高数答案(全集)第六章参考答案
高等数学课后习题答案第六章教学文案

高等数学课后习题答案第六章习题6-21. 求图6-21 中各画斜线部分的面积:(1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]2132[)(1022310=-=-=⎰x x dx x x A .(2)解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为1|)()(1010=-=-=⎰x x e ex dx e e A ,解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为1)1(|ln ln 111=--=-==⎰⎰e e dy y y ydy A e e e .(3)解 画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为332]2)3[(132=--=⎰-dx x x A .(4)解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为332|)313()32(3132312=-+=-+=--⎰x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:(1) 221x y =与x 2+y 2=8(两部分都要计算);解:388282)218(220220*********--=--=--=⎰⎰⎰⎰dx x dx x dx x dx x x A 34238cos 16402+=-=⎰ππtdt . 346)22(122-=-=ππS A . (2)xy 1=与直线y =x 及x =2;解:所求的面积为⎰-=-=212ln 23)1(dx x x A . (3) y =e x , y =e -x 与直线x =1;解:所求的面积为⎰-+=-=-1021)(ee dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A b a y ba y -===⎰ln ln ln ln 3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:y '=-2 x +4.过点(0, -3)处的切线的斜率为4, 切线方程为y =4(x -3).过点(3, 0)处的切线的斜率为-2, 切线方程为y =-2x +6.两切线的交点为)3 ,23(, 所求的面积为49]34(62[)]34(34[23023232=-+--+-+-+---=⎰⎰dx x x x x x x A . 4. 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积.解2y ⋅y '=2p .在点),2(p p 处, 1),2(=='p p y p y , 法线的斜率k =-1, 法线的方程为)2(p x p y --=-, 即y p x -=23. 求得法线与抛物线的两个交点为),2(p p 和)3,29(p p -. 法线与抛物线所围成的图形的面积为233232316)612123()223(p y p y y p dy p y y p A p p pp =--=--=--⎰. 5. 求由下列各曲线 所围成的图形的面积;(1)ρ=2a cos θ ;解:所求的面积为⎰⎰==-2022222cos 4)cos 2(21πππθθθθd a d a A =πa 2. (2)x =a cos 3t , y =a sin 3t ;解所求的面积为⎰⎰⎰===2042202330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a 2206204283]sin sin [12a tdt tdt a πππ=-=⎰⎰.(3)ρ=2a (2+cos θ )解所求的面积为2202220218)cos cos 44(2)]cos 2(2[21a d a d a A πθθθθθππ=++=+=⎰⎰. 6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积.解:所求的面积为⎰⎰⎰-=--==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++-=⎰. 7. 求对数螺线ρ=ae θ(-π≤θ≤π)及射线θ=π所围成的图形面积.解 所求的面积为 )(421)(21222222ππππθππθθθ----===⎰⎰e e a d e a d ae A . 8. 求下列各曲线所围成图形的公共部分的面积.(1)ρ=3cos θ 及ρ=1+cos θ解曲线ρ=3cos θ 与ρ=1+cos θ 交点的极坐标为)3,23(πA , )3,23(π-B . 由对称性, 所求的面积为πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=⎰⎰d d A . (2)θρsin 2=及θρ2cos 2=.解 曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M )6,22(π. 所求的面积为 2316]2cos 21)sin 2(21[246602-+=+=⎰⎰πθθθθπππd d A .9. 求位于曲线y =e x 下方, 该曲线过原点的切线的左方以及x 轴上方之间的图形的面积.解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有⎪⎩⎪⎨⎧=='==ke x y e y kx y x x 00)(0000,求得x 0=1, y 0=e , k =e .所求面积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e e e=⋅+-=-⎰⎰. 10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值.解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为 10A A A +=.显然当2πα=时, A 1=0; 当2πα<时, A 1>0.因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 2030383822a x a dx ax A a a===⎰.11. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算所得旋转体的体积. 解 所得旋转体的体积为20020222400x a x a axdx dx y V xx x ππππ====⎰⎰.12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得两个旋转体的体积. 解 绕x 轴旋转所得旋转体的体积为 ππππ712871207206202====⎰⎰x dx x dx y V x .绕y 轴旋转所得旋转体的体积为 ⎰⎰-=-⋅⋅=8328223282dy y dy x V y πππππππ56453328035=-=y . 13. 把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.解 由对称性, 所求旋转体的体积为 dx x a dx y V aa⎰⎰-==0332322)(22ππ30234323234210532)33(2a dx x x a x a a aππ=-+-=⎰.14. 用积分方法证明图中球缺的体积为)3(2H R H V -=π.证明 ⎰⎰---==RHR R HR dy y R dy y x V )()(222ππ)3()31(232H R H y y R RH R -=-=-ππ.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积:(1)2x y =, 2y x =, 绕y 轴;解 ππππ103)5121()(1052102210=-=-=⎰⎰y y dy y ydy V .(2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ⎰⎰⎰===102302202chch )(udu a au x dx ax a dx x y V aaπππ令 1022310223)21221(4)2(4u u u u e u e a du e e a ---+=++=⎰ππ)2sh 2(43+=a π. (3)16)5(22=-+y x , 绕x 轴.解 ⎰⎰------+=44224422)165()165(dx x dx x V ππ2421601640π⎰=-=dx x .(4)摆线x =a (t -sin t ), y =a (1-cos t )的一拱, y =0, 绕直线y =2a .解 ⎰⎰--=ππππa a dx y a dx a V 202202)2()2( ⎰----=πππ20223)sin ()]cos 1(2[8t t da t a a a 232023237sin )cos 1(8ππππa tdt t a a =+-=⎰. 16. 求圆盘222a y x ≤+绕x =-b (b >a >0)旋转所成旋转体的体积.解 ⎰⎰------+=aaaady y a b dy y a b V 222222)()(ππ2202228ππb a dy y a b a=-=⎰.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴长分别为2a 、2b 和2A 、2B , 求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y 轴的平面, 则平面与截锥体的截面为椭圆, 易得其长短半轴分别为y h a A A --, y hb B B --.截面的面积为π)()(y h b B B y h a A A --⋅--.于是截锥体的体积为])(2[61)()(0bA aB AB ab h dy y h b B B y h a A A V h+++=--⋅--=⎰ππ.18. 计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积.解 设过点x 且垂直于x 轴的截面面积为A (x ), 由已知条件知, 它是边长为x R -2的等边三角形的面积, 其值为 )(3)(22x R x A -=, 所以 322334)(3R dx x R V RR=-=⎰-.19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为⎰=ba dx x xf V )(2π.证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,于是平面图形绕y 轴旋转所成的旋转体的体积为⎰⎰==babadx x xf dx x xf V )(2)(2ππ.20. 利用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积.解 2002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V .21. 计算曲线y =ln x 上相应于83≤≤x 的一段弧的长度. 解 ⎰⎰⎰+=+='+=8328328321)1(1)(1dx xx dx x dx x y s ,令t x =+21, 即12-=t x , 则 23ln 211111113223232222322+=-+=-=-⋅-=⎰⎰⎰⎰dt t dt dt t t dt t tt t s . 22. 计算曲线)3(3x x y -=上相应于1≤x ≤3的一段弧的长度.解 x x x y 31-=, x x y 2121-=',x x y 4121412+-=', )1(2112x x y +='+,所求弧长为3432)232(21)1(213131-=+=+=⎰x x x dx xx s .23. 计算半立方抛物线32)1(32-=x y 被抛物线32x y =截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=-=3)1(32232x y x y 得两曲线的交点的坐标为)36 ,2(, )36 ,2(-.所求弧长为⎰'+=21212dx y s .因为2)1(22-='x y y , yx y 2)1(-=', )1(23)1(32)1()1(34242-=--=-='x x x y x y . 所以 ]1)25[(98)13(13232)1(2312232121-=--=-+=⎰⎰x d x dx x s . 24. 计算抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长. 解 ⎰⎰⎰+=+='+=y y ydy y p p dy p y dy y x s 02202021)(1)(1y y p y p y p y p 022222])ln(22[1++++=py p y p y p p y 2222ln22++++=. 25. 计算星形线t a x 3cos =, t a y 3sin =的全长. 解 用参数方程的弧长公式. dt t y t x s ⎰'+'=2022)()(4π⎰⋅+-⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==⎰π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y -=.计算这曲线上相应于t 从0变到π的一段弧的长度. 解 由参数方程弧长公式 ⎰⎰+='+'=ππ22022)sin ()cos ()]([)]([dt t at t at dt t y t x s202ππa tdt a ==⎰.27. 在摆线x =a (t -sin t ), y =a (1-cos t )上求分摆线第一拱成1: 3的点的坐标.解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则 ⎰⎰+-='+'=0220220]sin [)]cos 1([)]([)]([)(t t dt t a t a dt t y t x t s)2cos 1(42sin 2000ta dt t a t -==⎰.当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a t a 2)2cos 1(40=-,解得320π=t , 因而分点的坐标为:横坐标a a x )2332()32sin 32(-=-=πππ,纵坐标a a y 23)32cos 1(=-=π,故所求分点的坐标为)23 ,)2332((a a -π.28. 求对数螺线θρa e =相应于自θ=0到θ=ϕ的一段弧长. 解 用极坐标的弧长公式.θθθρθρϕθθϕd ae e d s a a ⎰⎰+='+=022022)()()()()1(11202-+=+=⎰θϕθθa a e aa d e a . 29. 求曲线ρθ=1相应于自43=θ至34=θ的一段弧长.解 按极坐标公式可得所求的弧长 ⎰⎰-+='+=3443222344322)1()1()()(θθθθθρθρd d s23ln 12511344322+=+=⎰θθθd .30. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2a d a 82cos 40==⎰πθθ. 习题6-31. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为 182160260===⎰s k ksds W k(牛⋅厘米). 2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功?解 由玻-马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=-⋅x x P , π-=80800)(x P .功元素为dx x P dW )()10(2⋅=π, 所求功为 2ln 8008018000080800)10(400402πππππ=-=-⋅⋅=⎰⎰dx dx W (J). 3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是 hR mgRhW +=, 其中g 是地面上的重力加速度, R 是地球的半径;(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为 dyy kMm dW 2=, 所求的功为 )(2h R R mMhk dy y kMm W h R R+⋅==⎰+.(2)533324111075.910)6306370(106370106301098.51731067.6⨯=⨯+⨯⨯⨯⨯⨯⋅⨯=-W (kJ). 4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以23)(cx t x v ='=, 阻力4229t kc kv f -=-=. 而32)(cx t =, 所以 34323429)(9)(x kc cx kc x f -=-=. 功元素dW =-f (x )dx , 所求之功为 37320343203432072799)]([a kc dx x kcdx x kc dx x f W a aa===-=⎰⎰⎰. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少?解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为 k kxdx W 21101==⎰,击第二次作功为)2(212112h h k kxdx W h+==⎰+. 因为21W W =, 所以有 )2(21212h h k k +=,解得12-=h (cm).6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?解 在水深x 处, 水平截面半径为x r 3210-=, 功元素为 dx x x dx r x dW 22)3210(-=⋅=ππ, 所求功为⎰-=1502)3210(dx x x W π ⎰+-=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力.解 建立x 轴, 方向向下, 原点在水面.水压力元素为xdx dx x dP 221=⋅⋅=,闸门上所受的水压力为21252252===⎰x xdx P (吨)=205. 8(kN). 8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.解 建立坐标系如图, 则椭圆的方程为 11)43()43(2222=+-y x . 压力元素为dx x x dx x y x dP 22)43()43(38)(21--⋅=⋅⋅=, 所求压力为⎰⎰-⋅⋅+=--⋅=2223022cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x P ππ169cos 49202==⎰tdx (吨)=17.3(kN). (提示: 积分中所作的变换为t x sin 4343=-) 9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力.解 建立坐标系如图. 直线AB 的方程为x y 1015-=, 压力元素为dx x x dx x y x dP )5110()(21-⋅=⋅⋅=, 所求压力为1467)5110(200=-⋅=⎰dx x x P (吨)=14388(千牛).10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力.解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为 dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=, 所求压力为168)2331(34)3(34602360=+=+=⎰x x dx x x P (克)=1.65(牛). 11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为dy ya Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为dF ra dF x -=, dF r y dF y =.2202222022)(1)(l a a l Gm dy y a y a aGm dy y a Gm r a F l lx +-=++-=+⋅-=⎰⎰μμμ, )11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +-=++=+⋅=⎰⎰μμμ.12. 设有一半径为R 、中心角为 ϕ 的圆弧形细棒, 其线密度为常数 μ . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力. 解 根据对称性, F y =0.θμcos 2⋅⋅⋅=R ds m G dF x θθμθθμd RGm R Rd Gm cos cos )(2=⋅=, θθμϕϕd R Gm F x ⎰-=22cos 2sin 2cos 220ϕμθθμϕR Gm d R Gm ==⎰. 引力的大小为2sin 2ϕμR Gm , 方向自M 点起指向圆弧中点.总 习 题 六1. 一金属棒长3m , 离棒左端xm 处的线密度为11)(+=x x ρ (kg/m ). 问x 为何值时, [0, x ]一段的质量为全棒质量的一半?解 x 应满足⎰⎰+=+300112111dt t dt t x . 因为212]12[1100-+=+=+⎰x t dt t x x , 1]12[2111213030=+=+⎰t dt t , 所以 1212=-+x ,45=x (m).2. 求由曲线ρ=a sin θ, ρ=a (cos θ+sin θ)(a >0)所围图形公共部分的面积. 解 ⎰++⋅=432222)sin (cos 21)2(21ππθθθπd a a S 24322241)2sin 1(28a d a a -=++=⎰πθθπππ. 3. 设抛物线c bx ax y ++=2通过点(0, 0),且当x ∈[0, 1]时, y ≥0. 试确定a 、b 、c 的值, 使得抛物线c bx ax y ++=2与直线x =1, y =0所围图形的面积为94, 且使该图形绕x 轴旋转而成的旋转体的体积最小.解 因为抛物线c bx ax y ++=2通过点(0, 0), 所以c =0, 从而bx ax y +=2.抛物线bx ax y +=2与直线x =1, y =0所围图形的面积为23)(102b a dx bx ax S +=+=⎰. 令9423=+b a , 得968a b -=. 该图形绕x 轴旋转而成的旋转体的体积为)235()(221022ab b a dx bx ax V ++=+=⎰ππ )]968(2)968(315[22a a a a -+-+=π. 令0)]128(181********[=-+-⋅+2=a a a d dV π, 得35-=a , 于是b =2.4. 求由曲线23x y =与直线x =4, x 轴所围图形绕y 轴旋转而成的旋转体的体积.解 所求旋转体的体积为πππ7512722240274023=⋅=⋅=⎰x dx x x V . 5. 求圆盘1)2(22≤+-y x 绕y 轴旋转而成的旋转体的体积.解 )2(122312⎰--⋅⋅=dx x x V π 22224cos )sin 2(4 sin 2ππππ=+=-⎰-tdt t t x 令. 6. 抛物线221x y =被圆322=+y x 所需截下的有限部分的弧长.解 由⎪⎩⎪⎨⎧==+222213x y y x 解得抛物线与圆的两个交点为)1 ,2(-, )1 ,2(, 于是所求的弧长为2022202])1ln(2112[212x x x x dx x s ++++=+=⎰ )32ln(6++=.7. 半径为r 的球沉入水中, 球的上部与水面相切, 球的比重与水相同, 现将球从水中取出, 需作多少功?解 建立坐标系如图. 将球从水中取出时,球的各点上升的高度均为2r . 在x 处取一厚度为dx 的薄片, 在将球从水中取出的过程中, 薄片在水下上升的高度为r +x , 在水上上升的高度为r -x . 在水下对薄片所做的功为零, 在水上对薄片所做的功为 dx x r x r g dW ))((22--=π,对球所做的功为g r x d x r x r g W rr 22234))((ππ=--=⎰-. 8. 边长为a 和b 的矩形薄板, 与液面成α 角斜沉于液体内, 长边平行于液面而位于深h 处, 设a >b , 液体的比重为ρ, 试求薄板每面所受的压力.解 在水面上建立x 轴, 使长边与x 轴在同一垂面上, 长边的上端点与原点对应. 长边在x 轴上的投影区间为[0, b cos α], 在x 处x 轴到薄板的距离为h +x tan α. 压力元素为dx x h ga dx a x h g dP )tan (cos cos )tan (ααρααρ+=⋅⋅+⋅=, 薄板各面所受到的压力为)sin 2(21)tan (cos cos 0αρααραb h gab dx x h ga P b +=+=⎰.9. 设星形线t a x 3cos =, t a y 3sin =上每一点处的线密度的大小等于该点到原点距离的立方, 在原点O 处有一单位质点, 求星形线在第一象限的弧段对这质点的引力.解 取弧微分ds 为质点, 则其质量为 ds y x ds y x 322322)()(+=+, 其中tdt t a dt t a t a ds cos sin 3])sin [(])cos [(2323='+'=.设所求的引力在x 轴、y 轴上的投影分别为F x 、F y , 则有 ⎰+⋅++⋅⋅=202222322)()(1πds y x x y x y x G F x 2204253sin cos 3Ga tdt t Ga ==⎰π, ⎰+⋅++⋅⋅=202222322)()(1πds yx y y x y x G F x 2204253sin cos 3Ga tdt t Ga ==⎰π, 所以)53 ,53(22Ga Ga =F .。
高等数学第六章答案

第六章 定积分的应用第二节 定积分在几何上的应用 1. 求图中各阴影部分的面积: (1) 16. (2) 1(3)323. (4)323.2. 求由下列各曲线所围成的图形的面积: (1) 463π-. (2)3ln 22-. (3)12e e+-.(4)b a -3. 94.4. (1).1213(2).45. (1) πa 2. (2)238a π. (3)218a π.6. (1)423π⎛- ⎝ (2)54π(3)2cos 2ρθρθ==及162π-+7.求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积: (1)2x x y y x =和轴、向所围图形,绕轴及轴。
(2)22y x y 8x,x y ==和绕及轴。
(3)()22x y 516,x +-=绕轴。
(4)xy=1和y=4x 、x=2、y=0,绕。
(5)摆线()()x=a t-sint ,1cos ,y 0x y a t =-=的一拱,绕轴。
2234824131,;(2),;(3)160;(4);(5)5a .52556πππππππ()8.由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得两个旋转体的体积.1287x V π=. y V =645π9.把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.332105a π 10.(1)证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为 ⎰=badx x xf V )(2π. 证明略。
(2)利用题(1)结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 22π11.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积. 343R .12.计算曲线3223y x =上相应于38x ≤≤的一段弧的弧长。
高等数学第六章答案

高等数学第六章答案第六章定积分的应用第二节定积分在几何上的应用1? 求图中各阴影部分的面积?(1)(2) 1 1. 632? 332 (4)? 3 (3)2. 求由下列各曲线所围成的图形的面积?(1) 6??(2)4? 33?ln2? 21 (3)e??2? e(4)b?a93? ? 414? (1)?21(2)?4 35? (1) ?a2?(2) 32?a? 82 (3)18?a? ?6? (1)2?(2)?4? ?35? 4(3)及?2?cos2??6?127.求下列已知曲线所围成的图形? 按指定的轴旋转所产生的旋转体的体积:(1)y?x和x轴、向所围图形,绕x轴及y轴。
21(2)y?x2和y2?8x,绕x及y轴。
2(3)x??y?5??16,绕x轴。
2(4)xy=1和y=4x、x=2、y=0,绕。
(5)摆线x=a?t-sint?,y?a?1?cost?的一拱,y?0,绕x轴。
??482413(1,;(2)?,?;(3)160?2;(4)?;(5)5?2a3. 525568.由y?x3? x?2? y?0所围成的图形? 分别绕x轴及y轴旋转? 计算所得两个旋转体的体积?128?? 764? Vy?5 Vx?9.把星形线x2/3?y2/3?a2/3所围成的图形? 绕x轴旋转? 计算所得旋转体的体积?10.(1)证明由平面图形0?a?x?b? 0?y?f(x)绕y轴旋转所成的旋转体的体积为V?2?32?a3 105?xf(x)dx? 证明略。
a 2b (2)利用题(1)结论? 计算曲线y?sin x(0?x??)和x轴所围成的图形绕y轴旋转所得旋转体的体积? 2?11.计算底面是半径为R的圆? 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积?3R? 22312.计算曲线y?x2上相应于3?x?8的一段弧的弧长。
12 33213.计算曲线y?ln(1?x)上相应于0?x?11的一段弧的弧长。
高数答案(全集)第六章参考答案

高数答案(全集)第六章参考答案第六章常微分方程1. (1) b,c,d (2) a,c (3) b,d2. (1) 二阶,线性 (2) 一阶,非线性 (3) 一阶,非线性 (4) 一阶,非线性3. (1)-(3)均为微分方程0222=+y dxy d ω的解,其中(2) (3)为通解 4. (1)将变量分离,得dx ydy cos 2= 两边积分得 c x y +=-sin 1通解为,sin 1c x y +-=此外,还有解0=y(2)分离变量,得dx x x y y d xx dx dy y y )111(1)1(2112222+-=+++=+或两边积分,得cx x y ln )1ln(ln )1ln(212++-=+即(1+ 2y )(1+ x)2=c 1 2x(3)将变量分离,得1122=-+-yydy xxdx积分得通解21x -+)20(12还有使因子21x -?012=-y 的四个解.x=(±)11 y -, y=(±)11 x - (4)将方程改写为(1+y 2)ex2dx-[]0)1( )e y +(1y=+-dy yex2dx=dy y y ??++-2y11 (e 积分得--=y e e y x arctan 212)1ln(212y +-21(5)令 z=x+y+1,z dx dz sin 1+=分解变量得到dx zdz=+sin 1………………(*) 为了便于积分,用1-sinz 乘上式左端的分子和分母,得到dz z z z se dz zzdz z z )tan sec (cos sin 1sin 1sin 1222-=-=-- 将(*)两端积分得到tanz-secz=x+c22z-∏)=x+c,将z 换为原变量,得到原方程的通解 X+c=-tan(214++-∏y x )6.令y=ux,则dy=udx+xdu 代入原方程得x 2( u 2-3)(udx+xdu)+2 x 2udx=0分离变量得du x dx 1)-u(u u 22-=,即得y 3=c(2y -2x ) 7. 令xy u =,则原方程化为dx x udu 1=,解得c x u ==ln 212,即,ln 2222cx x x y +=由定解条件得4=c ,故所求特解为,ln 4222x x x y +=8. 将方程化为x y xyy +-='2)(1,令x yu =,得,u u x y +'=代入得dx x du u 1112=- 得c x u ln ln arcsin +=,cx xyln arcsin= 9.化为x e x y dx dy x =+,解得)(1xe c xy +=,代入e y =)1(得0=c 特解x e y x = 10.由公式得1)()(-+=-x ce y x ??11.化为x y x y dx dy ln 2=+为贝努里方程令xyu =,则原方程化为dx dy y dx du 2--= 代入方程的x u x dx du ln 1-=-用公式求得])(ln 21[2x c x u -=解得12])(ln 21[1--=x c x y 另为,0=y 也是原方程的解 12.为贝努里方程令x yu =,则原方程化为322x xu dx du -=+用公式求得122+-=-x ce u x解得1122+-=-x cey x13.23x y yx dx dy =-将上式看成以y 为自变量的贝努里方程令x z 1=有3y yz dxdy-=- 22212+-=-y ce z y ,得通解1)2(2212=+--y cex y14.令x y N x y M +-=-=4,32有xNy M ??==??1,这是全微分方程0=duxy x y dy x y dx x y u y x +--=---=?32),()0,0(22)4()3(,即方程得通解为c y x xy =--232 15.化为0122=+-+xdx yx xdy ydx ,得通解为c x xy xy =+-+211ln 16.该方程有积分因子221y x +,)(arctan ))ln(21(2222x y d y x d y x ydx xdy xdy ydx ++=+-++ 17.1c e xe dx e xe e xd dx xe y xx x xx x+-=-==='?21211)2()(c x c x e c e xe x c e dx c e xe y x x x x x x ++-=+-++-=+-=?18.xx x dx x x y x1ln 32ln 12--=+=''? 2ln ln 213)1ln 3(21---=--='?x x x dx x x x y x 21ln 2223)2ln ln 213(2212+--=---=?x x x x dx x x x y x19.令y z '=,则xz z =-',xx x dxdx e c x c e x e c dx xe e z 111)1(])1([][++-=++-=+??=--?即x e c x y 1)1(++-='得2121c e c x y x ++--=20.令p y =',则dy dp p dx dy dy dp dx dp y =?==''所以0)(2323=+-=+-p p dy dp y p p p dy dp p y 则得p=0或02=+-p p dy dp y,前者对应解,后者对应方程y dy p p dp =-)1(积分得y c pp11=-即y c y c p dx dy 111+==两边积分得21||ln c x y c y '+='+,因此原方程的解是21||ln c x y c y '+='+及y=c 。
高等数学b2第六章教材答案

高等数学b2第六章教材答案高等数学B2 第六章教材答案第一节:函数极值和最值1. 函数的极值和最值是函数在定义域内的特殊点,它们在数学和实际问题中具有重要的应用价值。
下面是第六章教材中相关习题的答案:习题1:a) 求函数$f(x) = 3x^2 - 6x + 2$在区间[-1, 2]上的极大值和极小值。
解:首先求函数$f'(x) = 6x - 6$的零点,即$6x - 6 = 0$,得$x = 1$。
将$x = -1, x = 1, x = 2$代入$f(x)$中,分别得到$f(-1) = 13, f(1) = -1, f(2)= 10$。
所以$f(x)$在$x = 1$处取得极小值-1,在$x = -1$处取得极大值13。
b) 求函数$g(x) = x^3 - \frac{9}{2}x^2 + 3$在整个定义域上的最大值和最小值。
解:首先求函数$g'(x) = 3x^2 - 9x$的零点,即$3x^2 - 9x = 0$,得$x = 0, x = 3$。
将$x = 0, x = 3$代入$g(x)$中,分别得到$g(0) = 3, g(3) =\frac{27}{2}$。
所以$g(x)$在$x = 3$处取得最大值$\frac{27}{2}$,在$x = 0$处取得最小值3。
2. 函数的极值和最值在实际问题中有很多应用,比如优化问题、经济学中的最大效益等。
通过求解函数的极值和最值,可以找到使函数取得最优结果的变量取值。
习题2:一块长方形的地面上,以其一条边为底,作一个等腰直角梯形,使得梯形的上底与下底分别与已知两块木板的宽度相等。
问该等腰直角梯形的底边长度为多少,才能使梯形的面积最大。
解:设等腰直角梯形的底边长度为$x$,则梯形的上底和下底长度也都为$x$。
设梯形的高为$h$,根据勾股定理得到$h = \sqrt{2}x$。
梯形的面积$S(x) = \frac{1}{2}(x + x)(\sqrt{2}x)$。
高等数学第六章习题及答案

微分方程习题课基本概念基本概念一阶方程一阶方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程7.伯努利方程7.伯努利方程可降阶方程可降阶方程线性方程解的结构定理1;定理2定理3;定理4线性方程解的结构定理1;定理2定理3;定理4欧拉方程欧拉方程二阶常系数线性方程解的结构二阶常系数线性方程解的结构特征方程的根及其对应项特征方程的根及其对应项f(x)的形式及其特解形式f(x)的形式及其特解形式高阶方程高阶方程待定系数法特征方程法一、主要内容微分方程解题思路一阶方程一阶方程高阶方程高阶方程分离变量法分离变量法全微分方程全微分方程常数变易法常数变易法特征方程法特征方程法待定系数法待定系数法非全微分方程非变量可分离非全微分方程非变量可分离幂级数解法幂级数解法降阶作变换作变换积分因子1、基本概念微分方程凡含有未知函数的导数或微分的方程叫微分方程.微分方程的阶微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.微分方程的解代入微分方程能使方程成为恒等式的函数称为微分方程的解.通解如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.特解确定了通解中的任意常数以后得到的解,叫做微分方程的特解.初始条件用来确定任意常数的条件.初值问题求微分方程满足初始条件的解的问题,叫初值问题.dxx f dy y g )()(=形如(1) 可分离变量的微分方程解法∫∫=dx x f dy y g )()(分离变量法2、一阶微分方程的解法)(x yf dx dy =形如(2) 齐次方程解法xyu =作变量代换)(111c y b x a c by ax f dxdy++++=形如齐次方程.,01时当==c c ,令k Y y h X x +=+=,(其中h 和k 是待定的常数)否则为非齐次方程.(3) 可化为齐次的方程解法化为齐次方程.)()(x Q y x P dxdy=+形如(4) 一阶线性微分方程,0)(≡x Q 当上方程称为齐次的.上方程称为非齐次的.,0)(≡x Q 当齐次方程的通解为.)(∫=−dxx P Cey (使用分离变量法)解法非齐次微分方程的通解为∫+∫=−∫dx x P dx x P eC dx e x Q y )()(])([(常数变易法)(5) 伯努利(Bernoulli)方程nyx Q y x P dxdy )()(=+形如)1,0(≠n 方程为线性微分方程.时,当1,0=n 方程为非线性微分方程.时,当1,0≠n解法需经过变量代换化为线性微分方程.,1nyz −=令.))1)((()()1()()1(1∫+∫−∫==−−−−c dx e n x Q ez ydxx P n dxx P n n),(),(=+dy y x Q dx y x P 其中dyy x Q dx y x P y x du ),(),(),(+=形如(6) 全微分方程xQ y P ∂∂=∂∂⇔全微分方程注意:解法¦应用曲线积分与路径无关.∫∫+=yy xx dyy x Q x d y x P y x u 0),(),(),(0,),(),(00x d y x P dy y x Q xx yy ∫∫+=.),(c y x u =§用直接凑全微分的方法.通解为3、可降阶的高阶微分方程的解法解法),(x P y =′令特点.y 不显含未知函数),()2(y x f y ′=′′型)()1()(x f yn =接连积分n 次,得通解.型解法代入原方程, 得)).(,(x P x f P =′,P y ′=′′),(x P y =′令特点.x 不显含自变量),()3(y y f y ′=′′型解法代入原方程, 得).,(P y f dydpP =,dydp P y =′′4、线性微分方程解的结构(1)二阶齐次方程解的结构:)1(0)()(=+′+′′y x Q y x P y 形如定理1 如果函数)(1x y 与)(2x y 是方程(1)的两个解,那末2211y C y C y +=也是(1)的解.(21,C C 是常数)定理2:如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 那么2211y C y C y +=就是方程(1)的通解.(2)二阶非齐次线性方程的解的结构:)2()()()(x f y x Q y x P y =+′+′′形如定理 3 设*y 是)2(的一个特解, Y 是与(2)对应的齐次方程(1)的通解, 那么*y Y y +=是二阶非齐次线性微分方程(2)的通解.定理4 设非齐次方程(2)的右端)(x f 是几个函数之和, 如)()()()(21x f x f y x Q y x P y +=+′+′′而*1y 与*2y 分别是方程,)()()(1x f y x Q y x P y =+′+′′ )()()(2x f y x Q y x P y =+′+′′的特解, 那么*2*1y y +就是原方程的特解.5、二阶常系数齐次线性方程解法)(1)1(1)(x f y P y P yP yn n n n =+′+++−−L 形如n 阶常系数线性微分方程=+′+′′qy y p y 二阶常系数齐次线性方程)(x f qy y p y =+′+′′二阶常系数非齐次线性方程解法由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.2=++q pr r 0=+′+′′qy y p y 特征根的情况通解的表达式实根21r r ≠实根21r r =复根βαi r±=2,1xr x r eC e C y 2121+=xr ex C C y 2)(21+=)sin cos (21x C x C e y xββα+=特征方程为1)1(1)(=+′+++−−y P y P yP yn n n n L 特征方程为0111=++++−−n n n nP r P r P r L 特征方程的根通解中的对应项rk 重根若是rxk k exC x C C )(1110−−+++L β±αj k 复根重共轭若是xk k k k ex xD x D D x xC x C C α−−−−β++++β+++]sin )(cos )[(11101110L L 推广:阶常系数齐次线性方程解法n6、二阶常系数非齐次线性微分方程解法)(x f qy y p y =+′+′′二阶常系数非齐次线性方程型)()()1(x P e x f m xλ=解法待定系数法.,)(x Q e x y m xkλ=设⎪⎩⎪⎨⎧=是重根是单根不是根λλλ2,10k型]sin )(cos )([)()2(x x P x x P e x f n l xωωλ+=],sin )(cos )([)2()1(x x R x x R e x y mmxkωωλ+=设次多项式,是其中m x R x R mm)(),()2()1({}n l m ,max =⎩⎨⎧±±=.1;0是特征方程的单根时不是特征方程的根时ωλωλj j k7、欧拉方程欧拉方程是特殊的变系数方程,通过变量代换可化为常系数微分方程.x t e x tln ==或)(1)1(11)(x f y p y x p yxp yx n n n n n n =+′+++−−−L 的方程(其中n p p p L 21,形如叫欧拉方程.为常数),二、典型例题.)cos sin ()sin cos (dy x yx x y y x dx x y y x y x y −=+求通解例1解原方程可化为),cos sin sin cos (xyx y x y x yx y x y x y dx dy −+=,xyu =令.,u x u y ux y ′+=′=代入原方程得),cos sin sin cos (uu u uu u u u x u −+=′+,cos 2cos sin x dx du u u uu u =−分离变量两边积分,ln ln )cos ln(2C x u u +=−,cos 2xCu u =∴,cos 2x C x y x y =∴所求通解为.cos C xy xy =.32343y x y y x =+′求通解例2解原式可化为,32342y x y xy =+′,3223134x y x y y =+′−−即,31−=y z 令原式变为,3232x z xz =+′−,322x z x z −=−′即对应齐方通解为,32Cx z =一阶线性非齐方程伯努利方程,)(32x x C z =设代入非齐方程得,)(232x x x C −=′,73)(37C x x C ′+−=∴原方程的通解为.73323731x C x y ′+−=−利用常数变易法.212yy y ′+=′′求通解例3解.x 方程不显含,,dy dPP y P y =′′=′令代入方程,得,212y P dydP P +=,112y C P =+解得,,11−±=∴y C P ,11−±=y C dxdy即故方程的通解为.12211C x y C C +±=−.1)1()1(,2=′=−=+′−′′y y e xe y y y xx 求特解例4解特征方程,0122=+−r r 特征根,121==r r 对应的齐次方程的通解为.)(21xe x C C Y +=设原方程的特解为,)(2*xe b ax x y +=,]2)3([)(23*xe bx x b a ax y +++=′则,]2)46()6([)(23*xe b x b a x b a ax y +++++=′′代入原方程比较系数得将)(,)(,***′′′y y y ,21,61−==b a 原方程的一个特解为,2623*xx e x e x y −=故原方程的通解为.26)(2321x x xe x e x e x C C y −++=,1)1(=y Q ,1)31(21=−+∴e C C ,]6)1()([3221xe x x C C C y +−++=′,1)1(=′y Q ,1)652(21=−+∴e C C ,31121+=+e C C ,651221+=+e C C 由解得⎪⎩⎪⎨⎧−=−=,121,61221e C e C 所以原方程满足初始条件的特解为.26])121(612[23x x xe x e x e x e e y −+−+−=).cos (x x y y 2214+=+′′求解方程例5解特征方程,042=+r 特征根,22,1i r ±=对应的齐方的通解为.2sin 2cos 21x C x C Y +=设原方程的特解为.*2*1*y y y +=,)1(*1b ax y +=设,)(*1a y =′则,0)(*1=′′y ,得代入x y y 214=+′′,x b ax 2144=+由,04=b ,214=a 解得,0=b ,81=a ;81*1x y =∴),2sin 2cos ()2(*2x d x c x y +=设,2sin )2(2cos )2()(*2x cx d x dx c y −++=′则,2sin )44(2cos )44()(*2x dx c x cx d y +−−=′′,得代入x y y 2cos 214=+′′故原方程的通解为.2sin 81812sin 2cos 21x x x x C x C y +++=,2cos 212sin 42cos 4x x c x d =−由,04=−c ,214=d 即,81=d ,0=c ;2sin 81*2x x y =∴.)(),(1)()(2此方程的通解(2)的表达式;(1),试求:的齐次方程有一特解为,对应有一特解为设x f x p x xx f y x p y =′+′′例6解(1)由题设可得:⎪⎩⎪⎨⎧=−+=+),()1)((2,02)(223x f xx p x x x p 解此方程组,得.)(,)(331x x f xx p =−=(2)原方程为.313x y x y =′−′′,的两个线性无关的特解程是原方程对应的齐次方显见221,1x y y ==是原方程的一个特解,又xy 1*=由解的结构定理得方程的通解为.1221xx C C y ++=例7求微分方程()423d d 0y x y xy x −+=解原方程变形为23d 3,d x x x y y y−=−即223d 62,d x x y y y−=−此是关于函数的一阶线性非齐次微分方程,()2x f y =的通解.由求解公式得66d d 23e 2ed y y y yx y y C −⎛⎞∫∫=−+⎜⎟⎜⎟⎝⎠∫6463d 2.y y C y Cy y ⎛⎞=−+=+⎜⎟⎝⎠∫再作变换则有方程1,z u −=例8求解方程2d cos cos sin sin .d y y x y y x−=解令则原式为sin ,u y =2d cos .d u u x u x−=⋅此方程为伯努利方程,d cos .d zz x x+=−由积分公式, 得该方程的通解为()1sin cos e .2xz x x C −=−++从而得到原方程的通解()11sin sin cos e .2x y x x C −⎡⎤=−++⎢⎥⎣⎦⑵证明当时满足不等式例9设在时所定义的可微函数满足条件1x>−()g x ()()()()01d 0,011xg x g x g t t g x ′+−==+∫⑴求(),g x ′()e1.xg x −≤≤证⑴原方程变形为()()()()01d .xx g x g x g t t ′++=⎡⎤⎣⎦∫两端求导, 得()g x 0x ≥()()()()()()1,x g x g x g x g x g x ′′′′++++=⎡⎤⎣⎦令则原方程化为(),g x p ′=()()d 120,d px x p x +++=由条件所设即方程⑴()()001,g g ′=−=−01,x p ==−即2d ,1dp x x p x +=−+⑴()1e .1xg x p x −′==−+两端积分, 并由初始条件, 得⑵函数在上满足拉格郎日中值定理的条件, ()g x []0,x ()()()()()e 000,0,1g x g g x x x x ξξξξ−′−=−=−><<+从而有故当时, 又当()()01,g x g <=() 1.g x ≤0x ≥()()1ee e 0,1x x xf xg x x −−−′′=+=−≥+所以当时单调增加, 于是()f x 0x ≥因此时, 令则()()e ,xf xg x −=−()()()()e0010,x f x g x f g −=−≥=−=即综合以上得, 当时有,()e .x g x −≥0x ≥()e 1.x g x −≤≤例12 设()()()0sin d ,x f x x x t f t t =−−∫().f x 解因()()()00sin d d ,x xf x x xf t t tf t t =−+∫∫两边求导, 得()()()()0cos d xf x x f t t xf x xf x ′=−−+∫()0cos d ,xx f t t =−∫再次求导, 得()f x 其中为连续函数, 求()()sin ,f x x f x ′′=−−即()()sin .f x f x x ′′+=−并有初始条件对应的齐次方程的通()()00,0 1.f f ′==12sin cos .y C x C x =+设非齐次方程的特解是()*sin cos ,y x a x b x =+解是由待定系数法得10,.2a b ==121sin cos cos .2y C x C x x x =++由初始条件, 得121,0,2C C ==()11sin cos .22f x x x x =+即即原方程的通解为。
高等工程数学课后习题答案

第六章7、设X 1,X 2,…X n 为总体X~N (μ,σ2)的样本,求E[21)(x x ni i-∑=],D[21)(∑=-ni ix x ]。
解:E[21)(x x ni i -∑=]=(n-1)E[11-n 21)(x x ni i-∑=]=(n-1)σ2因为)1(~)(2212--∑=n X x xni iσ所以 D[21)(∑=-ni ix x ]=])([212σ∑=-ni ix xD =σ22(n-1)8、设X 1,X 2,…X 5为总体X~N (0,1)的样本,(1)试确定常数c 1、d 1,使得)(~)()(2254312211n x x x d x x c χ++++并求出n ;(2)试确定常数c 2、d 2,使得),(~)()(2543222212n m F x x x d x x c +++。
解:(1)212)(1x x n S n i i -=∑=且总体为X~N (0,1),所以c 1=21,d 1=31因为2χ分布具有可加性,即若X i ~2χ(i=1,……k ),且各样本相互独立,则)(~121∑∑==ki i ki in xχ,所以n=2。
(2)因为)2,0(~21N x x +,)3,0(~)(543N x x x ++,)1,0(~221N x x +, )1,0(~3543N x x x ++且相互独立, 所以221]2[x x ++2543]3[x x x ++)2(~2χ 因为)2(~22221χx x +,)1(~3)(22543χx x x ++ 所以)1,2(~)(2)(325432221F x x x x x +++,所以)1,2(,2322F d c =10、设X 1,X 2,…X n ,X n+1为总体X~N (μ,σ2)的样本的容量为n+1的样本,)(11~,1221x x n s x n x i n i i --==∑=试证:(1))1(~~1ˆ1---=+n t sxx n n T n (2))1,0(~21σn n N x x n +-+ (3))1,0(~21σnn N x x -- 证明:(1)因为),(~),1(~~)1(),,(~212222σμχσσμN x n s n n N x n +-- 所以)1,0(~1),1,0(~121N nn xx n n N x x n n +-+-++σσ 所以)1(~)1(~)1(1221---+-+n t n sn n n x x n σσ,即)1(~~1ˆ1---=+n t s x x n n T n (2)因为),(~),,(~212σμσμN x nN x n + 所以)1,0(~21σnn N x x n +-+ (3)因为∑∑==--=-=-ni i n i i x n x n n x n x x x 21111111,011)(1)(1)11(22121=--=--=--∑∑∑===ni n i i n i i n n n x E n x E n n x n x n n E μμ2222221121)1()11(σσσnn nn n x n x n n D ni n i i -=+-=--∑∑== 所以)1,0(~21σnn N x x --15、设X 1,X 2,…X n ,1为总体X 的样本,如果X 具有下列密度函数(其中参数均未知)试分别求这些参数的矩估计量与极大似然估计量。
高等数学第六章课后习题答案(大连理工版)

(理工类)习题 6-1答案: (经管类)习题 5-1答案: 1. (1)1;(2)1-e .2. (1)0;(2)0; (3)1;(4)418-π.3. (1)dx x )sin(10⎰π;(2)dx x ⎰1ln .(理工类)习题 6-2答案: (经管类)习题 5-2答案: 1. (1)>⎰102dx x 13x dx ⎰; (2) ⎰⎰<433432)(ln )(ln dx x dx x ;(3) ⎰⎰>1012dxe dx e xx; (4) ⎰⎰+>434)3(tan ππdxxx xdx .2. (1);51)1(6412≤+≤⎰dx x (2)⎰≤+≤πππ02)sin 1(dx x ;(3)22041222e dx ee xx ≤≤⎰--; (4)3sin3143πππ≤+≤⎰x.(5)12012≤-≤⎰dx x x(理工类)习题 6-3答案: (经管类)习题 5-3答案: 1. (1)xxx 2cos1sin + ; (2)42xxe-;(3))cos )(sin sincos(2x x x -π.2. xxsin 1cos --.3. (1)21;(2)e21;(3)21;(4)42π.4. 极值点0=x ,拐点为))11(21;22(e-±. 5. (1)881;(2)6π;(3)3π;(4)21;(5)4;(6)41π-.6. ⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤=Φ21,672210,3)(23x x x x x x . 7. )(x F 在0=x 处连续,但不可导.(理工类)习题 6-4答案: (经管类)习题 5-4答案:1. (1)2π;(2)16π;(3)3322-;(4)61;(5)322;(6)52; (7))1(211--e ;(8)23;(9)1;(10)4arctan π-e .2. 212121tan4+--e.3. (1)0 ;(2)3243π;(3)π-4;(4)ln .4. (1)2-π;(2)4142+e; (3)12312-+π;(4)214-π;(5)42ln 8-π;(6)122--e (7))11cos 1sin (21+-e e ;(8)12-e .(理工类)习题 6-5答案: (经管类)习题 5-5答案:1. (1)1;(2)21;(3)发散;(4)2ln ;(5) π;(6)2ln 21 ; (7) 发散;(8) 发散;(9) 1;(10) 发散. 2. 当1>λ时收敛于1)2)(ln 1(1--λλ;当1≤λ时发散.3. 2ln 214+π.(理工类)习题 6-6答案: (经管类)习题 5-6答案: 1. (1)364;(2)61;(3)332;(4)2ln 23-;(5)a b -;(6)21-+ee .2.169.3. (1)2a π;(2)218a π;(3) 45π.4.103π.5. 225a π;336a π. 6.h a 221π.(理工类)习题 6-7答案: 1. 1.56焦. 2. ⎪⎭⎫⎝⎛-b akq 11. 3. 1.57697.5kJ. 4. 710693.7⨯焦. 5. ab k ln.6..323R γ7. 3.1429N.8. 取y轴通过细棒,11y F G m aρ⎛⎫=-⎝,xF =(理工类)复习题六1. (1)4π; (2)32234-;(3))a af (; (4)2.2.≤21dx xx ⎰24sin ππ⋅≤223. (1)2sin x ;(2))(2x xf .4.)0(2cos 22≠y yexy.5.51.6. 32342+-x x .7. y x =. 11.(1)342-π; (2)π32;(3))2(2+π;(4)2ln 3112.2π.13.⎪⎭⎫⎝⎛-++A 212121π 17.).21(33+18.1. 19.2e .20. (1)7π,4π;(2)2160π.21.43,32==b a .22..cb c sh2(经管类)复习题六1. (1)4π; (2))a af (.2. (1)2sin x ;(2))(2x xf .3. 32342+-x x .4. y x =. 8.(1)342-π; (2)π32;(3))2(2+π;(4)2ln 31.9.2π.10.⎪⎭⎫⎝⎛-++A 212121π. 14. ).21(33+15.1. 16. 43,32==b a .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 常微分方程1. (1) b,c,d (2) a,c (3) b,d2. (1) 二阶,线性 (2) 一阶,非线性 (3) 一阶,非线性 (4) 一阶,非线性3. (1)-(3)均为微分方程0222=+y dxy d ω的解,其中(2) (3)为通解 4. (1)将变量分离,得dx ydy cos 2= 两边积分得 c x y +=-sin 1通解为,sin 1c x y +-=此外,还有解0=y(2)分离变量,得dx x x y y d xx dx dy y y )111(1)1(2112222+-=+++=+或 两边积分,得cx x y ln )1ln(ln )1ln(212++-=+即(1+ 2y )(1+ x)2=c 1 2x(3)将变量分离,得1122=-+-yydy xxdx积分得通解21x -+)20(12c c y =-还有使因子21x -∙012=-y 的四个解.x=(±)11 y -, y=(±)11 x - (4)将方程改写为(1+y 2)ex2dx-[]0)1( )e y +(1y=+-dy yex2dx=dy y y ⎥⎦⎤⎢⎣⎡++-2y11 (e 积分得--=y e e y x arctan 212)1ln(212y +-21(5)令 z=x+y+1,z dx dz sin 1+=分解变量得到dx zdz=+sin 1………………(*) 为了便于积分,用1-sinz 乘上式左端的分子和分母,得到dz z z z se dz zzdz z z )tan sec (cos sin 1sin 1sin 1222-=-=-- 将(*)两端积分得到tanz-secz=x+c即-tan(22z-∏)=x+c,将z 换为原变量,得到原方程的通解 X+c=-tan(214++-∏y x )6.令y=ux,则dy=udx+xdu 代入原方程得x 2( u 2-3)(udx+xdu)+2 x 2udx=0分离变量得du x dx 1)-u(u u 22-=,即得y 3=c(2y -2x ) 7. 令xy u =,则原方程化为dx x udu 1=,解得c x u ==ln 212,即,ln 2222cx x x y +=由定解条件得4=c ,故所求特解为,ln 4222x x x y +=8. 将方程化为x y xyy +-='2)(1,令x yu =,得,u u x y +'=代入得dx x du u 1112=- 得c x u ln ln arcsin +=,cx xyln arcsin= 9.化为x e x y dx dy x =+,解得)(1xe c xy +=,代入e y =)1(得0=c 特解x e y x = 10.由公式得1)()(-+=-x ce y x ϕϕ11.化为x y x y dx dy ln 2=+为贝努里方程令xyu =,则原方程化为dx dy y dx du 2--= 代入方程的x u x dx du ln 1-=-用公式求得])(ln 21[2x c x u -=解得12])(ln 21[1--=x c x y 另为,0=y 也是原方程的解 12.为贝努里方程令xyu =,则原方程化为322x xu dx du -=+用公式求得122+-=-x ce u x解得1122+-=-x cey x13.23x y yx dx dy =-将上式看成以y 为自变量的贝努里方程令x z 1=有3y yz dxdy-=- 22212+-=-y ce z y ,得通解1)2(2212=+--y cex y14.令x y N x y M +-=-=4,32有xNy M ∂∂==∂∂1,这是全微分方程0=duxy x y dy x y dx x y u y x +--=---=⎰32),()0,0(22)4()3(,即方程得通解为c y x xy =--232 15. 化为0122=+-+xdx yx xdy ydx ,得通解为c x xy xy =+-+211ln 16.该方程有积分因子221y x +,)(arctan ))ln(21(2222x y d y x d y x ydx xdy xdy ydx ++=+-++17.1c e xe dx e xe e xd dx xe y xx x xx x+-=-==='⎰⎰⎰21211)2()(c x c x e c e xe x c e dx c e xe y x x x x x x ++-=+-++-=+-=⎰18.xx x dx x x y x1ln 32ln 12--=+=''⎰ 2ln ln 213)1ln 3(21---=--='⎰x x x dx x x x y x 21ln 2223)2ln ln 213(2212+--=---=⎰x x x x dx x x x y x19.令y z '=,则xz z =-',xx x dxdx e c x c e x e c dx xe e z 111)1(])1([][++-=++-=+⎰⎰=--⎰即x e c x y 1)1(++-='得2121c e c x y x ++--=20.令p y =',则dy dp p dx dy dy dp dx dp y =⋅==''所以0)(2323=+-=+-p p dy dp y p p p dy dp p y 则得p=0或02=+-p p dy dp y,前者对应解,后者对应方程y dy p p dp =-)1(积分得y c pp11=-即y c y c p dx dy 111+==两边积分得21||ln c x y c y '+='+,因此原方程的解是21||ln c x y c y '+='+及y=c 。
5.证明:易验证x e x y 11=,x e xy -=12,是齐次线方程02=-'+''xy y y x 的两个线性无关解,因此xe c e c y xx1)(21-+=是02=-'+''xy y y x 的通解,又易验证2*x e y =为非齐次线性方程的特解,所以2)(121x x x e e c e c x y ++=-是xe xy y y x =-'+''2的通解。
6.应用常数变异法,令x x c x x c y sin )(cos )(21+=将它代入方程,则可得决定)(1x c '和)(2x c ' 的两个方程:⎪⎩⎪⎨⎧='+'-='+'x x c x x c x x c x x c x cos 1)(cos )(sin 0)(sin )(cos 2121于是原方程的通解为x x x x x c x c y sin |cos |ln cos sin cos 21+++=。
7.(1)特征方程为0)1)(2(22=-+=-+λλλλ,21-=λ,12=λ故通解为x x e c e c y 2221+=-(2)特征方程为042=-λ,221==λλ故通解为x xxe c e c y 2221+=(3)特征方程为02234=+-λλλ,021==λλ,143==λλ故通解为x e x c c x c c y )(4321+++=(4)特征方程为01224=++λλ或0)1(22=+λ即特征根i ±=λ是重根,因此方程有四个实值解:cost ,tcost ,sint ,tsint ,故通解为t t c c t t c c x sin )(cos )(4321+++= (5)易看出2*-=y 是此方程的一个特解,又由7(1)题知对应齐次方程的通解为x x e c e c y 221+=-故所求非齐次方程的通解为2221-+=-x x e c e c y(6)先求对应的齐次线性方程03222=--x dtdxdt x d 的通解t t e c e c x -+=231,再求非线性齐次方程的一个特解,这里f(t)=3t+1,λ=0,又因λ=0不是特征根,故可取特解形如,其中A 、B 为待定常数,为了确定A 、B ,将代入原方程,得到-2B-3A-3Bt=3t-1,比较系数得⎩⎨⎧=--=-13233A B B由此得B=-1,31=A 从而t x -=31*,因此,原方程的通解为31231++=-tt e c e c x (7)从上题知,对应的齐次线性方程的通解为现求原方程的一个特解,这里te tf -=)(,因为λ=-1刚好是特征方程的单根,故有特解形如tAte x -=*,将它代入原方程,可得41-=A ,原方程的通解为t t t te e c e c x ---+=41231.(8)特征方程为0222=+-λλ,特征根为i ±=1λ因此对应的齐次方程通解为)sin cos ()(21t c t c e t y t +=观察右端函数t te t cos 有一次多项式因式1+i 是特征方程的单根,故有特解形如te t d ct t b at t t y ]sin )(cos )[()(*+++=代入原方程,经整理得t te t c b ct t d a ct e t t cos ]sin )224(cos )224[(=+--+++,比较同类项的系数得4c=1,a=d=0,-2b+2c=0,即a=d=0,41==c b ,所以)sin (cos 41)(*t t t te t y t +=非齐次方程的通解为]sin )41(cos )41[()()(221*t c t t c t e t y t y y t +++=+=综合题1. 按通解的公式有)2(1xxe c e +- 10≤≤x=+-=⎰])([dx e x Q c e y x xxec -2 1>x代入初始条件y(0)=0得21-=c 即10)1(2≤≤-=-x e y x则有)1(2)1(1--=e y 本题要求连续解,即应有)1(12y ec =-)1(2xe -- 10≤≤x 可以得)1(22-=e c 故满足初始条件的连续解为y=xe e --)1(2 1>x2.因为 ⎰⎰+=xx xdt t x dt t t e x 0)()()(ϕϕϕ………………(1)对于(1)的两边关于x 求一阶、二阶导数得⎰⎰-=--+='xx x x dt t e x dt t x x e x 0)()()()(ϕϕϕϕϕ (2))()(x e x x ϕϕ-=''即x e x x =+'')()(ϕϕ………………(3),即易求得对应齐次方程0)()(=+''x x ϕϕ的通解为x c x c x sin cos )(21+=ϕ易看出x e x 21)(=''ϕ的通解为x e x c x c x 21sin cos )(21++=ϕ (4)再由(1)知,由(2)知1)0(='ϕ,故代入(4)易得2121c c ==,从而)sin cos (21)(21x e x c x c x ++=ϕ。