新人教版九上课件24.3.正多边形和圆课件PPT
合集下载
人教版九年级数学上册 24.3 正多边形和圆 (19张PPT)

4、将一个正五边形绕它的中心旋转,至少 要旋转_7_2__度,才能与原来的图形位置 重合.
互动探究一
若同一个圆的内接正三角形,正方 形,正六边形的边心距分别为 r3,r4,r6,则r3:r4:r6等于多少?
方法归纳交流:正多边形的半径,边心距 和边长的一半构成___三勾股定理求解角形, 可以用
互动探究二
3
4
的证明思路:
C
D
弦相等→多边形的边相等
弧相等→
圆周角相等→多边形的角相等
这个正多边形就是这个圆的内接正多边形, 这个圆叫做这个正多边形的外接圆.
二、正多边形的有关概念E
正多边形的中心: 一个正多边形的外接圆 的圆心.
F
半径R
. 中心角 O
正多边形的半径:
外接圆的半径(即:中心到顶
点的连线)
正多边形的中心角: 正多边形的每一条边所对的圆心角.
知识点二 :一般正n边形的画法
E
B
请根据课本中提供的方法,在 右图中画出圆的内接正五边形, 并试着总结正多边形的画法。 C
O D
归纳总结:在圆内作相等的___可以等分圆周, 顺次连接各分点,即可得到正多边形。
请根据课本中所提供的特殊正多边的画法,在 练习本上分别画出圆内接正方形和正六边形
预习自测
1、完成下表:
如图,正八边形ABCDEFGH内接于圆O,点P 是弧GH上任意一点,则∠CPE的度数为( D)
A.30°
B.15° C.60° D.45°
A
H P
B
G
O
C F
D
E
变式:如图, △ PQR是⊙O的内接正三角
形,四边形ABCD是⊙O的内接正方形,
BC∥QR,则∠DOR的度数是
互动探究一
若同一个圆的内接正三角形,正方 形,正六边形的边心距分别为 r3,r4,r6,则r3:r4:r6等于多少?
方法归纳交流:正多边形的半径,边心距 和边长的一半构成___三勾股定理求解角形, 可以用
互动探究二
3
4
的证明思路:
C
D
弦相等→多边形的边相等
弧相等→
圆周角相等→多边形的角相等
这个正多边形就是这个圆的内接正多边形, 这个圆叫做这个正多边形的外接圆.
二、正多边形的有关概念E
正多边形的中心: 一个正多边形的外接圆 的圆心.
F
半径R
. 中心角 O
正多边形的半径:
外接圆的半径(即:中心到顶
点的连线)
正多边形的中心角: 正多边形的每一条边所对的圆心角.
知识点二 :一般正n边形的画法
E
B
请根据课本中提供的方法,在 右图中画出圆的内接正五边形, 并试着总结正多边形的画法。 C
O D
归纳总结:在圆内作相等的___可以等分圆周, 顺次连接各分点,即可得到正多边形。
请根据课本中所提供的特殊正多边的画法,在 练习本上分别画出圆内接正方形和正六边形
预习自测
1、完成下表:
如图,正八边形ABCDEFGH内接于圆O,点P 是弧GH上任意一点,则∠CPE的度数为( D)
A.30°
B.15° C.60° D.45°
A
H P
B
G
O
C F
D
E
变式:如图, △ PQR是⊙O的内接正三角
形,四边形ABCD是⊙O的内接正方形,
BC∥QR,则∠DOR的度数是
人教版九年级数学上册《正多边形和圆形》圆PPT优质课件

A. ①②④
B. ①③④
C. ②③④
D. ①②③
课堂练习
题1【解析】首先由垂径定理确定③正确,再由在OO中
,OA=AB,确定△OAB是等边三角形,即可得到
∠A0B=60°,得到①正确,又由垂径定理,求得
∠AOC=30°,得到②正确,根据同弧所对圆周角等于其
对圆心角的一半,即可求得∠BAC=15°,则问题得解结
第二十四章
圆
24.3 正多边形和圆
情境引入
这些美丽的图案,都是在日常生活中我们经
常能看到的利用正多边形得到的物体,你能
从这些图案中找出正多边形吗?
你还能举出一些这样正多边形的例子吗?
情境引入
你知道正多边形和圆有关系吗?怎样就能作出一个正
多边形来?
正多边形和圆的关系非常密切,只要把一个圆分成相
正多边形的中心
正多边形的半径
正多边形的中心角
正多边的边心距。
知识要点
正多边形的半径R、正多边形的中心角、边长a、
正多边的边心距r之间的等量关系:①正n边形的
360⁰
2
中心角=
;②( ) +r2=R2;③正n边形的面
2
积=n个等于三角形面积或者2n个直角三角形面
积。
知识要点
画正多边形的方法。
360⁰
方法一:用量角器作一个等于
的圆心角。
方法二:尺规作正方形、正六边形等。
课堂练习
例1:如图所示,以半径为1的圆内接正三角形、正方形、正六边形的边长
为三边作三角形,( B )。
A. 这个三角形是等腰三角形
B. 这个三角形是直角三角形
C. 这个三角形是锐角三角形
B. ①③④
C. ②③④
D. ①②③
课堂练习
题1【解析】首先由垂径定理确定③正确,再由在OO中
,OA=AB,确定△OAB是等边三角形,即可得到
∠A0B=60°,得到①正确,又由垂径定理,求得
∠AOC=30°,得到②正确,根据同弧所对圆周角等于其
对圆心角的一半,即可求得∠BAC=15°,则问题得解结
第二十四章
圆
24.3 正多边形和圆
情境引入
这些美丽的图案,都是在日常生活中我们经
常能看到的利用正多边形得到的物体,你能
从这些图案中找出正多边形吗?
你还能举出一些这样正多边形的例子吗?
情境引入
你知道正多边形和圆有关系吗?怎样就能作出一个正
多边形来?
正多边形和圆的关系非常密切,只要把一个圆分成相
正多边形的中心
正多边形的半径
正多边形的中心角
正多边的边心距。
知识要点
正多边形的半径R、正多边形的中心角、边长a、
正多边的边心距r之间的等量关系:①正n边形的
360⁰
2
中心角=
;②( ) +r2=R2;③正n边形的面
2
积=n个等于三角形面积或者2n个直角三角形面
积。
知识要点
画正多边形的方法。
360⁰
方法一:用量角器作一个等于
的圆心角。
方法二:尺规作正方形、正六边形等。
课堂练习
例1:如图所示,以半径为1的圆内接正三角形、正方形、正六边形的边长
为三边作三角形,( B )。
A. 这个三角形是等腰三角形
B. 这个三角形是直角三角形
C. 这个三角形是锐角三角形
人教版数学九年级上册24.3正多边形和圆课件(36张PPT)

24.3 正多边形和圆
人教版·九年级上册
学习目标
(1)理解正多边形及其半径、边长、边心距、中心 角等概念. (2)会进行特殊的与正多边形有关的计算,会画某 些正多边形.
新课导入
问题1:观察下面多边形,它们的边、角有什么特点?
都是各边相等,各内角相等的多边形
问题2:观看这些美丽的图案,都是在日常生活中我们 经常能看到的.你能从这些图案中找出类似的图形吗?
动手操作
操作一:自己动手试一试,你能画出什么正多边 形?你是怎么画的? 操作二:画一个半径是1.5cm的圆,并画出它的正 六边形。
解:方法 1 (1)作一个半径是1.5cm的圆⊙O ; (2)用量角器依次作∠AOB=∠BOC=∠COD= ∠DOE=∠EOF=∠FOA= 360 =60°,将360°圆心角六
想一想
有没有对称轴?
正多边形都是 轴对称 图形,一个正n边形共有
n 条对称轴,每条对称轴都通过n边形的 中心 .
边数3是条偶数的正4多条边形还是 5中条心对称图形6条,它的中 心就是对称中心.
你知道正多边形与圆的关系吗?
把一个圆分成相等的弧?依次连接各等分点,得到一个什 么图形? 如果五、六、七…等分?如果将圆n等分呢?
思考 什么叫正多边形?图中有哪些正多边形? 正多边形与圆有哪些关系?
探索新知
图形 ……
名称 正三角形 正四角形 正五角形 正六角形
……
边的关系
角的关系
三条边相等 三个角相等(60°)
四条边相等 四个角相等(90°)
五条边相等 五个角相等(108°)
六条边相等 六个角相等(120°)
……
……
正多边形的概念:
< 针对训练 >
人教版·九年级上册
学习目标
(1)理解正多边形及其半径、边长、边心距、中心 角等概念. (2)会进行特殊的与正多边形有关的计算,会画某 些正多边形.
新课导入
问题1:观察下面多边形,它们的边、角有什么特点?
都是各边相等,各内角相等的多边形
问题2:观看这些美丽的图案,都是在日常生活中我们 经常能看到的.你能从这些图案中找出类似的图形吗?
动手操作
操作一:自己动手试一试,你能画出什么正多边 形?你是怎么画的? 操作二:画一个半径是1.5cm的圆,并画出它的正 六边形。
解:方法 1 (1)作一个半径是1.5cm的圆⊙O ; (2)用量角器依次作∠AOB=∠BOC=∠COD= ∠DOE=∠EOF=∠FOA= 360 =60°,将360°圆心角六
想一想
有没有对称轴?
正多边形都是 轴对称 图形,一个正n边形共有
n 条对称轴,每条对称轴都通过n边形的 中心 .
边数3是条偶数的正4多条边形还是 5中条心对称图形6条,它的中 心就是对称中心.
你知道正多边形与圆的关系吗?
把一个圆分成相等的弧?依次连接各等分点,得到一个什 么图形? 如果五、六、七…等分?如果将圆n等分呢?
思考 什么叫正多边形?图中有哪些正多边形? 正多边形与圆有哪些关系?
探索新知
图形 ……
名称 正三角形 正四角形 正五角形 正六角形
……
边的关系
角的关系
三条边相等 三个角相等(60°)
四条边相等 四个角相等(90°)
五条边相等 五个角相等(108°)
六条边相等 六个角相等(120°)
……
……
正多边形的概念:
< 针对训练 >
人教版九年级数学上册《正多边形和圆》优秀PPT课件

F
E
利用勾股定理,可得边心距
A
O
D
r= 42-22=2 3
R r
亭子地基的面积
S=6S
BOC=6×
1 2
×4×2=24
B
3≈41.6(m2).
P
C
课堂小结
1.正多边形和圆的有关概念:正多边形的中 心、半径、中心角、边心距. 2.正多边形的半径、中心角、边长、边心距 之间的等量关系.
课后作业
1.必做作业:课本106页,练习2、3题. 2.选做作业:利用圆形纸片剪下一个正七边形.
又∵五边形ABCDE的顶点都在⊙O上,
C
D
∴ 五边形ABCDE是⊙O的内接正五边形,⊙O是五边形ABCDE的外接圆.
概念学习
①我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心.
②外接圆的半径叫做正多边形的半径.
A
F
③正多边形每一边所对的圆心角叫做正多边形的
半径R
中心角.正n边形的每个中心角都等于 360° .
AA
BB
E
O·
CC
DD
探索新知
如图,把⊙O分成相等的5段弧,依次连接各分点得到五边形ABCDE,求证
五边形ABCDE是正五边形.
A
证明:∵A B = BC = CD = DE = EA
B
E
AB = BC = CD = DE = EA ,BCE = CDA = 3AB
O·
A = B 同理B = C = D = E
人教版数学 九年级上
24.3 正多边形和圆(一)
情境导入
请欣赏下面这些美丽的图案:
动手操作
将你手中的圆形纸片沿着直径对折,再对折……最后 沿着扇形的弦剪下来,会得到一个什么样的图形呢?
正多边形和圆ppt课件

解:(1)如图所示,正八边形ABCDEFGH即为所求.
图24-3-4
探
究
与
应
用
(2)求出地基的中心角和面积.(结果保留根号)
(2)如图,连接OA,OB,过点A作AM⊥OB于点M.
∵八边形ABCDEFGH是正八边形,
360°
∴地基的中心角∠O=
=45°,
8
∴△OAM是等腰直角三角形.
∵OA=OB=4 m,∴AM=OM=2 2 m,
解:如图.
(1)画半径为1 cm的☉O;
(2)用量角器把☉O九等分(依次画40°的圆心角);
(3)依次连接各分点,即得☉O的内接正九边形ABCDEFGHI.
谢 谢 观 看!
1
1
∴S△OAB= OB·AM= ×4×2
2
2
2=4 2(m2),
∴地基的面积=8S△OAB=8×4 2=32 2(m2).
探
究
与
应
用
学 方法
等分圆周画正多边形的工具和方法
①只用量角器:用量角器把360°的圆心角n等分,相应的圆周
也被n等分,顺次连接各分点得到正n边形.
1
②用量角器和圆规:先用量角器画出360°的圆心角的 ,相应
1
得到圆周的 ;再用圆规顺次截取,便得到圆周的n等分点,顺
次连接各分点得到正n边形.
③用圆规和直尺:用尺规等分圆周,可以作正六边形、正方
形等特殊正多边形.
课
堂
小
结
与
检
测
[检测]
1.如果一个正多边形的中心角为72°,那么这个正多边形的边
数是
( B )
A.4
B.5
C.6
图24-3-4
探
究
与
应
用
(2)求出地基的中心角和面积.(结果保留根号)
(2)如图,连接OA,OB,过点A作AM⊥OB于点M.
∵八边形ABCDEFGH是正八边形,
360°
∴地基的中心角∠O=
=45°,
8
∴△OAM是等腰直角三角形.
∵OA=OB=4 m,∴AM=OM=2 2 m,
解:如图.
(1)画半径为1 cm的☉O;
(2)用量角器把☉O九等分(依次画40°的圆心角);
(3)依次连接各分点,即得☉O的内接正九边形ABCDEFGHI.
谢 谢 观 看!
1
1
∴S△OAB= OB·AM= ×4×2
2
2
2=4 2(m2),
∴地基的面积=8S△OAB=8×4 2=32 2(m2).
探
究
与
应
用
学 方法
等分圆周画正多边形的工具和方法
①只用量角器:用量角器把360°的圆心角n等分,相应的圆周
也被n等分,顺次连接各分点得到正n边形.
1
②用量角器和圆规:先用量角器画出360°的圆心角的 ,相应
1
得到圆周的 ;再用圆规顺次截取,便得到圆周的n等分点,顺
次连接各分点得到正n边形.
③用圆规和直尺:用尺规等分圆周,可以作正六边形、正方
形等特殊正多边形.
课
堂
小
结
与
检
测
[检测]
1.如果一个正多边形的中心角为72°,那么这个正多边形的边
数是
( B )
A.4
B.5
C.6
人教版九年级数学上册《正多边形和圆形》圆PPT精品课件

第二十四章 圆
正多边形和圆
学习目标
1.理解并掌握正多边形的半径和边长、边心距、中心角
之间的关系.
(重点)
2.会进行特殊的与正多边形有关的计算,会画
某些正多边形.
(难点)
新课导入
知识回顾
圆内接四边形的性质:
1.对角互补; 2.四个内角的和是360°; 3.任一外角与其相邻的内角的对角相等(即外角等于内对角).
新课讲解
证明:如图,把⊙O分成相等的5段弧,依次连接各分点 得到五边形ABCDE. ∵A⌒B=B⌒C=C⌒D=D⌒E=E⌒A,
知识点
∴AB=BC=CD=DE=EA, BC⌒E=3A⌒B=C⌒DA.
∴∠A=∠B. 同理∠B=∠C=∠D=∠E. 又五边形ABCDE的顶点都在⊙O上, ∴五边形ABCDE是⊙O的内接正五边形, ⊙O是正五边形ABCDE的外接圆.
作OP⊥BC,垂足为P.
在Rt△OPC中,OC=4 m,
PC= BC 4 =2(m),利用勾股定理,
22
可得边心距r= 42 22 2 3(m).
亭子地基的面积S=
1 lr 1 24 2 3 41.6(m2 ). 22
新课讲解
正n边形的一个内角的度数是多少?中
心角呢?正多边形的中心角与外角的大小有 什么关系?
新课导入
课时导入
下面这些美丽的图案,都是在日常生活中我们经常能看到的.你 能从这些图案中找出类似的图形吗?
新课讲解
知识点1 圆内接正多边形
正三 角形
三条边相等,三个角 相等(60度).
正方形
四条边相等,四个角 相等(900).
新课讲解
什么叫做正多边形? 各边相等、各角也相等的多边形叫做正多边形.
正多边形和圆
学习目标
1.理解并掌握正多边形的半径和边长、边心距、中心角
之间的关系.
(重点)
2.会进行特殊的与正多边形有关的计算,会画
某些正多边形.
(难点)
新课导入
知识回顾
圆内接四边形的性质:
1.对角互补; 2.四个内角的和是360°; 3.任一外角与其相邻的内角的对角相等(即外角等于内对角).
新课讲解
证明:如图,把⊙O分成相等的5段弧,依次连接各分点 得到五边形ABCDE. ∵A⌒B=B⌒C=C⌒D=D⌒E=E⌒A,
知识点
∴AB=BC=CD=DE=EA, BC⌒E=3A⌒B=C⌒DA.
∴∠A=∠B. 同理∠B=∠C=∠D=∠E. 又五边形ABCDE的顶点都在⊙O上, ∴五边形ABCDE是⊙O的内接正五边形, ⊙O是正五边形ABCDE的外接圆.
作OP⊥BC,垂足为P.
在Rt△OPC中,OC=4 m,
PC= BC 4 =2(m),利用勾股定理,
22
可得边心距r= 42 22 2 3(m).
亭子地基的面积S=
1 lr 1 24 2 3 41.6(m2 ). 22
新课讲解
正n边形的一个内角的度数是多少?中
心角呢?正多边形的中心角与外角的大小有 什么关系?
新课导入
课时导入
下面这些美丽的图案,都是在日常生活中我们经常能看到的.你 能从这些图案中找出类似的图形吗?
新课讲解
知识点1 圆内接正多边形
正三 角形
三条边相等,三个角 相等(60度).
正方形
四条边相等,四个角 相等(900).
新课讲解
什么叫做正多边形? 各边相等、各角也相等的多边形叫做正多边形.
《正多边形和圆》九年级初三数学上册PPT课件(第24.3课时)
证:五边形ABCDE是圆内接正五边形.
证明:
提示:正五边形的五边相等,五个内角也相等。
∵AB=BC=CD=CE=AE
∴AB=BC=CD=CE=AE
而BCE=BC+CD+DE
A
B
E
O
CDA=CD+DE+AE
∴∠A=∠B 同理∠B=∠C=∠D=∠E
又五边形ABCDE的顶点都在⊙O上
所以五边形ABCDE是圆内接正五边形, ⊙O是五边形
[解析] (1)首先用五点法作出函数y=cosx,x∈[0,2π]的图象,再作出y=cosx
关于x轴对称的图象,最后将图象向上平移1个单位.如图(1)所示.
第一章 三角函数
(2) 首先用五点法作出函数y=sinx,x∈[0,4π]的图象,再将x轴下方的部分对称
到x轴的上方.如图(2)所示.
第一章 三角函数
探索正多边形和圆的位置关系
如图所示,把⊙O分成相等的3段弧,依次连接各分点得到▲ABC.求证:
▲ABC是圆内接正三边形.
证明:
A
∵AB=BC=AC
O
∴AB=BC=AC
所以▲ABC是圆内接正三边形
C
B
探索正多边形和圆的位置关系
如图所示,把⊙O分成相等的5段弧,依次连接各分点得到五边形ABCDE.求
2.正弦曲线和余弦曲线的关系
1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.
(1)作正弦函数和余弦函数的图象时,所取的“五点”是相同的.( × )
(2)正弦曲线和余弦曲线都介于直线 y=1 和 y=-1 之间.( √ )
(3)正弦曲线与余弦曲线都关于原点对称.( × )
3π
证明:
提示:正五边形的五边相等,五个内角也相等。
∵AB=BC=CD=CE=AE
∴AB=BC=CD=CE=AE
而BCE=BC+CD+DE
A
B
E
O
CDA=CD+DE+AE
∴∠A=∠B 同理∠B=∠C=∠D=∠E
又五边形ABCDE的顶点都在⊙O上
所以五边形ABCDE是圆内接正五边形, ⊙O是五边形
[解析] (1)首先用五点法作出函数y=cosx,x∈[0,2π]的图象,再作出y=cosx
关于x轴对称的图象,最后将图象向上平移1个单位.如图(1)所示.
第一章 三角函数
(2) 首先用五点法作出函数y=sinx,x∈[0,4π]的图象,再将x轴下方的部分对称
到x轴的上方.如图(2)所示.
第一章 三角函数
探索正多边形和圆的位置关系
如图所示,把⊙O分成相等的3段弧,依次连接各分点得到▲ABC.求证:
▲ABC是圆内接正三边形.
证明:
A
∵AB=BC=AC
O
∴AB=BC=AC
所以▲ABC是圆内接正三边形
C
B
探索正多边形和圆的位置关系
如图所示,把⊙O分成相等的5段弧,依次连接各分点得到五边形ABCDE.求
2.正弦曲线和余弦曲线的关系
1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.
(1)作正弦函数和余弦函数的图象时,所取的“五点”是相同的.( × )
(2)正弦曲线和余弦曲线都介于直线 y=1 和 y=-1 之间.( √ )
(3)正弦曲线与余弦曲线都关于原点对称.( × )
3π
人教版数学九年级上册 24.3正多边形和圆(第1课时)(共25张PPT)
A. 1 2 3 m
B.20m
C.22m
A
D.24m
B
D
C
作业
1.作业本:课本P107,习题24.3 第1题、第5题;
2.质量监测:P89-91.
温故知新
菱形是正多边形吗?矩形是正多边形吗?
任务二
问题探究
•什么叫做圆的内接正多边形? •如何得到圆的内接正多边形?
问题探究
顶点在圆上的正多边形叫做圆的内接正多边形, 这个圆就是这个正多边形的外接圆.
把一个圆分成相等的一些弧,就可以作出这个圆 的内接正多边形.
A
B
E
O·
C
D
问题探究
试说明,把⊙O 分成相等的5段弧,依次连接各分 点得到的多边形为正五边形.
A
·O
B
D
C
基础训练
2.若正方形的半径为4,则它的边心距是
_2 __2_,边长是__4 __2_,面积是_3_2 _。
A
D
·O
B
E
C
例 有一个亭子,它的地基是半径为4m的正六边形,
求地基的周长和面积(精确到0.1m2).
解: 如图由于ABCDEF是正六边形,所以它的中心角等于 3 6 0 6 0 ,
6
△OBC是等边三角形,从而正六边形的边长等于它的半径.
因此,亭子地基的周长 l =4×6=24(m).
在Rt△OPC中,OC=4, PC= BC 4 2, 22
利用勾股定理,可得边心距
F
E
r 4222 2 3.
亭子地基的面积
A
O
D
S1lr1242341.6(m 2).
22
B
rR
人教版九年级数学上24.3正多边形和圆(共32张PPT)
24.3正多边形和圆
E
A
D
B
C
三条边相等,
四条边相等,
三个角相等
正三 角形
(60度)。
正方形
四个角相等 (900)。
一 .正多边形定义
各边相等,各角也相等的多边形叫做正多边形.
二、说说下列多边形的名称
正五边形
正六边形
正八边形
1、正多边形的各边相等 2、正多边形的各角相等
3、正多边形都是轴对称图形,一个正n边形 共有n条对称轴,每条对称轴都通过n边形 的中心。
E
D
一个正多边形的外接
圆的圆心.
正多边形的半径: 外接圆的半径
F
.半径R O
中心角
C
正多边形的中心角:
360
n
边心距r
正多边形的每一条
A
B
边所对的圆心角.
正多边形的边心距: 中心到正多边形的一边 的距离.
正多边形的周长= 正多边形的面积=
中心角 360
中心角 E
D
n
边心距把△AOB分成 F
2个全等的直角三角形
AOG BOG 180 n
.. O R
AG
C a
B
正n边形被相邻周半径长分为成L=na
___n___个全等的等腰三角
形.被边心距边分心成距__r_2_n个全R 2
等的直角三角形,
(1 2
a )2
设正多边形面的积S边长 为12 aar,n边心12距lr为r,半经为R.
1、O是正△ABC的中心,它是△ABC的_外__接__圆__ 与__内__切__圆___圆的圆心。
B
E
边形是正六边形。
C
E
A
D
B
C
三条边相等,
四条边相等,
三个角相等
正三 角形
(60度)。
正方形
四个角相等 (900)。
一 .正多边形定义
各边相等,各角也相等的多边形叫做正多边形.
二、说说下列多边形的名称
正五边形
正六边形
正八边形
1、正多边形的各边相等 2、正多边形的各角相等
3、正多边形都是轴对称图形,一个正n边形 共有n条对称轴,每条对称轴都通过n边形 的中心。
E
D
一个正多边形的外接
圆的圆心.
正多边形的半径: 外接圆的半径
F
.半径R O
中心角
C
正多边形的中心角:
360
n
边心距r
正多边形的每一条
A
B
边所对的圆心角.
正多边形的边心距: 中心到正多边形的一边 的距离.
正多边形的周长= 正多边形的面积=
中心角 360
中心角 E
D
n
边心距把△AOB分成 F
2个全等的直角三角形
AOG BOG 180 n
.. O R
AG
C a
B
正n边形被相邻周半径长分为成L=na
___n___个全等的等腰三角
形.被边心距边分心成距__r_2_n个全R 2
等的直角三角形,
(1 2
a )2
设正多边形面的积S边长 为12 aar,n边心12距lr为r,半经为R.
1、O是正△ABC的中心,它是△ABC的_外__接__圆__ 与__内__切__圆___圆的圆心。
B
E
边形是正六边形。
C
人教版九年级数学上册课件:24.3正多边形和圆 (共18张PPT)
的边长是( B )
A.3 B.2
C.3 D.2 3
解析:如图,∵正六边形的边心距为 ,∴3OB= ,∴AOBA=2=(3OA12,OA∵)O212A+2(=AB32)+O2B,2,解得OA=2.故选B.
3.如图,AD是正五边形ABCDE的一条对角线 ,则∠BAD= .
.O
解析: 设O是正五边形的中心,连接OD、 O∴B∠.B则A∠D=D1O∠B=DO52×B=37620°°,=1故44填°7,2°.
正方形
正五边形
正六边形
... 正n边形 ... ...3.过上边的探究,你能得到哪些结论?
结论:
(1)正 边形的中心角等于 180 ,外角等于 180
n
n
,正多边形的中心角与外角相等.
(2)正多边形的半径、边心距、边长的一半构 成直角三角形. (3)正 边形的半径和边心距,把正 边形分 为 个直角三角形.
∴ 五边形ABCDE是⊙O的内接正五边形.
4.类比以上探究过程,你能得出什么结论 ?
把一个圆分成相等的一些弧,可以作 出这个圆的内接正多边形 ,这个圆就 是这个正多边形的外接圆.
探究2 正多边形及外接圆中的有关概念
➢ 中心:一个正多边形的外接圆的圆心.
➢ 正多边形的半径:外接圆的半径.
➢ 正多边形的中心角: 正多边形的每一条边 所对的圆心角.
作出已知⊙O的互相垂直的直径
即得圆内接正方形,再过圆心作各
边的垂线与⊙O相交,或作各中心
O·
角的角平分线与⊙O相交,即得圆
接正八边形,照此方法依次可作正
十六边形、正三十二边形、正六十
四边形……
以半径长在圆周上截取六段相
等的弧,依次连结各等分点,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内接正多边形;
⑵经过各分点作圆的切线,以相邻切线的交点
为顶点的多边形是这个圆的外切正多边形.
二、正多边形的有关概念
E
D 半径R F
正多边形的中心: 一个正多边形的外接 圆的圆心. 正多边形的半径: 外接圆的半径
中心角
.
O
C
边心距r
正多边形的中心角: 正多边形的边心距: 正多边形的每一条 中心到正多边形的一边 边所对的圆心角. 的距离.
例 有一个亭子它的地基是半径为4m的正
六边形,求地基的周长和面积(结果保留小数点 后一位).
四、正多边形的对称性
1.正多边形都是轴对称图形,一个正n边形共有 n条对称轴,每条对称轴都通过n边形的中心.
2.边数是偶数的正多边形还是中心对称图形,它 的中心就是对称中心.
小结:
怎样的多边形是正多边形?
1.O是等边△ABC的中心,它是△ABC的 外接 圆与 内切 圆的圆心. 2.OB叫等边△ABC的 半径 ,它是正 △ABC的 外接 圆的半径. 3.OD叫作等边△ABC的 边心距 它是等边△ABC的 内切 圆的 半径.
B A
.O
D C
4.正方形ABCD的外接圆圆心O叫做正方形 ABCD的 中心 . 5.正方形ABCD的内切圆的半径OE叫做正方形 ABCD的 边心距 .
A E
D
三、正多边形的有关计算
360 中心角 n 边心距OG把△AOB分成 F 2个全等的直角三角形 180 AOG BOG n
中心角
E
D
.O .
R A G
B
C
a
a 2 边心距r R ( ) , 2
2
设正多边形的边长为a,半径为R,它的周长为 L=na.
1 1 a 2 2 面积S L r na R ( ) 2 2 2
正n边形与圆有密圆得到多边形呢?
A
D
B
C
弧相等
弦相等(多边形的边相等) 圆周角相等(多边形的角相等)
—多边形是正多边形
H A
D
G
E B F C
弧相等
全等三角形 多边形是正多边形
边相等 角相等
定理:
把圆分成n(n≥3)等份:
⑴依次连接各分点所得的多边形是这个圆的
A
B E D
F
.O
C
判断题
①各边都相等的多边形是正多边形.( × )
②一个圆有且只有一个内接正多边形.( × )
2.证明题 求证:顺次连接正六边形各边 B 中点所得的多边形是正 六边形.
A
F E
C
D
求证:正五边形的对角线相等. 已知:ABCDE是正五边形. 求证:DB=CE. B 证明:在△BCD和△CDE中 ∵BC=CD C ∠BCD=∠CDE CD=DE ∴△BCD≌△CDE ∴BD=CE 所以正五边形的对角线相等.
各边相等,各角也相等的多边形叫做正多边形.
24.3 正多边形和圆
观察下列图形它们有什么特点?
正三 角形
三条边相等, 三个角相等 (60°).
正方形
四条边相等, 四个角相等 (90°).
一、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形. 正n边形:如果一个正多边形有n条边,那么 这个正多边形叫做正n边形.
想一想:
菱形是正多边形吗?矩形是正多边形 吗?为什么?
A D
.O
B
E
C
6.⊙O是正五边形ABCDE的外接圆,弦AB的弦心 距OF叫正五边形ABCDE的 边心距 ,它是正五 边形ABCDE的 内切 圆的半径. D 7.∠AOB叫做正五边形 ABCDE的 中心 角, E C 它的度数是 72°. .O
A
F
B
8.图中正六边形ABCDEF的中心角是∠AOB 它的度数是 60° 9.你发现正六边形 ABCDEF的半径 与边长具有什么 数量关系? 相等
⑵经过各分点作圆的切线,以相邻切线的交点
为顶点的多边形是这个圆的外切正多边形.
二、正多边形的有关概念
E
D 半径R F
正多边形的中心: 一个正多边形的外接 圆的圆心. 正多边形的半径: 外接圆的半径
中心角
.
O
C
边心距r
正多边形的中心角: 正多边形的边心距: 正多边形的每一条 中心到正多边形的一边 边所对的圆心角. 的距离.
例 有一个亭子它的地基是半径为4m的正
六边形,求地基的周长和面积(结果保留小数点 后一位).
四、正多边形的对称性
1.正多边形都是轴对称图形,一个正n边形共有 n条对称轴,每条对称轴都通过n边形的中心.
2.边数是偶数的正多边形还是中心对称图形,它 的中心就是对称中心.
小结:
怎样的多边形是正多边形?
1.O是等边△ABC的中心,它是△ABC的 外接 圆与 内切 圆的圆心. 2.OB叫等边△ABC的 半径 ,它是正 △ABC的 外接 圆的半径. 3.OD叫作等边△ABC的 边心距 它是等边△ABC的 内切 圆的 半径.
B A
.O
D C
4.正方形ABCD的外接圆圆心O叫做正方形 ABCD的 中心 . 5.正方形ABCD的内切圆的半径OE叫做正方形 ABCD的 边心距 .
A E
D
三、正多边形的有关计算
360 中心角 n 边心距OG把△AOB分成 F 2个全等的直角三角形 180 AOG BOG n
中心角
E
D
.O .
R A G
B
C
a
a 2 边心距r R ( ) , 2
2
设正多边形的边长为a,半径为R,它的周长为 L=na.
1 1 a 2 2 面积S L r na R ( ) 2 2 2
正n边形与圆有密圆得到多边形呢?
A
D
B
C
弧相等
弦相等(多边形的边相等) 圆周角相等(多边形的角相等)
—多边形是正多边形
H A
D
G
E B F C
弧相等
全等三角形 多边形是正多边形
边相等 角相等
定理:
把圆分成n(n≥3)等份:
⑴依次连接各分点所得的多边形是这个圆的
A
B E D
F
.O
C
判断题
①各边都相等的多边形是正多边形.( × )
②一个圆有且只有一个内接正多边形.( × )
2.证明题 求证:顺次连接正六边形各边 B 中点所得的多边形是正 六边形.
A
F E
C
D
求证:正五边形的对角线相等. 已知:ABCDE是正五边形. 求证:DB=CE. B 证明:在△BCD和△CDE中 ∵BC=CD C ∠BCD=∠CDE CD=DE ∴△BCD≌△CDE ∴BD=CE 所以正五边形的对角线相等.
各边相等,各角也相等的多边形叫做正多边形.
24.3 正多边形和圆
观察下列图形它们有什么特点?
正三 角形
三条边相等, 三个角相等 (60°).
正方形
四条边相等, 四个角相等 (90°).
一、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形. 正n边形:如果一个正多边形有n条边,那么 这个正多边形叫做正n边形.
想一想:
菱形是正多边形吗?矩形是正多边形 吗?为什么?
A D
.O
B
E
C
6.⊙O是正五边形ABCDE的外接圆,弦AB的弦心 距OF叫正五边形ABCDE的 边心距 ,它是正五 边形ABCDE的 内切 圆的半径. D 7.∠AOB叫做正五边形 ABCDE的 中心 角, E C 它的度数是 72°. .O
A
F
B
8.图中正六边形ABCDEF的中心角是∠AOB 它的度数是 60° 9.你发现正六边形 ABCDEF的半径 与边长具有什么 数量关系? 相等