PLC论文(发展历史)
基于plc的毕业设计论文

基于plc的毕业设计论文基于PLC的毕业设计论文引言:近年来,自动化技术在工业领域得到了广泛应用,其中基于可编程逻辑控制器(PLC)的系统在自动化控制方面具有重要地位。
本篇论文将探讨基于PLC的毕业设计,旨在通过深入研究和实践,提高学生对PLC技术的理解和应用能力。
一、PLC技术概述1.1 PLC的定义和发展PLC是一种专门用于工业自动化控制的计算机控制系统,它具有可编程、可扩展、可靠性高等特点。
自20世纪60年代问世以来,PLC技术经历了多个发展阶段,从最初的继电器逻辑控制到现代化的数字化控制系统,不断满足了工业自动化的需求。
1.2 PLC的工作原理PLC系统由中央处理器、输入模块、输出模块和编程设备等组成。
其工作原理是通过输入模块采集外部信号,经过中央处理器的逻辑运算和控制算法处理后,再通过输出模块控制执行器或执行设备实现自动化控制。
二、基于PLC的毕业设计案例分析2.1 设计目标和需求以某工厂生产线上的自动化控制系统改进为例,设计目标是提高生产效率、降低人力成本和减少人为错误。
需求包括对生产流程的实时监控、故障检测和报警、自动化控制等。
2.2 系统设计和实施通过对生产线进行调研和分析,设计了基于PLC的自动化控制系统。
首先,确定了输入信号和输出信号的类型和数量,然后编写了相应的PLC程序。
接着,进行硬件的布线和连接,安装输入输出模块,并进行调试和测试。
最后,对系统进行了实时监控和性能评估。
2.3 结果和效果经过设计和实施,该自动化控制系统取得了显著的效果。
生产线的生产效率提高了20%,人力成本减少了30%,人为错误率降低了50%。
同时,系统的稳定性和可靠性也得到了显著提升。
三、PLC技术在工业领域的应用前景3.1 工业自动化的发展趋势随着信息技术的不断发展,工业自动化正朝着智能化、网络化和柔性化的方向发展。
PLC作为核心控制设备,将在工业领域的应用中发挥越来越重要的作用。
3.2 PLC技术的应用领域PLC技术广泛应用于各个工业领域,如制造业、能源行业、交通运输等。
PLC发展历史

PLC发展历史PLC(可编程逻辑控制器)是一种用于自动化控制系统的电子设备,它在工业领域中起着至关重要的作用。
本文将详细介绍PLC的发展历史,包括其起源、发展过程以及未来的趋势。
一、起源PLC的起源可以追溯到20世纪60年代。
当时,传统的继电器控制系统在工业自动化领域中广泛应用,但存在着布线复杂、维护难点等问题。
为了解决这些问题,PLC应运而生。
二、早期发展1968年,德国的西门子公司率先开辟了第一台PLC,命名为SIMATIC 505。
这款PLC采用了基于微处理器的技术,具备了程序控制和逻辑功能。
SIMATIC505的问世标志着PLC的商业化应用。
1970年代,PLC开始在工业领域中得到广泛应用。
它被用于控制各种自动化设备,如机床、输送带和装配线等。
PLC的优势在于其可编程性,使得工厂能够根据需要进行灵便的调整和改变。
三、技术进步随着计算机技术的不断发展,PLC也在技术上得到了改进和升级。
1980年代,PLC开始采用更先进的微处理器和存储器,提高了其运算速度和存储容量。
此外,PLC还引入了摹拟输入和输出功能,使其在控制过程中更加精确和灵便。
1990年代,PLC开始支持网络通信技术,如以太网和现场总线。
这使得PLC能够与其他设备进行数据交换和远程监控,实现更高级别的自动化控制。
四、应用领域扩展随着PLC技术的不断发展,其应用领域也得到了扩展。
除了传统的工业自动化领域,PLC开始应用于建造、交通、能源等多个行业。
例如,在建造领域,PLC可用于控制楼宇的照明、空调和安全系统。
五、未来趋势未来,PLC将继续发展并适应新的技术趋势。
以下是几个可能的发展方向:1. 云计算和物联网:PLC可以与云计算和物联网技术结合,实现更高级别的数据分析和远程控制。
这将使得PLC在智能创造和智能城市等领域发挥更大的作用。
2. 人工智能:PLC可以与人工智能技术结合,实现更智能化的控制和决策。
例如,PLC可以通过学习算法来优化生产过程,并预测设备故障。
plc论文毕业论文

PLC论文引言PLC(Programmable Logic Controller)即可编程逻辑控制器,是一种用于自动化控制的数字计算机。
随着工业自动化水平的不断提高,PLC在工业控制系统中的应用越来越广泛,成为工厂自动化的核心组成部分。
本文旨在综述PLC技术的发展历程、应用领域以及未来发展方向。
PLC的发展历程PLC的概念最早起源于20世纪60年代,那时的工业控制领域主要使用继电器和电气控制柜来完成简单的自动化任务。
然而,这种传统的控制方法存在一些问题,如可靠性差、维护成本高等。
为了解决这些问题,PLC技术应运而生。
PLC的第一款商业产品诞生于1969年,由德国公司西门子推出。
这款产品引入了数字计算机技术,实现了逻辑控制和数值控制的有机结合,大大提高了控制系统的灵活性和可靠性。
随着技术的不断发展,PLC逐渐取代了传统的继电器控制系统,成为工业控制领域的主流。
PLC的应用领域PLC技术在各个行业都有广泛的应用,下面对几个典型的领域进行介绍:制造业制造业是PLC应用最为广泛的领域之一。
在制造业中,PLC主要用于生产线的控制和监控,可实现产品的自动组装、运输和包装等过程。
通过PLC,制造企业能够提高生产效率、降低生产成本,并且能够灵活应对市场需求的变化。
能源领域在能源领域,PLC技术用于电力系统的自动化监控和控制。
通过PLC,能源公司能够实现对电网的远程监测和管理,提高电力系统的安全性和可靠性。
此外,PLC还可以应用于煤矿、油田等危险环境中,减少人工操作的风险。
交通运输交通运输是另一个重要的PLC应用领域。
例如,在地铁系统中,PLC用于列车的自动驾驶和信号控制,能够提高运输效率和安全性。
此外,PLC还应用于机场的行李传送系统、港口的自动化装卸系统等场景。
建筑领域在建筑领域,PLC技术被广泛用于楼宇自动化系统。
通过PLC,楼宇管理公司能够实现对空调、照明、安防等设备的集中控制和管理,提高能源利用率和用户舒适度。
PLC发展历史

PLC发展历史PLC(Programmable Logic Controller)是一种用于工业控制系统的专用数字计算机,它采用程序控制和监控工业生产过程。
PLC的发展历史可以追溯到上世纪60年代,经过数十年的发展,PLC已经成为工业自动化领域的核心技术之一。
本文将从PLC的发展历史、应用领域、技术特点、未来趋势和发展前景等方面进行详细介绍。
一、PLC的发展历史1.1 20世纪60年代,PLC的雏形PLC最早浮现在20世纪60年代,当时主要用于汽车创造业的自动化控制,其外形类似于现代的计算机终端。
1.2 20世纪70年代,PLC的商业化在20世纪70年代,PLC开始商业化生产,成为工业自动化领域的主要控制设备之一,广泛应用于创造业、化工、电力等领域。
1.3 20世纪80年代至今,PLC的智能化随着计算机技术的发展,PLC逐渐智能化,具备更强的数据处理能力和通信功能,成为工业控制系统的核心设备。
二、PLC的应用领域2.1 创造业PLC在创造业中广泛应用,用于控制生产线、机器人、输送带等设备,实现自动化生产。
2.2 化工行业在化工行业,PLC可用于控制化工生产过程,监测温度、压力、流量等参数,确保生产过程的稳定性和安全性。
2.3 电力系统在电力系统中,PLC可用于控制发机电组、变电站、配电系统等设备,实现电力系统的自动化运行。
三、PLC的技术特点3.1 可编程PLC具有灵便的编程功能,可根据不同的控制要求编写程序,实现各种复杂的控制逻辑。
3.2 实时性PLC具有很高的实时性,能够快速响应输入信号,并输出相应的控制信号,保证生产过程的稳定性。
3.3 可靠性PLC具有较强的抗干扰能力和稳定性,能够在恶劣环境下正常运行,保障工业生产的安全性和稳定性。
四、PLC的未来趋势4.1 智能化未来PLC将更加智能化,具备更强的数据处理和分析能力,实现更复杂的控制逻辑和自动化功能。
4.2 互联网化随着物联网技术的发展,未来PLC将更加互联网化,实现设备之间的实时通信和远程监控,提高工业生产的效率和智能化水平。
PLC发展历史

PLC发展历史PLC(可编程逻辑控制器)是一种用于自动化控制系统的数字计算机。
它的发展历史可以追溯到20世纪60年代,以下是PLC发展历史的详细描述。
1. 早期自动化控制系统在20世纪60年代,工业自动化控制系统主要使用电气继电器来实现逻辑控制。
这种系统结构复杂、维护难点,且无法满足快速变化的工业需求。
2. 第一代PLC的浮现1968年,德国的西门子公司首次推出了第一台可编程逻辑控制器Simatic 505。
它采用了固态逻辑门电路,可以通过编程实现逻辑控制。
这标志着PLC的诞生。
3. PLC的普及和发展1970年代,PLC开始在工业领域得到广泛应用。
PLC具有编程灵便、易于维护、可靠性高等优点,逐渐取代了传统的继电器控制系统。
PLC的应用范围不断扩大,包括创造业、交通运输、能源等各个领域。
4. PLC技术的进步随着科技的不断进步,PLC的功能和性能得到了大幅提升。
1980年代,PLC开始支持摹拟量输入输出和通信功能,使得控制系统更加灵便和智能化。
1990年代,PLC开始支持分布式控制系统和网络通信,实现了多个PLC之间的数据交互和集中管理。
5. PLC的开放性和标准化为了促进PLC的发展和应用,各个厂商开始提倡PLC的开放性和标准化。
1996年,国际电工委员会(IEC)发布了PLC的国际标准IEC 61131,规定了PLC的编程语言、数据类型和通信接口,使得不同厂商的PLC可以互通。
6. PLC与工业互联网的融合随着工业互联网的兴起,PLC与互联网的融合成为了发展的趋势。
现代的PLC 具备了数据采集、远程监控和云平台接入等功能,可以实现工业设备的智能化管理和优化控制。
7. 未来发展趋势未来,随着物联网、人工智能等新技术的发展,PLC将继续发展壮大。
估计PLC将更加智能化、灵便化,能够实现更加复杂的控制任务和数据分析。
同时,PLC在节能环保、安全生产等方面的应用也将得到进一步推广。
总结:PLC的发展历史经历了从传统继电器控制到数字化编程控制的转变。
PLC的历史发展

PLC的历史发展PLC,即可编程逻辑控制器,是一种用于自动化控制领域的设备。
PLC的历史发展至今已经超过半个世纪,其发展历程中经历了从静态继电器到动态逻辑控制,再到集成控制的变革,成为了自动化控制领域的主流设备。
一、PLC的起源20世纪60年代初期,美国的一家工厂提出了一项需求,要求一种能够替代传统继电器的控制技术。
当时继电器有以下缺点:带电接触、寿命短、占用空间大等。
因此,工程师们开始研发一种新的控制器,这就是后来的PLC。
1968年,美国的Bedford公司推出了第一款PLC,这款PLC被命名为MODICON,意为"Magnetic Disk Control"。
MODICON的问世标志着PLC进入了实际应用阶段,PLC成为了自动化控制领域的一项重要技术。
二、PLC的发展PLC的发展经历了3个阶段:静态继电器控制、动态逻辑控制和集成控制。
1、静态继电器控制阶段PLC最初是用来替代静态继电器控制的,此时的PLC只能进行简单的开关控制,且操作比较麻烦。
英国的Ferranti公司生产的受继电器控制已经快速发展的情况下不断进步,推出了一个更加灵活的自动化控制系统。
它的控制核心是一个Pulse Code Modulation (PCM)异步串行通信接口模块,于1969年开始出售。
2、动态逻辑控制阶段20世纪60年代末期,随着计算机技术的发展,PLC开始具有了动态逻辑控制的能力,使得PLC能够进行更加复杂的控制。
随着PLC功能逐渐完善,应用领域也逐渐扩大,PLC在自动化控制领域的影响逐渐加深。
此时的PLC运用程序设计与自动逻辑控制相结合,具备更快的处理速度,可同时控制多个系统。
3、集成控制阶段从20世纪80年代开始,PLC进入了集成控制的阶段。
随着电气自动化领域科技的不断发展,PLC的应用领域也做出了新的拓展。
PLC开始与其他系统进行整合,如人机界面、数据采集、CIM等。
同时,PLC从单纯的数控装置变成了可编程、可扩充的现代化控制系统,使得PLC逐渐具备了工业控制方案的总体设计、数据流分析等新功能。
浅谈PLC发展概况与发展趋势
浅谈PLC发展概况与发展趋势引言概述:PLC(可编程逻辑控制器)是一种集电气、机械、仪表和计算机技术于一体的自动化控制设备。
它广泛应用于工业自动化领域,为生产线的自动化控制提供了强大的支持。
本文将从PLC的发展概况和发展趋势两个方面进行探讨。
一、PLC的发展概况1.1 初期PLC的出现PLC最早是在20世纪60年代由美国发明的,用于替代传统的继电器控制系统。
它采用了数字逻辑技术和微处理器技术,实现了对工业过程的自动控制,极大地提高了生产效率。
1.2 PLC的发展历程随着计算机技术的不断发展,PLC也得到了迅速的发展。
在70年代,PLC开始应用于汽车工业和机床控制领域;80年代,随着微处理器技术的成熟,PLC的功能不断增强,应用范围进一步扩大;90年代,PLC开始与网络技术结合,实现了分布式控制系统;进入21世纪,PLC的性能和可靠性得到了进一步提升,应用领域更加广泛。
1.3 PLC的优势和局限性PLC具有可编程性、灵活性和可靠性等优势,能够适应不同的控制需求。
然而,PLC的编程语言复杂,对操作人员的技术要求较高;同时,PLC的硬件成本较高,对于小型企业来说可能不太经济。
二、PLC的发展趋势2.1 智能化发展随着人工智能和大数据技术的快速发展,PLC正朝着智能化方向发展。
未来的PLC将具备更强的自学习和自适应能力,能够根据工作环境和需求进行智能调整和优化。
2.2 网络化应用PLC与网络技术的结合将成为未来的发展趋势。
通过网络连接,PLC可以实现远程监控和控制,方便企业进行远程管理和维护。
此外,PLC还可以与其他设备进行数据交换和共享,实现更高效的生产协同。
2.3 安全性提升随着工业自动化的普及,对于PLC的安全性要求也越来越高。
未来的PLC将加强对数据的保护和安全控制,采用更加可靠的安全机制,确保工业系统的稳定和安全运行。
三、结语PLC作为工业自动化领域的重要设备,经过多年的发展已经取得了显著的成果。
plc发展史调研报告
plc发展史调研报告PLC(Programmable Logic Controller,可编程逻辑控制器)是一种用来控制工业过程的数字计算机。
本文将对PLC发展史进行调研,总结其主要发展阶段和特点。
PLC的发展可以追溯到二十世纪60年代。
当时,通用电气公司(GE)和麻省理工学院(MIT)合作研究了一种新型的计算机控制系统。
以往的工厂控制系统使用的是以电磁继电器为基础的硬连线控制系统,这种系统组装困难,调试复杂,维护成本高。
PLC的出现改变了这一情况,它使用可编程的控制器替代了传统硬连线控制系统,大大简化了控制系统的设计和维护。
在70年代,PLC开始迅速普及。
PLC的软件编程功能让用户能够根据具体需求定制控制逻辑,这使得PLC适用于各种工业领域。
此时,PLC的产量和市场份额均大幅增加,PLC成为工业自动化领域的标配控制设备。
80年代,PLC的性能和功能进一步提升。
PLC开始采用更高级的微处理器和操作系统,增加了内存容量和计算速度。
这使得PLC能够处理更复杂的控制任务,并与其他设备进行实时通信。
此外,PLC也开始支持数据存储和历史记录功能,方便用户分析和优化工业过程。
90年代至今,PLC的发展正朝着更加智能化和网络化的方向发展。
PLC开始支持图形化编程和用户友好的界面,使得编程更加简单直观。
此外,PLC也逐渐融入了各种现代技术,如云计算、物联网和人工智能等。
这些技术的应用使得PLC 成为工业4.0时代的重要组成部分,具备更高的灵活性、可靠性和智能化。
到目前为止,PLC已经成为工业自动化的关键设备,广泛应用于制造业、电力系统、交通运输等行业。
随着技术的不断演进,PLC的功能和性能将进一步提升,为工业过程的控制和优化提供更多可能性。
综上所述,PLC经历了从简单控制到高级控制、从硬连线到软连接、从单机到网络的发展过程。
随着技术的不断进步,PLC将在工业自动化领域发挥越来越重要的作用。
PLC发展历史
PLC发展历史PLC(可编程逻辑控制器)是一种用于自动化控制的计算机控制系统,广泛应用于工业领域。
本文将详细介绍PLC的发展历史,从其起源、演变到现代应用的全过程。
1. 起源和发展初期(1960年代-1970年代)PLC的起源可以追溯到20世纪60年代。
当时,工业自动化的需求逐渐增加,传统的继电器控制系统已经无法满足复杂的控制需求。
于是,PLC应运而生。
最早的PLC系统由一台计算机和一些逻辑模块组成,用于控制生产线上的机械设备。
这些系统具备了逻辑运算、计时、计数等功能,大大提高了自动化控制的效率和精度。
2. 技术突破和功能增强(1980年代-1990年代)在20世纪80年代和90年代,随着计算机技术的发展,PLC逐渐实现了更多的功能增强。
首先是硬件方面的改进,PLC系统的体积减小,性能提升,可靠性增强。
其次是软件方面的创新,PLC编程语言变得更加易用,可以进行更复杂的逻辑运算和数据处理。
这使得PLC在工业自动化中的应用范围进一步扩大。
3. 网络化和开放性(2000年代-至今)进入21世纪,PLC系统逐渐实现了网络化和开放性。
通过将PLC与其他设备连接,如传感器、执行器和监控系统等,实现了更高级的自动化控制。
PLC系统也开始支持多种通信协议,如以太网、Modbus、Profibus等,使得不同厂商的设备可以互联互通。
此外,PLC的编程软件也变得更加强大和灵便,支持更多的编程语言和功能模块,为工程师提供了更多的选择和便利。
4. 现代应用和未来发展趋势如今,PLC已经广泛应用于各个行业,包括创造业、能源、交通、建造等。
在创造业中,PLC被用于控制生产线上的机器人、输送带、仓储系统等,实现自动化生产。
在能源领域,PLC用于控制电力系统、水处理设备等,提高能源利用效率。
在交通领域,PLC被应用于交通信号灯、地铁系统等,提高交通运输的安全性和效率。
未来,随着物联网和人工智能技术的发展,PLC将更加智能化和自适应,为工业自动化带来更多的创新和突破。
浅谈PLC发展概况与发展趋势
浅谈PLC发展概况与发展趋势引言概述:PLC(可编程逻辑控制器)是一种用于工业自动化控制的计算机控制系统,它可以实现对生产过程的监控和控制。
本文将从PLC的发展概况和发展趋势两个方面进行探讨。
一、PLC的发展概况1.1 诞生背景PLC的诞生源于对传统继电器控制系统的改进需求。
20世纪60年代,随着工业自动化需求的增加,传统继电器控制系统的局限性逐渐暴露出来,比如布线复杂、维护困难等。
为了解决这些问题,PLC应运而生。
1.2 发展历程PLC的发展经历了几个重要的阶段。
20世纪60年代末至70年代初,PLC的原型开始出现,但规模较小、功能简单;80年代,PLC逐渐成为工业控制的主流,功能得到了大幅提升;90年代至今,PLC的发展更加迅猛,不仅在性能上有了质的飞跃,还出现了模块化、网络化等新特点。
1.3 应用领域随着PLC技术的不断发展,其应用领域也不断扩大。
最初,PLC主要应用于工业自动化领域,如制造业、能源、交通等。
而现在,PLC已经涉足到更多领域,如建筑自动化、农业自动化等,为各行各业的自动化控制提供了强有力的支持。
二、PLC的发展趋势2.1 集成化发展随着科技的进步,PLC的集成化程度将会越来越高。
传统的PLC系统需要通过多个模块实现不同功能,而未来的PLC系统将会更加集成,通过更少的模块实现更多的功能,从而提高系统的可靠性和稳定性。
2.2 网络化应用随着互联网的普及和工业互联网的兴起,PLC的网络化应用将成为未来的发展趋势。
通过网络连接,PLC可以实现远程监控和控制,提高生产效率和管理水平。
此外,PLC与其他设备的互联互通也将得到进一步加强。
2.3 智能化发展未来的PLC系统将更加智能化。
传统的PLC系统主要是基于硬件的控制,而未来的PLC系统将会更加注重软件的发展,通过人工智能、机器学习等技术实现自主学习和优化控制,从而提高系统的智能化水平。
三、结论PLC作为一种重要的工业自动化控制设备,其发展概况和发展趋势对于了解工业自动化的发展趋势具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PLC发展史09机三孔二书一KOB BROWNPLC的产生1.继-接控制回顾由学生回答继电器(接触器)的结构、原理、画出三相异步电机启-停的主电路图、控制电路图由学生归纳出继-接控制的不足,从而引出“PLC的产生”2.PLC的产生68年美国通用汽车公司(GM)招标要求:(1)软连接代替硬接线(2)维护方便(3)可靠性高于继电器控制柜(4)体积小于继电器控制柜(5)成本低于继电器控制柜(6)有数据通讯功能(7)输入115V (8)可在恶劣环境下工作(9)扩展时,原系统变更要少(10)用户程序存储容量可扩展到4K核心思想:·用程序代替硬接线·输入/输出电平可与外部装置直接相联·结构易于扩展这是PLC的雏形。
69年美国DEC公司研制出世界上第一台PLC(PDP-14),并在GM公司汽车生产线上应用成功PLC的诞生:·1969年,美国研制出世界第一台PDP-14·1971年,日本研制出第一台DCS-8·1973年,德国研制出第一台PLC·1974年,中国研制出第一台PLC二、PLC的特点、现状与发展(一)特点(1)体积小(2)可靠性高(3)柔性好,可在线更改程序(4)对环境条件无要求(5)价格低廉……具备招标要求的所有功能(二)现状80%以上的行业,80%以上的设备均可使用PLC(三)发展发展史:第一代:1969年~1972年,代表产品有·美国DEC公司的PDP-14/L·日本立石电机公司的SCY-022·日本北辰电机公司的HOSC-20第二代:1973年~1975年,代表产品有·美国GE公司的LOGISTROT·德国SIEMENS公司的SIMATIC S3、S4系列·日本富士电机公司的SC系列第三代:1976~1983年,代表产品有·美国GOULD公司的M84、484、584、684、884·德国SIEMENS公司的SIMATIC S5系列·日本三菱公司的MELPLAC-50、550第四代:1983年~现在,代表产品有·美国GOULD公司的A5900·德国西门子公司的S7系列发展方向:·产品规模向两极分化·处理模拟量·追求高可靠性·通讯接口和智能模块·系统操作站配高分辨率的监视器·追求软、硬件标准化三、PLC的分类·按结构分:·整体型·组合型·按I/O点数及内存容量分:·超小型:小于64点,256Byet~1KB·小型:65~128点,1~3。
6KB·中型:129~512点,3。
6~13KB·大型:513~896点,大于13KB·超大型:大于896点,大于13KB四、网络型PLC与DCS的关系DCS起源于模拟量PLC起源于开关量二者相互渗透、取长补短,功能上日趋接近,使数字世界、模拟世界更加模糊决定DCS与PLC应用面大小的是其性能/价格比1、PLC即可编程控制器(Programmable logic Controller,是指以计算机技术为基础的新型工业控制装置。
在1987年国际电工委员会(International Electrical Committee)颁布的PLC 标准草案中对PLC做了如下定义:PLC英文全称Programmable Logic Controller ,中文全称为可编程逻辑控制器,定义是:一种数字运算操作的电子系统,专为在工业环境应用而设计的。
它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程.PLC是可编程逻辑电路,也是一种和硬件结合很紧密的语言,在半导体方面有很重要的应用,可以说有半导体的地方就有PLC“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。
它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。
PLC 及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。
”PLC的特点2.1可靠性高,抗干扰能力强高可靠性是电气控制设备的关键性能。
PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。
例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。
一些使用冗余CPU的PLC的平均无故障工作时间则更长。
从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。
此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。
在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。
这样,整个系统具有极高的可靠性也就不奇怪了。
2.2配套齐全,功能完善,适用性强PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。
可以用于各种规模的工业控制场合。
除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。
近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。
加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。
2.3易学易用,深受工程技术人员欢迎PLC作为通用工业控制计算机,是面向工矿企业的工控设备。
它接口容易,编程语言易于为工程技术人员接受。
梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。
为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。
2.4系统的设计、建造工作量小,维护方便,容易改造PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。
更重要的是使同一设备经过改变程序改变生产过程成为可能。
这很适合多品种、小批量的生产场合。
2.5体积小,重量轻,能耗低以超小型PLC为例,新近出产的品种底部尺寸小于100mm,重量小于150g,功耗仅数瓦。
由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。
3。
PLC基础知识1.1 PLC的发展历程在工业生产过程中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。
传统上,这些功能是通过气动或电气控制系统来实现的。
4. PLC的应用领域目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。
4.1开关量的逻辑控制这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。
如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。
4.2模拟量控制在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。
为了使可编程控制器处理模拟量,必须实现模拟量(Analog)和数字量(Digital)之间的A/D转换及D/A转换。
PLC厂家都生产配套的A/D和D/A转换模块,使可编程控制器用于模拟量控制。
4.3运动控制PLC可以用于圆周运动或直线运动的控制。
从控制机构配置来说,早期直接用于开关量I/O 模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。
如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。
世界上各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。
4.4过程控制过程控制是指对温度、压力、流量等模拟量的闭环控制。
作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。
PID调节是一般闭环控制系统中用得较多的调节方法。
大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。
PID处理一般是运行专用的PID子程序。
过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。
4.5数据处理现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。
这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。
数据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。
4.6通信及联网PLC通信含PLC间的通信及PLC与其它智能设备间的通信。
随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC的通信功能,纷纷推出各自的网络系统。
新近生产的PLC都具有通信接口,通信非常方便。
5. PLC的国内外状况在工业生产过程中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。
传统上,这些功能是通过气动或电气控制系统来实现的。
1968年美国GM(通用汽车)公司提出取代继电气控制装置的要求,第二年,美国数字设备公司(DEC)研制出了基于集成电路和电子技术的控制装置,首次采用程序化的手段应用于电气控制,这就是第一代可编程序控制器,称Programmable ,是世界上公认的第一台PLC.限于当时的元器件条件及计算机发展水平,早期的PLC主要由分立元件和中小规模集成电路组成,可以完成简单的逻辑控制及定时、计数功能。
20世纪70年代初出现了微处理器。
人们很快将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。
为了方便熟悉继电器、接触器系统的工程技术人员使用,可编程控制器采用和继电器电路图类似的梯形图作为主要编程语言,并将参加运算及处理的计算机存储元件都以继电器命名。
此时的PLC为微机技术和继电器常规控制概念相结合的产物。
个人计算机(简称PC)发展起来后,为了方便,也为了反映可编程控制器的功能特点,可编程序控制器定名为Programmable Logic Controller(PLC)。