(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为________.(直接写出结果)(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【答案】(1)平分(2)或49(3)解:不变,设,,,【解析】【解答】(1)直线平分;(2)或【分析】(1)根据图形得到直线ON平分∠AOC ;(2)由三角板绕点 O 以每秒 5 °的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角∠AOC,求出t的值;(3)根据题意得到∠AON=50°−y,∠AOM−∠NOC=x−y=40°.6.如图(1),将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=25°,∠ACB=?;若∠ACB=150°,则∠DCE=?;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.【答案】(1)【解答】∵∠ECB=90°,∠DCE=25°∴∠DCB=90°﹣25°=65°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=155°.∵∠ACB=150°,∠ACD=90°∴∠DCB=150°﹣90°=60°∵∠ECB=90°∴∠DCE=90°﹣60°=30°.故答案为:155°,30°(2)【解答】猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°(3)【解答】∠DAB+∠CAE=120°理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.【解析】【分析】(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.7.如图,已知点,且,满足 .过点分别作轴、轴,垂足分别是点A、C.(1)求出点B的坐标;(2)点M是边上的一个动点(不与点A重合),的角平分线交射线于点N,在点M运动过程中,的值是否变化?若不变,求出其值;若变化,说明理由. (3)在四边形的边上是否存在点,使得将四边形分成面积比为1:4的两部分?若存在,请直接写出点的坐标;若不存在,说明理由.【答案】(1)解:由得:,解得:∴点的坐标为(2)解:不变化∵轴∴BC∥x轴∴∵平分∴∴∴(3)解:点P可能在OC,OA边上,如下图所示,由(1)可知,BC=5,AB=3,故矩形的面积为15若点P在OC边上,可设P点坐标为,则三角形BCP的面积为,剩余部分面积为,所以,解得,P点坐标为;若点P在OA边上,可设P点坐标为,则三角形BAP的面积为,剩余部分面积为,所以,解得,P点坐标为 .综上,点的坐标为, .【解析】【分析】(1)由绝对值和算术平方根的非负性可知由两个非负数的和为0,则这两个数都为0,由此可列出关于,的二元一次方程组,解之即可得出B点坐标;(2)根据平行线和角平分线的性质可证明,所以比值不变化;(3)点P只能在OC,OA边上,表示出两部分的面积,依比值求解即可.8.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.(1)下面是小东证明该猜想的部分思路,请补充完整;①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与________全等,判定它们全等的依据是________;②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=________°;(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.【答案】(1)△BMF;SAS;60(2)证明:由①知,∠BFE=60°,∴∠CFD=∠BFE=60°∵△BEF≌△BMF,∴∠BFE=∠BFM=60°,∴∠CFM=∠BFC-∠BFM=120°-60°=60°,∴∠CFM=∠CFD=60°,∵CE是∠ACB的平分线,∴∠FCM=∠FCD,在△FCM和△FCD中,,∴△FCM≌△FCD(ASA),∴CM=CD,∴BC=CM+BM=CD+BE,∴BE+CD=BC.【解析】【解答】解:(1)解:①在BC上取一点M,使BM=BE,连接FM,如图所示:∵BD、CE是△ABC的两条角平分线,∴∠FBE=∠FBM= ∠ABC,在△BEF和△BMF中,,∴△BEF≌△BMF(SAS),故答案为:△BMF,SAS;②∵BD、CE是△ABC的两条角平分线,∴∠FBC+FCB= (∠ABC+∠ACB),在△ABC中,∠A+∠ABC+∠ACB=180°,∵∠A=60°,∴∠ABC+∠ACB=180°-∠A=180°-60°=120°,∴∠BFC=180°-(∠FBC+∠FCB)=180°- (∠ABC+∠ACB)=180°- ×120°=120°,∴∠EFB=60°,故答案为:60;【分析】(1)①由BD,CE是△ABC的两条角平分线知∠FBE=∠FBC= ∠ABC,结合BE=BM,BF=BF,依据“SAS”即可证得△BEF≌△BMF;②利用三角形内角和求出∠ABC+∠ACB=120°,进而得出∠FBC+∠FCB=60°,得出∠BFC=120°,即可得出结论;(2)利用角平分线得出∠EBF=∠MBF,进而得出△BEF≌△BMF,求出∠BFM,即可判断出∠CFM=∠CFD,即可判断出△FCM≌△FCD,即可得出结论.9.己知AB∥CD,点E在直线AB,CD之间。

2019-2020成都四川师范大学附属中学数学中考试题含答案

2019-2020成都四川师范大学附属中学数学中考试题含答案

x 0 )的图象上,横坐标分别为 1,4,对角线 BD∥x 轴.若菱形 ABCD 的面积为 45 , 2
则 k 的值为( )
A. 5 4
B. 15 4
C.4
D.5
6.如图,把矩形 ABCD 沿 EF 翻折,点 B 恰好落在 AD 边的 B′处,若 AE=2,DE=6,∠
EFB=60°,则矩形 ABCD 的面积是( )
A.200 米
B.200 3 米
C.220 3 米
D.100 ( 3 1) 米
3.如图抛物线 y=ax2+bx+c 的对称轴为直线 x=1,且过点(3,0),下列结论:①abc>
0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有( )个.
A.1
B.2
C.3
D.4
4.为了绿化校园,30 名学生共种 78 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵,设
三、解答题
21.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争 物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某 校对本校甲、乙两班各 60 名学生进行了垃极分类相关知识的测试,并分别随机抽取了 15 份成绩,整理分析过程如下,请补充完整 (收集数据) 甲班 15 名学生测试成绩统计如下:(满分 100 分) 68,72,89,85,82,85,74,92,80,85,78,85,69,76,80 乙班 15 名学生测试成绩统计如下:(满分 100 分) 86,89,83,76,73,78,67,80,80,79,80,84,82,80,83 (整理数据) 按如下分数段整理、描述这两组样本数据
∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°. ∵把矩形 ABCD 沿 EF 翻折点 B 恰好落在 AD 边的 B′处, ∴∠BEF=∠DEF=60°. ∴∠AEB=∠AEF-∠BEF=120°-60°=60°.

四川省成都市川师大附中2019-2020学年中考数学模拟学业水平测试试题

四川省成都市川师大附中2019-2020学年中考数学模拟学业水平测试试题

四川省成都市川师大附中2019-2020学年中考数学模拟学业水平测试试题一、选择题1.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( ) A .1a ≥ B .1a >且5a ≠ C .1a ≥且5a ≠ D .5a ≠ 2.正六边形的半径与边心距之比为( )A.1:B.:1C.:2D.2:3.为迎接体育中考,九年级(9)班八名同学课间练习垫排球,记录成绩(个数)如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是( ) A .40,41 B .42,41 C .41,42 D .42,40 4.在数轴上用点B 表示实数b .若关于x 的一元二次方程x 2+bx+1=0有两个相等的实数根,则( ) A.2OB =B.2OB >C.2OB ≥D.2OB <5.如图,四边形ABCD 是正方形,直线l 1、l 2、l 3分别通过A 、B 、C 三点,且l 1∥l 2∥l 3,若l 1与l 2的距离为6,正方形ABCD 的面积等于100,l 2与l 3的距离为( )A .8B .10C .9D .76.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,下列等式中不一定成立的是( )A .∠1=∠2B .∠3=∠5C .∠BAD=∠DCED .∠4=∠67.在下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.下列图像中既不是中心对称图形又不是轴对称图形的是( )A. B.C. D.9.如图,在△ABC 中,∠C=50°,∠B=35°,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,直线MN 交BC 于点D ,连接AD .则∠DAC 的度数为( )A .85°B .70°C .60°D .25°10.如图,点O 1是△ABC 的外心,以AB 为直径作⊙O 恰好过点O 1,若AC =2,BC =,则AO 1的长是( )A .BC .D . 11.肥皂泡的泡壁厚度大约是0.0000007m ,将0.0000007用科学计数法可表示为( )A .60.710-⨯B .7710-⨯C .6710-⨯D .70.710-⨯12.如图,矩形ABCD 中,AB =5,BC =12,点E 在边AD 上,点G 在边BC 上,点F 、H 在对角线BD 上,若四边形EFGH 是正方形,则AE 的长是( )A .5B .11924C .13024D .16924二、填空题13.如图,AB ∥CD .若∠ACD=82°,∠CED=29°,则∠ABD 的大小为______度.14.正六边形的每一个外角是___________度15.已知一组数据:13,1,0,﹣5,7,﹣4,5,这组数据的极差是_____.16.如图,在△ABC 中,AB =AC ,∠A =40º,点D 在AC 上,BD =BC ,则∠ABD 的度数为 .17.在背面完全相同四张不透明的卡片,正面分别印有下列函数解析式:21,2,,21y y x y x y x x==-+==+,将它们背面朝上洗均匀后,从中抽取一张卡片,则抽到的函数图像不过第四象限的卡片的概率是__________. 18.分解因式:4a 3﹣16a =_____. 三、解答题19.如图,A 、B 是直线L 上的两点,AB=4厘米,过L 外一点C 作CD ∥L ,射线BC 与L 所成的锐角∠1=60°,线段BC=2厘米,动点P 、Q 分别从B 、C 同时出发,P 以每秒1厘米的速度沿由B 向C 的方向运动,Q 以每秒2厘米的速度沿由C 向D 的方向运动.设P ,Q 运动的时间为t (秒),当t >2时,PA 交CD 于E .(1)用含t 的代数式分别表示CE 和QE 的长. (2)求△APQ 的面积S 与t 的函数关系式.(3)当QE 恰好平分△APQ 的面积时,QE 的长是多少厘米?20.如图,旗杆AB 的顶端B 在夕阳的余辉下落在一个斜坡上的点D 处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A 处测得点D 的仰角为15°,AC =10米,又测得∠BDA =45°.已知斜坡CD 的坡度为i =1,求旗杆AB 1.7≈,结果精确到个位).21.在不透明的袋子中有四张标着数字1,2,3,4的卡片,这些卡片除数字外都相同.小芸同学按照一定的规则抽出两张卡片,并把卡片上的数字相加.如图是她所画的树状图的一部分.(1)由如图分析,小芸的游戏规则是:从袋子中随机抽出一张卡片后 (填“放回”或“不放回”),再随机抽出一张卡片; (2)帮小芸完成树状图;(3)求小芸两次抽到的数字之和为奇数的概率.22.(1)化简:22242a a a a÷-- ; (2)若二次函数y =x 2+(c ﹣1)x ﹣c 的图象与横轴有唯一交点,求c 的值.23.如图,一直角三角形的直角顶点P 在边长为1的正方形ABCD 对角线AC 上运动(点P 与A 、C 两点不重合)且它的一条直角边始终经过点D ,另一直角边与射线BC 交于点E . (1)当点E 在BC 边上时, ①求证:△PBC ≌△PDC ;②判断△PBE 的形状,并说明理由; (2)设AP =x ,△PBE 的面积为y .①求出y 关于x 的函数关系式,并写出x 的取值范围; ②当x 取何值时,y 取得最大值,并求出这个最大值.24.计算:()22)sin 45︒25.如图,在矩形ABCD 中,BC=1,∠CBD=60°,点E 是AB 边上一动点(不与点A 、B 重合),连接DE ,过点D 作DF ⊥DE 交BC 的延长线于点F ,连接EF 交CD 于点G .(1)求证:△ADE ∽△CDF ;(2)设AE 的长为x ,△DEF 的面积为y .求y 关于x 的函数关系式;(3)当△BEF 的面积S 取得最大值时,连接BG ,请判断此时四边形BGDE 的形状,并说明理由.【参考答案】*** 一、选择题13.53 14.60°. 15.18 16.30°. 17.3418.4a (a+2)(a ﹣2) 三、解答题19.(1)4(2)t EC t -= ,()2224t t QE t-+= ;(2))2242APQSt t =-+; (3)6. 【解析】 【分析】(1)根据题意的出BP=t ,CQ=2t ,PC=t-2.再根据EC ∥AB ,得出EC PC AB PB=最后得出EC 的值,即可表示出CE 和QE 的长.(2)本题关键是得出S 与t 的函数关系式,那么求面积就要知道底边和高的长,我们可以QE 为底边,过P 引l 的垂线作高,根据P 的速度可以用t 表示出BP ,也就能用BP 和∠1的正弦函数求出高,那么关键是求QE 的长,我们可以根据Q 的速度用时间t 表示出CQ ,那么只要求出CE 即可.因为EC ∥BA ,那么我们可以用相似三角形的对应线段成比例来求CE 的长,根据三角形PEC 和PAB 相似,可得出关于CE 、AB 、PC 、BC 的比例关系式,有BP 、BC 、AB 的值,那么我们就可以用含t 的式子表示出CE ,也就表示出了QE ,那么可根据三角形的面积公式得出关于S 与t 的函数关系式了.(3)如果QE 恰好平分三角形APQ 的面积,那么此时P 到CD 和CD 到l 之间的距离就相等,那么C 就是PB 的中点,可根据BP=2BC 求出t 的值,然后根据(1)中得出的表示QE 的式子,将t 代入即可得出QE 的值. 【详解】解:(1)由题意知:BP=t ,CQ=2t ,PC=t-2; ∵EC ∥AB ,∴EC PCAB PB= ∴()42t PC AB EC PB t-⋅== ∴()()2224422t t t QE QC EC t tt-+-=-=-=(2)作PF ⊥L 于F ,交DC 延长线于M ,AN ⊥CD 于N .则在△PBF 中,PF=PB•sin60°=2t ∴S △APQ =S △AQE +S △PQE =12QE•AN+12QE•PM =12QE•PF=()222412t t t-+)224t t -+(3)此时E 为PA 的中点,所以C 也是PB 的中点 则t-2=2, ∴t=4()2224t t QE t-+==()2242444-⨯+=6(厘米)【点睛】本题考查了相似三角形的性质以及解直角三角形的应用等知识点,根据相似三角形得出表示CE 的式子是解题的关键所在.20.旗杆AB 的高度约为16米. 【解析】 【分析】延长BD ,AC 交于点E ,过点D 作DF ⊥AE 于点F .构建直角△DEF 和直角△CDF .通过解这两个直角三角形求得相关线段的长度即可. 【详解】解:延长BD ,AC 交于点E ,过点D 作DF ⊥AE 于点F . ∵i =tan ∠DCF= ∴∠DCF =30°. 又∵∠DAC =15°, ∴∠ADC =15°. ∴CD =AC =10.在Rt △DCF 中,DF =CD•sin30°=10×12=5(米), CF=CDF =60°. ∴∠BDF =45°+15°+60°=120°, ∴∠E =120°﹣90°=30°,在Rt △DFE 中,EF=tan DF E == ∴AE =10++=.在Rt △BAE 中,BA=AE•tanE=()×3=10+3≈16(米).答:旗杆AB 的高度约为16米.【点睛】本题考查了解直角三角形的应用−−仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.21.(1)不放回.(2)见解析;(3)23【解析】 【分析】(1)根据树状图可得答案; (2)根据不放回逐一分析可得;(3)利用概率公式求解可得. 【详解】解:(1)小芸的游戏规则是:从袋子中随机抽出一张卡片后不放回,再随机抽出一张卡片;故答案为:不放回.(2)补全树状图如图所示:(2)由树状图得:共有12种情况,两次抽到的数字之和为奇数的有8种, 所以小芸两次抽到的数字之和为奇数的概率为812=23. 【点睛】本题考查了列表法和树状图法,解题的关键是熟练掌握列表法和树状图法. 22.(1)2(2)aa a -+ ;(2)c =﹣1.【解析】 【分析】(1)利用除法法则转化为分式乘法,然后再进行计算即可;(2)由二次函数图象与x 轴有唯一交点,可得出△=(c+1)2=0,解之即可得出c 的值. 【详解】(1)原式=()()22222a a a a a -+-=2(2)aa a -+;(2)∵二次函数y =x 2+(c ﹣1)x ﹣c 的图象与横轴有唯一交点, ∴△=(c ﹣1)2﹣4×1×(﹣c)=(c+1)2=0, 解得:c =﹣1, ∴c 的值为﹣1. 【点睛】本题考查了抛物线与x 轴的交点以及分式的乘除法,解题的关键是:(1)牢记分式运算的法则;(2)牢记“△=b 2﹣4ac =0时,抛物线与x 轴有1个交点”.23.(1)①见解析;②△PBE 是等腰三角形;(2)①21(02y x x x =-+<<;当x 时,y 最大值=14. 【解析】 【分析】(1)①根据SAS 证明两三角形全等;②由△PBC ≌△PDC 得∠PBC =∠PDC ,由∠BCD =∠DPE =90°,∠PEB =∠PDC ,∠PEB =∠PBC 即可证明PB =PE ,即△PBE 为等腰三角形;(2)①作高线PF ,分别计算BE 和PF 的长,根据三角形面积公式可得y 关于x 的函数关系式; ②将①中所得二次函数的解析式配方后可得结论. 【详解】解:(1)①∵四边形ABCD 是正方形,∴BC =DC ,∠BCD =90°,AC 平分∠BCD . ∴∠BCP =∠DCP =45°. ∵PC =PC ,∴△PBC ≌△PDC (SAS ); ②△PBE 是等腰三角形,理由是: 由△PBC ≌△PDC 可知,∠PBC =∠PDC . ∵∠BCD =∠DPE =90°, ∴∠PDC+∠PEC =180°, 又∠PEB+∠PEC =180°, ∴∠PEB =∠PDC , ∴∠PEB =∠PBC .∴PB =PE ,即△PBE 是等腰三角形.(2)①如图1,过点P 作PF ⊥BC ,垂足为F ,则BF =FE .∵AP =x ,AC ,∴PC x ,PF =FC =)122x x =-BF =FE =1﹣FC =1﹣(1x x .∴S △PBE =12BE PF ⋅=BF•PF=2x (1﹣2x )=2122x x -+.即 21(022y x x x =-+<<②y =2122x x -+=211(24x -+ ∵a =﹣12<0,∴当x y 最大值=14.【点睛】本题是四边形的综合题,考查了正方形的性质,等腰三角形的判定,二次函数的性质,本题中求证∠PEB =∠PBC 是解题的关键. 24.8 【解析】 【分析】根据二次根式的运算法则和特殊锐角三角函数值进行计算. 【详解】原式341=+- =8【点睛】考核知识点:含有特殊锐角三角函数值的运算.25.(1)证明见解析;(2)222x y +=;(3)四边形BGDE 是菱形,理由见解析 【解析】 【分析】(1)利用矩形性质可得∠DCF=90°=∠A ,根据等角的余角相等,可得∠ADE=∠CDF ,利用两角对应相等的两个三角形相似,可证△ADE ∽△CDF.(2) 利用相似三角形的对边成比例,可得DF ,利用勾股定理可得22221DE AD AE x =+=+ , 利用△DEF 的面积为12 2 , 代入数据化简即可. (3)利用直角三角形的性质可得CD 的值,利用相似三角形的对边成比例,可得AE AD CF CD ==,即得 CF= x 。

2019年四川某师大一中麓山校区招生数学真卷(三)

2019年四川某师大一中麓山校区招生数学真卷(三)

2019年四川某师大一中麓山校区招生数学真卷(三)(满分:120分 时间:60分钟)一、选择题(每小题3分,共30分)1. a 、b 、c 、d 四个数的平均数是16,如果要让这四个数的平均数提高到18,其中一个数要( )。

A .增加6B .增加8C .增加10D .无法确定2.两个( )梯形可以拼成一个长方形。

A .等底等高的B .等腰C .完全一样的D .完全一样的直角 3.在79,72.5%,0.7255,0.725中,最大的数是( )。

A .79 B .72.5% C .0.7255 D . 0.725 4. “△”表示一种运算符号,2a b a b =-△,如果()233x =△△,则x 为( )。

A .2B .3C .4D .55.随着通讯市场竞争的日益激烈,某通讯公司的手机市话的收费标准在按原标准每分钟降低a 元后,再次下调25%,现在的收费标准是每分钟b 元,则原收费标准是每分钟( )元。

A .54b a +B .54b a -C .34b a +D .43b a + 6.如图,有一种用来画圆的工具板,工具板长21 cm ,上面依次排列着大小不等的五个圆孔,其中最大圆的直径为3 cm ,其余圆的直径从左到右依次递减0.2 cm ,最大圆的左侧距工具板左侧边缘1.5 cm ,最小圆的右侧距工具板右侧边缘1.5 cm ,相邻两圆的间距d 均相等,则相邻两圆的间距是( )cm 。

A .0.5B .1.5C .0.75D .1.257.一艘轮船从甲港开往乙港,由于顺水,每小时可以航行28千米,3小时到达。

这艘轮船从乙港返回甲港时,由于逆水,每小时只能航行21千米。

这艘轮船往返一次的平均速度是()千米/时。

A.20B.22C.24D.268.如图是一只蜘蛛在墙角织的网,连接图中黑点的蛛丝之间共有()个交点。

A.19B.20C.21D.229.有一根长为21厘米的铁丝,想办法把它截成n小段(每段的长度均为不小于1的签厘米数),使得其中任意的三段都无法拼成三角形,那么截成的段数n的最大值是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年四川师大附中自主招生数学试卷一、填空题(每小题5分,共40分)1.(5分)方程组的解是.2.(5分)若对任意实数x不等式ax>b都成立,那么a,b的取值范围为.3.(5分)设﹣1≤x≤2,则|x﹣2|﹣|x|+|x+2|的最大值与最小值之差为.4.(5分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P1,P2,P3、…、P2007在反比例函数y=上,它们的横坐标分别为x1、x2、x3、…、x2007,纵坐标分别是1,3,5…共2007个连续奇数,过P1,P2,P3、…、P2007分别作y轴的平行线,与y=的图象交点依次为Q1(x1′,y1′)、Q1(x2′,y2′)、…、Q2(x2007′,y2007′),则|P2007Q2007|=.5.(5分)如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是.6.(5分)有一张矩形纸片ABCD,AD=9,AB=12,将纸片折叠使A、C两点重合,那么折痕长是.7.(5分)已知3,a,4,b,5这五个数据,其中a,b是方程x2﹣3x+2=0的两个根,则这五个数据的标准差是.8.(5分)若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为.二、选择题(每小题5分,共40分)9.(5分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1B.5:3:1C.25:12:5D.51:24:1010.(5分)若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A.B.C.D.11.(5分)抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是()A.≤a≤1B.≤a≤2C.≤a≤1D.≤a≤212.(5分)有铅笔、练习本、圆珠笔三种学习用品.若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元.现购铅笔,练习本,圆珠笔各1个,共需()A.1.2元B.1.05元C.0.95元D.0.9元13.(5分)设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.14.(5分)如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1D.1﹣15.(5分)已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B.C.D.16.(5分)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x%B.1+2x%C.(1+x%)•x%D.(2+x%)•x%三、解答题(共70分)17.(15分)设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求的最大值.18.(15分)如图,开口向下的抛物线y=ax2﹣8ax+12a与x轴交于A、B两点,抛物线上另有一点C在第一象限,且使△OCA∽△OBC,(1)求OC的长及的值;(2)设直线BC与y轴交于P点,点C是BP的中点时,求直线BP和抛物线的解析式.19.(15分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:家电名称空调彩电冰箱工时产值(千元)432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少?(以千元为单位)20.(10分)一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率.21.(15分)如图,已知⊙O和⊙O′相交于A、B两点,过点A作⊙O′的切线交⊙O于点C,过点B作两圆的割线分别交⊙O、⊙O′于E、F,EF与AC相交于点P.(1)求证:P A•PE=PC•PF;(2)求证:;(3)当⊙O与⊙O′为等圆时,且PC:CE:EP=3:4:5时,求△PEC与△F AP的面积的比值.参考答案与试题解析一、填空题(每小题5分,共40分)1.(5分)方程组的解是和.【解答】解:设x+1=a,y﹣1=b,则原方程可变为,由②式又可变化为=26,把①式代入得=13,这又可以变形为(+)2﹣3=13,再代入又得﹣3=9,解得ab=﹣27,又因为a+b=26,所以解这个方程组得或,于是(1),解得;(2),解得.故答案为和.2.(5分)若对任意实数x不等式ax>b都成立,那么a,b的取值范围为a=0,b<0.【解答】解:∵如果a≠0,不论a大于还是小于0,对任意实数x不等式ax>b都成立是不可能的,∴a=0,则左边式子ax=0,∴b<0一定成立,∴a,b的取值范围为a=0,b<0.3.(5分)设﹣1≤x≤2,则|x﹣2|﹣|x|+|x+2|的最大值与最小值之差为1.【解答】解:∵﹣1≤x≤2,∴x﹣2≤0,x+2>0,∴当2≥x≥0时,|x﹣2|﹣|x|+|x+2|=2﹣x﹣x+x+2=4﹣x;当﹣1≤x<0时,|x﹣2|﹣|x|+|x+2|=2﹣x+x+x+2=4+x,当x=0时,取得最大值为4,x=2时取得最小值,最小值为3,则最大值与最小值之差为1.故答案为:14.(5分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P1,P2,P3、…、P2007在反比例函数y=上,它们的横坐标分别为x1、x2、x3、…、x2007,纵坐标分别是1,3,5…共2007个连续奇数,过P1,P2,P3、…、P2007分别作y轴的平行线,与y=的图象交点依次为Q1(x1′,y1′)、Q1(x2′,y2′)、…、Q2(x2007′,y2007′),则|P2007Q2007|=.【解答】解:由题意可知:P2007的坐标是(Px2007,4013),又∵P2007在y=上,∴Px2007=.而Qx2007(即Px2007)在y=上,所以Qy2007===,∴|P2007Q2007|=|Py2007﹣Qy2007|=|4013﹣|=.故答案为:.5.(5分)如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是3.【解答】解:∵图中扇形的弧长是2π,根据弧长公式得到2π=∴n=120°即扇形的圆心角是120°∴弧所对的弦长是2×3sin60°=36.(5分)有一张矩形纸片ABCD,AD=9,AB=12,将纸片折叠使A、C两点重合,那么折痕长是.【解答】解:如图,由勾股定理易得AC=15,设AC的中点为E,折线FG与AB交于F,(折线垂直平分对角线AC),AE=7.5.∵∠AEF=∠B=90°,∠EAF是公共角,∴△AEF∽△ABC,∴==.∴EF=.∴折线长=2EF=.故答案为.7.(5分)已知3,a,4,b,5这五个数据,其中a,b是方程x2﹣3x+2=0的两个根,则这五个数据的标准差是.【解答】解:由方程x2﹣3x+2=0解方程的两个根是1,2,即a=1,b=2故这组数据是3,1,4,2,5其平均数(3+1+4+2+5)=3方差S2=[(3﹣3)2+(1﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2]=2故五个数据的标准差是S==故本题答案为:.8.(5分)若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为(4,33).【解答】解:y=2x2﹣px+4p+1可化为y=2x2﹣p(x﹣4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33).二、选择题(每小题5分,共40分)9.(5分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1B.5:3:1C.25:12:5D.51:24:10【解答】解:连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=K,∴BH:HG:GM=k:12k:5k=51:24:10故选:D.10.(5分)若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A.B.C.D.【解答】解:设直角三角形的两条直角边是a,b,则有:S=,又∵r=,∴a+b=2r+c,将a+b=2r+c代入S=得:S=r=r(r+c).又∵内切圆的面积是πr2,∴它们的比是.故选:B.11.(5分)抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是()A.≤a≤1B.≤a≤2C.≤a≤1D.≤a≤2【解答】解:由右图知:A(1,2),B(2,1),再根据抛物线的性质,|a|越大开口越小,把A点代入y=ax2得a=2,把B点代入y=ax2得a=,则a的范围介于这两点之间,故≤a≤2.故选:D.12.(5分)有铅笔、练习本、圆珠笔三种学习用品.若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元.现购铅笔,练习本,圆珠笔各1个,共需()A.1.2元B.1.05元C.0.95元D.0.9元【解答】解:设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据题意得:,①×3﹣②×2可得:x+y+z=1.05.故选:B.13.(5分)设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.【解答】解:方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a>﹣,∴﹣<a<0,故选:D.14.(5分)如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1D.1﹣【解答】解:如图:正方形的面积=S1+S2+S3+S4;①两个扇形的面积=2S3+S1+S2;②②﹣①,得:S3﹣S4=2S扇形﹣S正方形=﹣1=.故选:A.15.(5分)已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B.C.D.【解答】解:首先要能组成三角形,易得1<x<5下面求该三角形为直角三角形的边长情况(此为临界情况),显然长度为2的边对应的角必为锐角(2<3,短边对小角)则只要考虑3或者x为斜边的情况.3为斜边时,由勾股定理,22+x2=32,得x=√5 作出图形,固定2边,旋转3边易知当1<x<√5 时,该三角形是以3为最大边的钝角三角形;x为斜边时,由勾股定理,22+32=x2,得x=√13,同样作图可得当√13<x<5时,该三角形是以x为最大边的钝角三角形.综上可知,当√5<x<√13 时,原三角形为锐角三角形.故选:B.16.(5分)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x%B.1+2x%C.(1+x%)•x%D.(2+x%)•x%【解答】解:设第一季度的产值为1,第二季度的产值比第一季度的产值增长了x%,第二季度为1×(1+x%),第三季度的产值又比第二季度的产值增长了x%,第三季度为1×(1+x%)×(1+x%),根据题意得:第三季度的产值比第一季度增长了1×(1+x%)×(1+x%)﹣1=(2+x%)•x%,故选:D.三、解答题(共70分)17.(15分)设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求的最大值.【解答】解:∵方程有两个不相等的实数根,∴△=b2﹣4ac=4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m<1.(1)∵x12+x22=(x1+x2)2﹣2x1x2=4(m﹣2)2﹣2(m2﹣3m+3)=2m2﹣10m+10=6∴,∵﹣1≤m<1,∴;(2)==(﹣1≤m<1).∵对称轴m=,2>0,∴当m=﹣1时,式子取最大值为10.18.(15分)如图,开口向下的抛物线y=ax2﹣8ax+12a与x轴交于A、B两点,抛物线上另有一点C在第一象限,且使△OCA∽△OBC,(1)求OC的长及的值;(2)设直线BC与y轴交于P点,点C是BP的中点时,求直线BP和抛物线的解析式.【解答】解:(1)由题设知a<0,且方程ax2﹣8ax+12a=0有两二根,两边同时除以a得,x2﹣8x+12=0原式可化为(x﹣2)(x﹣6)=0x1=2,x2=6于是OA=2,OB=6∵△OCA∽△OBC∴OC2=OA•OB=12即OC=2而===,故(2)因为C是BP的中点∴OC=BC从而C点的横坐标为3又∴设直线BP的解析式为y=kx+b,因其过点B(6,0),,则有∴∴又点在抛物线上∴∴∴抛物线解析式为:.19.(15分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:家电名称空调彩电冰箱工时产值(千元)432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少?(以千元为单位)【解答】解:设每周应生产空调、彩电、冰箱的数量分别为x台、y台、z台,则有,①﹣②×4得3x+y=360,总产值A=4x+3y+2z=2(x+y+z)+(2x+y)=720+(3x+y)﹣x=1080﹣x,∵z≥60,∴x+y≤300,而3x+y=360,∴x+360﹣3x≤300,∴x≥30,∴A≤1050,即x=30,y=270,z=60.最高产值:30×4+270×3+60×2=1050(千元)20.(10分)一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率.【解答】解:画树状图为:共有8种等可能的结果数;(1)有2个男孩和1个女孩的结果数为3,所以有2个男孩和1个女孩的概率=;(2)至少有一个男孩的结果数为7,所以至少有一个男孩的概率=.21.(15分)如图,已知⊙O和⊙O′相交于A、B两点,过点A作⊙O′的切线交⊙O于点C,过点B作两圆的割线分别交⊙O、⊙O′于E、F,EF与AC相交于点P.(1)求证:P A•PE=PC•PF;(2)求证:;(3)当⊙O与⊙O′为等圆时,且PC:CE:EP=3:4:5时,求△PEC与△F AP的面积的比值.【解答】(1)证明:连接AB,∵CA切⊙O'于A,∴∠CAB=∠F.∵∠CAB=∠E,∴∠E=∠F.∴AF∥CE.∴.∴P A•PE=PC•PF.(2)证明:∵,∴=.∴.再根据切割线定理,得P A2=PB•PF,∴.(3)解:连接AE,由(1)知△PEC∽△PF A,而PC:CE:EP=3:4:5,∴P A:F A:PF=3:4:5.设PC=3x,CE=4x,EP=5x,P A=3y,F A=4y,PF=5y,∴EP2=PC2+CE2,PF2=P A2+F A2.∴∠C=∠CAF=90°.∴AE为⊙O的直径,AF为⊙O'的直径.∵⊙O与⊙O'等圆,∴AE=AF=4y.∵AC2+CE2=AE2∴(3x+3y)2+(4x)2=(4y)2即25x2+18xy﹣7y2=0,∴(25x﹣7y)(x+y)=0,∴.∴.。

相关文档
最新文档